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Abstract: Low flotation recovery, high pulp temperature, and large dosage of reagents are the typical
disadvantages when using mixed fatty acids (MFA) prepared from hogwash oil for flotation directly.
To determine the type of fatty acid that yields poor flotation performance, flotation performance and
adsorption characteristics of saturated fatty acids (SFA) and unsaturated fatty acids (UFA) separated
from the MFA were studied in our work. GC-MS, FT-IR, iodine value detection and melting point
measurement showed that UFA contained –(CH=CH–CH2)n- groups and had much lower melting
point. Quartz flotation tests were used to compare the flotation performance of UFA and SFA, which
showed that UFA had excellent low-temperature floatability, and the flotation recovery of UFA was
35 percentage points higher than that of SFA at 20 ◦C and pH = 11.5. Zeta potential, FT-IR and XPS
analysis indicated that UFA and SFA could adsorb onto the surface of activated quartz through
chemisorption and hydrogen bonding. However, the adsorption of UFA was much stronger and
more favorable; thus, the reason MFA have poor flotation performance was the presence of SFA.

Keywords: hogwash oil; fatty acids; separation; quartz flotation; adsorption mechanism

1. Introduction

Quartz is a type of widely distributed minerals on the surface of the earth, mainly
existing in the forms of crystal, quartzite, quartz sandstone, vein quartz, and so on. In
addition, it is one of the most common gangue minerals, associated with oxides, sulfides,
silicates, and phosphates [1]. Direct flotation with cationic amine collectors is a typical
method to select quartz. Another typical method is activated by the polyvalent metal
ions, and then using anionic collectors for flotation [2]. The most extensively used anionic
collectors are long carbon chain length fatty acids and their salts [3]. For example, RA series
collectors (RA-315, RA-515, RA-715, and RA-915) [4,5] are fatty acids collectors which have
been proved to be efficient, economical, and nontoxic, and have been widely used in quartz
flotation in China.

According to estimates, there are approximately 8 to 15 million tons of hogwash oil
annually produced from the catering industry in China [6]. Only 40–60% of the hogwash
is able to be collected for recycling [7], and the rest is mostly disposed of as rubbish. The
main chemical composition of hogwash is the high fatty acid glycosides [8], which are
reliable sources of fatty acids and can be used as collectors for mineral flotation. More
than 800 thousand tons fatty acid collector are consumed in China’s ore flotation ore. The
traditional process of preparing fatty acids is mainly through chemical synthesis [9]. As
the cost of flotation reagents increases, the use of fatty acids refined from hogwash oil as
flotation collectors is increasingly economical and environmentally friendly. Sun et al. [10]
refined the mixed fatty acids from hogwash oil, which was used to separate diaspore from
kaolinite. An Al2O3 recovery of 81.80% could be obtained. Liu et al. [11] used mixed fatty
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acids refined from hogwash oil as the collector of phosphate ore flotation and they got a
concentrate with P2O5 28.46% and P2O5 recovery of 87.2%.

The flotation recovery is relatively low, and high pulp temperatures and large quanti-
ties are necessary when using the mixed fatty acids refined from hogwash oil as flotation
collectors directly [12,13]. Studies have attempted to enhance flotation performance of
mixed fatty acids by mixing with other surfactants. Xu et al. [14] found that the preparation
of 10% dodecyl trimethyl ammonium chloride in mixed fatty acids could improve its
collectability and reduce consumption by approximately 60% for the flotation of lithium
pegmatite ore. Cao et al. [15] found that the recovery of apatite flotation increased by 10%
when fatty acids collector was mixed with 10% sodium dodecyl sulfonate. Jong et al. [16]
confirmed that fatty acids collector mixed with some oleic acid amide exhibited a better
collecting capacity on apatite. The mixed fatty acids prepared from hogwash oil contained
saturated fatty acids (SFA), such as stearic acid and palmitic acid, and unsaturated fatty
acids (UFA), such as oleic acid, linoleic acid, and linolenic acid [10,17–19]. Yu et al. [18]
compared the flotation performance of four different mixed fatty acids prepared from
hogwash oil which are from different regions in China. They found that mixed fatty acids
containing more unsaturated fatty acids could yield better flotation results. Thus, in our
study, we attempted to improve the flotation performance of original fatty acids prepared
from hogwash oil by separating the original fatty acids into its constituent components to
determine what types of fatty acids were responsible for poor flotation performance.

In this work, the mixed fatty acids (MFA) prepared from hogwash oil were sepa-
rated into SFA and UFA via a chemical method. Gas chromatography-mass spectrometry
(GC-MS), FT-IR, iodine value detection and melting point measurements were used to con-
firm the separation. Quartz flotation tests were used to compare the flotation performance
of SFA and UFA. The adsorption properties and mechanisms of SFA and UFA on quartz
surface were compared by zeta potential, FT-IR and XPS analysis.

2. Materials and Methods
2.1. Mineral Sample

Hand-picked pure quartz samples were obtained from Sijiaying Iron Mine, Hebei
Province, China. The samples were crushed with a hammer. In addition, then the crushed
samples were ground with ceramic ball mill and subsequently wet-sieved to obtain size
fractions −0.150 mm. The chemical compositions of the obtained quartz sample were
presented in Table 1. The quartz sample was super pure comprising 99.20% SiO2.

Table 1. Chemical composition of the single quartz (wt%).

Sample SiO2 Al2O3 K S CaO

Pure quartz 99.20 0.67 0.054 0.0046 <0.001

2.2. Reagents

The hogwash oil was provided by Wuhan Zeyu Waterproof Building Materials, Ltd.,
(Wuhan, China). Calcium chloride (CaCl2) with analytical purity was used as activator in
the quartz flotation, which was supplied by Tianjin Kemiou Chemical Reagent Co., Ltd.,
Tianjin, China. The 0.10 mol/L HCl and 0.10 mol/L NaOH solutions were used to adjust
the pH of the flotation pulp. The MFA, SFA and UFA prepared from hogwash oil were
used as flotation collectors for quartz flotation. In particular, all collectors were saponified
by 20% NaOH solution in a mass ratio of 1:1 and diluted to 0.2% solution before use.

2.3. FT-IR Analysis

In the measurement of the FT-IR spectrum (Nicolet 380 FT-IR spectrometer, Thermo
Fisher Scientific, Waltham, MA, USA), the spectral pure KBr and quartz were further
ground to −2 µm in an agate mortar. Five grams of the ground quartz was mixed with
50 mL aqueous solution with 50 mg/L CaCl2 and then treated with 100 mg/L collectors
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(UFA or SFA) at pH 11.50, and 25 ◦C. After being stirred for 0.5 h, the pulp was filtered and
then washed with distilled water three times and finally dried in a vacuum oven at 50 ◦C.
Finally, a mixture of the quartz sample and KBr at a mass ratio of 1:100 was pressed into a
thin disk for FT-IR spectroscopy.

2.4. Flotation Tests

Micro-flotation tests were conducted using an XFGII50 with a 50-mL cell (Changchun
Prospecting Machinery Factory, Changchun, China). A 5 g quartz sample was placed in
the cell which are filled with ultra-pure water. A pH regulator (0.10 mol/L HCl or NaOH),
CaCl2 activator, and collector (MFA, SFA or UFA) were sequentially added to the cell. The
conditioning time of each reagent was 2 min at a rotation speed of 1992 rpm, and flotation
was conducted for 4 min. Finally, the Equation (1) is used to calculate the recoveryε, where
a and b are the dry weights (g) of froth products and tailings, respectively.

ε = a/(a + b)× 100% (1)

2.5. Zeta Potential Measurements

Before the measurement of zeta potential (Malvern Instruments Nano-ZS90, Malvern
Panalytical, Malvern, UK), the quartz sample was further ground to below 0.005 mm and
prepared as a 0.06% suspension. Zeta potential was measured in the absence or presence
of CaCl2 and collectors at 25 ◦C. After agitating for 10 min, 0.10 mol/mL HCl and NaOH
were used to regulate the pulp pH. Each measurement was repeated three times, and the
average was adopted.

2.6. X-Ray Photoelectron Spectroscopy

XPS analysis of quartz and quartz treated with CaCl2 and collector (UFA or SFA) at pH
11.50 were measured with an American Thermo VG ESCALAB 250 spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA). The X-ray source was monochromatized Al Kα

(1486.7 eV) with a power of 150 W (15,000 V× 10 mA). The pressure in the sample chamber
was 5.0 × 10−8 Pa. A value of 284.8 eV was chosen as the standard C(1s) to calibrate the
binding energy.

3. Results and Discussion
3.1. Preparation of Collectors

Hogwash oil was first water washed and treated by 40% NaOH solution and 40%
H2SO4 solution to obtain the mixed fatty acids (MFA). GC–MS was used to identify the
main components of the MFA [20] and listed them in Table 2. The MFA is comprised of
unsaturated fatty acids (29.6% oleic acid, 32.1% linoleic acid and 4.5% linolenic acid) and
saturated fatty acids (7.9% stearic acid and 24.7% palmitic acid).

Table 2. Fatty acid composition of MFA.

Component Structure Content/%

Palmitic acid CH3(CH2)14COOH (C16:0) 24.7
Stearic acid CH3(CH2)16COOH (C18:0) 7.9
Oleic acid CH3(CH2)7CH=CH(CH2)7COOH (C18:1) 29.6

Linoleic acid CH3(CH2)4-[CH=CH-CH2]2-(CH2)6COOH (C18:2) 32.1
Linolenic acid CH3CH2-[CH=CH-CH2]3-(CH2)6COOH (C18:3) 4.5

others / 1.2
“/” means no specific structure.

The SFA and UFA collectors were prepared from MFA using urea inclusion method [21–23]
as described in Equation (2). As reported in our previous study [24], this separation mechanism
was investigated by molecular simulation, and the SFA and UFA were characterized by iodine
value, melting point measurement and Fourier transform infrared (FT-IR) spectroscopy. The
results indicated that UFA comprised fatty acids containing -(CH=CH-CH2)n- with an iodine
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value of 162.9 and a melting point as low as−17.3 ◦C, which means that the UFA were easy to
disperse and dissolve in flotation pulp at low temperatures. In contrast, no -(CH=CH-CH2)n-
group was detected in the SFA, and the SFA comprised saturated fatty acids. The iodine
value and melting point of the SFA were 49.0 and 38.8 ◦C, respectively. Thus, a high pulp
temperature greater than 38 ◦C was necessary to ensure the dissolution and dispersion of SFA,
which was consistent with the results of the flotation temperature test (Figure 4).

MFA + mCO(NH2) 2
Ethanol−−−−→

0 ◦C
SFA[CO(NH2)2]m ↓ +UFA + ∆H (2)

3.2. Flotation Tests
3.2.1. Conditional Tests of pH

Quartz flotation tests were used to compare the flotation performance of SFA, UFA,
and MFA. Firstly, quartz was floated at various pH with collector (MFA, UFA or SFA)
concentration of 120 mg/L and activator CaCl2 concentration of 50 mg/L at 20 ◦C, and the
results was shown in Figure 1. Pulp pH of quartz flotation is typically greater than 8, and
the optimum pH is approximately 11.5. As the pulp pH increased from 8 to 11.5, quartz
recovery by collector UFA, MFA and SFA improved, with maxima of 99.01%, 89.45% and
64.10%, respectively. Additionally, the UFA collector had better collectability than those of
SFA and MFA at pH 8 to 12.5.
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Figure 1. Flotation recoveries of quartz as a function of pH (collector MFA/UFA/SFA 120 mg/L,
activator CaCl2 50 mg/L, at 20 ◦C).

3.2.2. Conditional Tests of Concentration of Collector

Figure 2 shows the effects of the collector concentration (MFA, SFA and UFA) on
quartz flotation at 20 ◦C and pH 11.50. As the UFA concentration of pulp was more
than 80 mg/L, the quartz recovery was almost 100%. For SFA, quartz recovery was
greatest (approximately 64%) at concentrations between 100 mg/L to 120 mg/L, which
was comparatively achieved with only 30 mg/L UFA. For MFA, 89.45% quartz recovery
was obtained at 80 mg/L with negligible improvement, but at higher concentrations. UFA
collector separated from MFA showed better quartz flotation performance.
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Figure 2. Flotation recoveries of quartz as a function of the concentration of collector MFA, SFA or
UFA (activator CaCl2 50 mg/L, pulp pH = 11.5, at 20 ◦C).

3.2.3. Conditional Tests of Concentration of CaCl2
Figure 3 shows the effects of CaCl2 activator on quartz flotation. For the UFA collector,

when the concentration of CaCl2 was only 25 mg/L, a high flotation recovery of 99.50% was
obtained. Even at a low 10 mg/L CaCl2 concentration, quartz recovery by UFA collector
remained above 90%, whereas the quartz recoveries were 75% and 30% for MFA and SFA
respectively. CaCl2 activator concentration should be more than 50 mg/L for when using
MFA and SFA collectors to ensure sufficient activation. The UFA collector required lower
CaCl2 concentrations to activate quartz.
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UFA 100 mg/L, pulp pH = 11.5, at 20 ◦C).

3.2.4. Conditional Tests of Temperature

The flotation properties of collector UFA, MFA and SFA with different pulp temper-
atures are presented in Figure 4. The UFA collector had excellent adaptability to pulp
temperature. Under flotation temperatures between 10 ◦C and 50 ◦C, the recoveries of
quartz flotation by UFA were higher than 98%. However, similar quartz recoveries by MFA
and SFA flotation required pulp temperatures greater than 30 ◦C and 35 ◦C, respectively.
The quartz flotation results demonstrated that the flotation performance of SFA separated
from MFA was very unfavorable, whereas UFA was an excellent collector with superior
low-temperature adaptability for quartz flotation.
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3.3. Zeta Potential Analyses

Zeta potential analyses were used to investigate the differences in electrostatic interac-
tions between quartz and the two separate components (SFA and UFA) from MFA. The
zeta potential measurements of pure at various pH values are shown in Figure 5. The zeta
potential of quartz surface was negative within a pulp pH range from 2 to 14; and as the pH
value increased, the zeta potential continued to decrease. After treated with 50 mg/L CaCl2
(Figure 5), the zeta potential significantly increased compared with Figure 5. This was
due to the adsorption of calcium ions on the negative quartz surface, and the electrostatic
force in the adsorption process. The CaCl2 activated quartz surface remained negative
throughout the studied pH range.
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Figure 5. Zeta potentials of quartz as a function of pH in the absence (a), presence of 50 mg/L
activator CaCl2 (b), 50 mg/L activator CaCl2 and 100 mg/L collector SFA (c), or 50 mg/L activator
CaCl2 and 100 mg/L collector UFA (d).

Figure 5 respectively show the changes in zeta potential when the SFA or UFA collec-
tors was added at 100 mg/L to 50 mg/L activator CaCl2 activated quartz system. The SFA
and UFA collectors significantly reduced the negative zeta potential of activated quartz
when the pulp pH was above 5, which was reflected in the flotation results of the pH test
(Figure 1). To reveal the effects of SFA and UFA on the surface potential of activated quartz,
the 100 mg/L SFA and UFA were analyzed. Based the compositions of fatty acids shown
in Table 2, palmitic acid (C16:0) and linoleic acid (C18:2) were selected to represent the
parameters of SFA and UFA respectively. The solution equilibria of SFA and UFA were as
follows. (3) to (6) [25].

Where S, k1, k2 and k3 are dissolution, acid dissociation, ions association and ion-
molecular complexation constants, respectively having values of S = 1.6 × 10−5 mol/L,
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k1 = 10−10.0, k2 = 104.0, k3 = 104.7 for SFA and S = 5.7 × 10−6 mol/L, k1 = 10−9.0, k2 = 104.5,
k3 = 105.2 for UFA [25–27]. The logc-pH diagrams of the SFA and UFA solution were
calculated and are shown in Figure 6A,B. UFA primarily existed as fatty acid molecules
from pH 2 to 10. Above PH10, fatty acid anions and anion associations were the main
compositions. The dissociation pattern of SFA was similar to that of UFA, but the significant
change in composition was observed at approximately pH 12. These results were consistent
with the results shown in Figure 1, i.e., the suitable pH values for the SFA and UFA slurries
were approximately 10 to 13 and 12 to 13, respectively. In particular, the concentration of
RCOO- anions in the UFA solution at suitable pH was 1.6 times that for SFA, this accounted
for the higher UFA, which was the reason the quartz recovery of UFA was higher. When
the pulp pH was approximately 12, both SFA and UFA were acid dissociated, thereby
preventing electrostatic attraction between SFA/UFA anions and the negatively activated
quartz surface. It was obvious that there was no electrostatic attraction between SFA/UFA
anions and the negative activated quartz surface. The zeta potential decrease observed
when activated quartz was treated with SFA or UFA may be due to chemisorption between
the collectors and the activated quartz surface.
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3.4. FT-IR Analyses

Figure 7 showed the FT-IR spectra of quartz, the FT-IR spectra of quartz treated
with 50 mg/L CaCl2 and 100 mg/L UFA and the FT-IR spectra of quartz treated with
50 mg/L CaCl2 and 100 mg/L SFA. The vibrations approximately 3128 cm−1 and 1400 cm−1

were caused by H2O in air or adsorbed H2O on quartz surface [28]. The vibrations near
1089 cm−1, 796 cm−1 and 691 cm−1 belonged to the symmetric stretching and bending
vibrations of Si-O-Si [29].

After treatment with CaCl2 and collector UFA/SFA, as shown in Figure 7, in both
spectra, stretching vibration absorption vibrations of the -CH3, -CH2 and C=O groups
could be seen at positions near 2928 cm−1, 2852 cm−1 and 1793 cm−1, respectively [30,31],
suggesting that both the collector UFA and SFA had adsorbed on the activated quartz sur-
face. Additionally, the stretching vibration absorption vibrations of the C=O group shifted
approximately 84 cm−1 compared to those of pure UFA and SFA (1709 cm−1), indicating
that C=O group strengthened and chemisorption occurred [24]. The vibrations located at
3420 cm−1 (both in Figure 7) illustrated the presence of hydrogen bond adsorption [29].
Thus, FT-IR revealed that both UFA and SFA could be adsorbed onto the activated quartz
surface by chemical and hydrogen bonding adsorption.
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3.5. XPS Analysis

Figure 8 showed the XPS analysis of pure quartz, the XPS analysis of quartz treated
with 50 mg/L CaCl2 and 100 mg/L UFA at pH 11.50, and 25 ◦C and the XPS analysis of
quartz treated with 50 mg/L CaCl2 and 100 mg/L SFA at pH 11.50, and 25 ◦C. The results
were summarized in Table 3. In the XPS spectra of quartz (Figure 8), an extremely weak
C(1s) vibration at 284.8 eV was due to C-C and C-H bonds of hydrocarbon contamina-
tion from the environment [32]. In addition, the vibrations around 532 eV, 153 eV and
103 eV were related to the presence of oxygen and silicon [29] There was no other obvious
vibrations, which indicated that the quartz was relatively pure and clear.
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Table 3. XPS characterization of reference compounds.

Sample
Element at.% (BE, eV)

C O Si Ca

Quartz 5.1 (284.8) 64.0 (532.4) 31.0 (102.9)
Quartz + CaCl2 + SFA 13.8 (284.7) 58.4 (532.3) 25.5 (102.9) 2.3 (346.5)
Quartz + CaCl2 + UFA 23.1 (284.7) 51.1 (532.3) 24.2 (102.9) 0.3 (346.8)

After treatment with CaCl2 and SFA (Figure 8), Ca adsorption (Ca 2p3/2 at 346.5 eV,
concentration of 2.3 at.%) was observed on the quartz surface. Furthermore, O(1s) and
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Si(2p) contents decreased by 5.6 at.% and 5.5 at.%, respectively, whereas the contents of
C(1s) increased by 8.8%, compared with that of the initial quartz surface. Similar XPS
results were observed for quartz treated with CaCl2 UFA (Figure 8) wherein a new Ca
vibration (Ca 2p3/2 at 346.8 eV concentration of 0.4 at.%) appeared and the contents of
O(1s), Si(2p) and C(1s) changed significantly. However, the contents of O(1s), Si(2p) and
Ca(2p) were 7.3 at.%, 1.3 at.% and 1.9 at.% lower, respectively, and the C(1s) content was
9.3 at.% higher, compared with the activated quartz surface treated by SFA. Namely more
UFA molecules were adsorbed and covered the O, Si and Ca atoms on the activated quartz
surface. These results revealed that both SFA and UFA could adsorb onto quartz surfaces
activated by calcium ions, but the adsorption of UFA was much stronger.

To further compare the adsorption of SFA and UFA on quartz, the curve fitting of
C(1s) vibrations of different samples are shown in Figure 9A–C. Figure 9A shows that the
C(1s) vibration of the pure quartz surface was the only component at 284.8 eV assigned to
the C(1s) of C-C and C-H bonds from the hydrocarbon contamination. Figure 9B,C show
that the activated quartz surface treated with SFA and UFA included three components
at approximately 284.8 eV, 286.6 eV and 288.9 eV due to the C(1s) bonds from C-C/C-H
bonds, O=C-OH bonds and O=C-O- bonds, respectively [29,32]. Obviously, both SFA and
UFA had been adsorbed onto the surface of activated quartz. However, the adsorption
of UFA was much stronger and more favorable, because the C(1s) content in C-C/C-H
bonds from the sample treated by UFA was significantly higher and the binding energy
of the C(1s) vibration of component O=C-O- for the sample treated by UFA was 0.4 eV
lower, than that of the sample treated by SFA. In addition, the components of O=C-OH
bonds were found in both samples treated with SFA and UFA and their binding energies of
were almost same. This indicated that the adsorptions of both SFA and UFA may involve
hydrogen bonding, which confirmed the results of the FT-IR analysis.
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and quartz treated with 50 mg/L CaCl2 and 100 mg/L UFA (C).

By combining the analyses of flotation test, FT-IR, XPS, and zeta potential measure-
ments, it is evident that the adsorption mechanisms of UFA and SFA on quartz surface are
the same as summarized in Figure 10. Both UFA and SFA can adsorb onto quartz surfaces
activated by Ca2+ via chemical and hydrogen bonding adsorption. UFA is an extremely
excellent collector for quartz even at low flotation temperatures. Comparably, the SFA had
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poor flotation performance requiring y high flotation temperatures and pulp pH to ensure
dissolution and dispersion.
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4. Conclusions

Mixed fatty acids (MFA) prepared from hogwash oil consisted of 7.9% stearic acid,
24.7% palmitic acid, 29.6% oleic acid, 32.1% linoleic acid, and 4.5% linolenic acid. MFA can
be separated into saturated fatty acids (SFA) and unsaturated fatty acids (UFA) through
chemical methods. The quartz flotation results demonstrated that the flotation perfor-
mance of SFA separated from MFA was very unfavorable, whereas UFA, showed strong
collectability and superior low-temperature adaptability for quartz flotation. At 20 ◦C and
pH 11.50, the highest quartz recoveries of by UFA, MFA and SFA at were 99.01%, 89.45%
and 64.10%, respectively. Finally, the zeta potential, FT-IR, and XPS analyses revealed the
adsorption mechanism by which both UFA and SFA could be adsorbed onto activated
quartz surfaces via chemical and hydrogen bonding, but the adsorption of UFA was much
stronger and more favorable. Thus, the unfavorable flotation performance of MFA was due
to large amounts of SFA.
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