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Abstract: Investigating the impacts of rock composition on pore structure is of great significance to
understand shale gas occurrence and gas accumulation mechanism. Shale samples from over-mature
Niutitang formation of Lower Cambrian in south China were measured by X-ray diffraction (XRD),
field emission scanning electron microscopy (FE-SEM), low pressure N2 and CO2 adsorption to
elucidate the controls of distinct mineral composition on pore development. Two distinct lithofacies,
namely siliceous shale and argillaceous shale, were ascertained based on their mineral composition.
Due to the variability of mineral composition in different lithofacies, pore structure characteristics
are not uniform. Pores in siliceous shales are dominated by interparticle pores and organic matter
(OM) pores, among which the interparticle pores are mainly developed between authigenic quartz.
Furthermore, most of these interparticle pores and cleavage-sheet intraparticle pores within clay
minerals are usually filled by amorphous organic matter that is host to OM pores. Due to the lack of
rigid minerals, argillaceous shale was cemented densely, resulting in few interparticle pores, while
cleavage-sheet intraparticle pores within clay minerals are common. Comparing siliceous shales
with argillaceous shales, specific surface areas and pore volumes are higher on the former than on
the latter. The content of total organic carbon (TOC) and authigenic quartz have a great influence
on micropore structures, but less on mesopore structure for siliceous shales. The rigid framework
structure formed by authigenic quartz is believed to be able to prevent primary interparticle pores
from mechanical compaction and facilitate the formation of organic matter-associated pores. In terms
of argillaceous shales, due to the lack of authigenic quartz, interparticle pores were rarely developed
and its pore structure is mainly controlled by illite content.

Keywords: authigenic quartz; pore structure; over-mature shales; Lower Cambrian

1. Introduction

In recent years, as a result of the huge resource potential of shale gas, organic rich
shales have received renewed attention [1]. Shale gas, as the most significant natural gas
resource, mainly exists in the heterogeneous pore spaces of shales in the form of adsorbed
and free gas [2–4]. Pore structure is feature by size, shape, volume, area, connectivity,
and spatial distribution, which has significant influence on shale gas enrichment [5]. The
intense heterogeneity of shale pore structure results in distinct shale gas storage mech-
anisms and distribution characteristics [5–7], while pore structure is influenced by rock
type, mineral composition (mineral types, sizes, and percentage), organic maturity and
total organic carbon content [5,8,9]. Many studies have reported the effects of organic
matter content [6,10,11] and organic maturity on shale pore structure [12–17]. For exam-
ple, Wang et al. [10] conducted FE-SEM observation, helium porosity measurement, low
pressure nitrogen adsorption analyses, high-pressure methane sorption measurements
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and mechanical tests to investigate the characteristics and dominant controlling factors of
Niutitang shales. and their results show that TOC plays an important role in the brittle-
ness, pore structure and sorption capacity of shale reservoirs, potentially controlling the
enrichment and productivity of shale gas. Topór et al. [15] studied the pore characteristics
and CH4 sorption capacity for immature, mature, and overmature shales from the Baltic
Basin via supercritical CH4, subcritical CO2 and N2 gas adsorption measurements and
SEM observation. Organic matter (OM) maturity not only controls OM pore volume and
CH4 adsorption in micropores, but also exerts a dominant control on porosity evolution
in micro- and mesoscale [15]. However, the influence of different mineral composition on
pore structure, pore volume and surface area distribution of shale remains unclear.

The Lower Cambrian Niutitang shales are widespread units in most areas of the
Yangtze Block and are marked by great thickness, high TOC content, high maturity, and
great potential for hydrocarbon generation with high brittleness and fracture develop-
ment [10,18]. As one of the greatest potential target intervals for shale gas exploration and
development, pore characteristics of the Niutitang shale have been paid close attention.
Up to now, previous studies mostly focused on the variability of pore morphology and
structure and the effect of organic carbon content on pore structure [10,19–21]. However,
scant attention has been paid to the influence of different mineral composition on pore
structure, pore volume and surface area distribution of shale.

With samples from over-mature Niutitang Formation in south China, the objectives of
this work are to (1) clarify mineral composition of different lithofacies shales; (2) illustrate
the pore structure characteristics of different lithofacies shales; (3) elucidate the influence
of different mineral composition on pore development of over-mature shales.

2. Geological Settings

By ca. 530 Ma, the South China Craton was positioned between 30 degrees and 60
degrees north latitude (Figure 1a) [22]. In mid-Neoproterozoic, South China consisted of
two tectonic blocks, Yangtze and Cathaysia. The Nanhua Basin formed between them,
which was the result of a failed intracratonic rift in the late Neoproterozoic (Figure 1b) [23].
After the rift events in Neoproterozoic, the Yangtze Block entered the passive continental
margin basin stage during the transitional period of Ediacaran-Cambrian [24,25]. During
Early Cambrian, the Yangtze Block presented three sedimentary belts from NW to SE:
(1) shallow water deposits of Yangtze Platform, (2) slop, (3) deep ocean Basin of Nanhua
(Figure 1b) [26–29].

As a result of global sea level rise in the Early Cambrian, black shales distributed
almost over the whole Yangtze Block, which was in unconformity contact with the under-
lying Ediacaran Dengying Formation dolomite or conformable contact with the coeval
black chert-shale successions of Liuchapo Formation basinwards (Figure 1c) [23]. Niutitang
Formation consisted of a thick layer of black shale sequence with a phosphorite nodule-rich
horizon and a Ni–Mo-PGE sulfide-rich layer at the base. Meanwhile, abundant pyrites can
be found in the lower part in deeper water sections (Figure 1c). Two outcrop sections (GCC
and YWT) and one well (ND1) were selected for this study. Paleo-geographically, the GCC
section and the ND1 well are both located in shallow water deposits facies (Figure 1b),
while the YWT section is located in basin facies (Figure 1b).
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Figure 1. (a) Map showing the location of South China in early Cambrian [22]. (b) Paleogeographic map of Yangtze Block in
Early Cambrian [25,29]. (c) Lithologic columns of the lower Cambrian Niutitang Formation in south China.

3. Samples and Methods
3.1. Samples

All the samples collected from GCC section, ND1 well and YWT sections were de-
scribed at decimeter scale. Total organic carbon (TOC) and mineralogical composition of
36 shale samples were analyzed by vario EL III CHNOS elemental analyzer (Langensel-
bold, Germany) and by X’Pert PRO DY2198 Diffractometer (Almelo, The Netherlands),
respectively. Six samples (four siliceous shale samples and two argillaceous shale sam-
ples) were ion milled for scanning electron microscopy (SEM)- cathodoluminescence (CL)
imaging analyses at the state key laboratory of geological processes and mineral resources,
China University of Geosciences (Wuhan). Moreover, low pressure gas adsorption (N2 and
CO2) experiments were conducted on eleven samples (six samples of siliceous shale and
five samples of argillaceous shale) using a Micromeritics ASAP 2020 surface area analyzer
(Norcross, GA, USA).

3.2. Organic Geochemical Analysis and Mineralogical Composition

To determine the total organic carbon of Niutitang shales, samples selected from GCC
section, ND1 well and YWT section were cut into small pieces and then crushed to powder
using Agate mortar. After that these powder were pretreated with 5% HCl to remove
inorganic carbon, then dried for element analyzer test.

To measure the mineralogical composition and different clay minerals of Niutitang
shales, Thirty-six shale samples were milled into less than 200 mesh powders and tested
by X-ray diffraction. The percentages of minerals in shale samples were estimated semi-
quantitatively by using Lorentz Polarization to correct the main peaks area [30].
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3.3. FE-SEM Observation

The pore morphology of Niutitang shale samples were determined under high vacuum
by using FEI Quanta 450 FEG field emission scanning electron microscope (Hillsboro, OR,
USA), with a resolution of 1.2 nm at 30 kV. All the samples for FE-SEM observation were
polished by argon ion in advance, which can protect the true pore morphology of the
sample surface from the mechanical polishing damage. A thin carbon layer was then
sprayed on the surface of samples.

3.4. Low Pressure N2 and CO2 Isotherm Analyses

By applying the Micromeritics ASAP 2020 surface area instrument, low pressure
gas (N2 and CO2) adsorption analyses were performed to measure the pore structure
of Niutitang shales at China University of Geosciences (Wuhan). Prior to analysis, the
shale samples were ground into 60–80 mesh size and degassed under vacuum for 16 h at
110 ◦C to remove adsorbed moisture and volatile material. The relative pressure (P/P0,
P = equilibrium pressure and P0 = saturated vapor pressure) for N2 adsorption and desorp-
tion ranges from 0.001 to 0.995. Based on the data of N2 adsorption branch, specific surface
areas (SA) were obtained using Barrett-Emmett-Teller (BET) theory and pore volumes
(PV) were calculated by using Barrett-Joyner-Halenda (BJH) method. CO2 adsorption
experiments were measured within a relative pressure ranging from 0.0004–0.032 at 273 K.
Applying the density functional theory (DFT) method, the SA, PV, and PSD (pore size
distributions) of micropores were obtained.

4. Results
4.1. Organic Geochemistry and Petrology

The TOC content and mineralogical compositions of shale samples from Niutitang
formation in GCC section, ND1 well and YWT section are presented in Table 1. TOC
content ranges from 0.32 wt% to 13.2 wt% in our sample set, averaging 1.40 wt% for GCC
section, 3.02 wt% for ND1 well and 10.53 wt% for YWT section.

Table 1. TOC and Mineral composition of Niutitang Formation in GCC section, ND1 well and YWT section.

Samples Lithology TOC
(wt%)

Mineral Composition (%)

Quartz K-Feldspar Albite Calcite Dolomite Pyrite Total
Clay Illite Illite/

Smectite Chlorite

GCC-01 Siliceous shale 1.51 42 0 9 0 0 0 49 36 0 13

GCC04 Siliceous shale 1.39 53 0 11 0 0 1 35 27 6 0

GCC-06 Siliceous shale 1.29 45 0 11 0 0 3 42 35 0 7

GCC-09 Siliceous shale 1.55 43 0 12 0 0 1 44 36 0 8

GCC-15 Argillaceous shale 1.15 25 0 17 0 0 1 57 40 0 17

GCC-19 Argillaceous shale 0.98 27 0 11 0 0 2 60 48 0 12

GCC-23 Argillaceous shale 0.81 31 0 9 0 0 0 60 50 0 10

GCC-31 Argillaceous shale 0.90 33 0 13 0 0 1 52 43 8 1

GCC-34 Argillaceous shale 1.00 26 0 9 0 0 1 64 45 0 19

GCC-39 Argillaceous shale 0.97 34 0 15 0 0 0 51 47 0 4

GCC-43 Argillaceous shale 1.01 28 0 12 0 0 1 59 42 0 17

GCC-66 Siliceous shale 2.59 36 0 15 0 0 0 49 34 0 15

GCC-67 Argillaceous shale 3.09 31 0 15 0 0 1 53 30 0 23

ND1-28 Siliceous shale 0.36 50 25 0 0 0 6 19 11 8 0

ND1-33 Siliceous shale 2.22 32 35 0 0 17 7 9 7 2 0

ND1-40 Siliceous shale 1.78 35 26 0 0 22 5 13 9 3 0
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Table 1. Cont.

Samples Lithology TOC
(wt%)

Mineral Composition (%)

Quartz K-Feldspar Albite Calcite Dolomite Pyrite Total
Clay Illite Illite/

Smectite Chlorite

ND1-44 Siliceous shale 1.7 30 29 0 0 20 10 9 7 1 0

ND1-51 Siliceous shale 1.54 34 21 0 0 30 3 12 8 4 0

ND1-58 Siliceous shale 2.6 31 23 0 0 31 4 11 6 5 0

ND1-67 Siliceous shale 8.3 36 18 0 8 20 4 14 8 5 0

ND1-76 Siliceous shale 4.8 93 0 0 1 2 1 3 3 0 0

ND1-82 Siliceous shale 6.5 52 0 15 3 3 7 20 13 7 0

ND1-96 Siliceous shale 4.3 69 0 8 8 5 4 6 5 1 0

ND1-104 Siliceous shale 3.3 47 0 8 3 16 4 22 15 7 0

ND1-113 Siliceous shale 4.01 49 0 7 30 4 3 7 5 2 0

ND1-122 Siliceous shale 1.9 59 0 14 5 5 5 12 9 3 0

ND1-135 Siliceous shale 1.4 38 0 12 22 13 2 13 10 2 1

ND1-153 Siliceous shale 0.7 50 0 16 7 0 4 23 17 2 4

YWT-28 Siliceous shale 10.98 79 3 0 0 0 4 14 9 1 4

YWT-37 Siliceous shale 11.6 92 0 0 0 0 2 6 5 1 0

YWT-40 Siliceous shale 11.23 82 0 0 0 0 1 17 11 3 3

YWT-42 Siliceous shale 10.67 76 2 0 0 0 4 18 14 4 0

YWT-49 Siliceous shale 9.46 88 2 0 0 0 2 8 6 2 0

YWT-55 Siliceous shale 11.26 77 4 0 0 0 3 16 9 2 2

YWT-61 Siliceous shale 13.2 89 2 0 0 0 2 5 1 0 2

YWT-75 Siliceous shale 5.81 96 0 0 0 0 0 4 4 0 0

The mineral compositions of Niutitang shale samples are dominated by quartz and
clay minerals. The contents of quartz and clay minerals range from 25% to 96% and 3%
to 64%, respectively. Besides, illite is dominant in clay minerals. The average content of
quartz increases from GCC section to ND1 well to YWT section (mean 35%, 47%, 85%,
respectively), while the average content of clay minerals decreases (mean 52%, 13%, 11%,
respectively) (Table 1). Moreover, carbonate minerals content is high in samples from ND1
well, except ND1-28 sample (Table 1).

4.2. Lithofacies Classification

According to the ternary diagram of siliceous minerals (quartz + feldspar)-carbonate
minerals-clay minerals, shale could be divided into four lithofacies: argillaceous shale (AM),
siliceous shale (SM), calcareous shale (CM) and mixed shale (MM) [31–34]. As presented
in Figure 2, the Niutitang shales are divided into two lithofacies: siliceous shale and
argillaceous shale. The siliceous shales contain higher siliceous minerals contents (51–96%),
with the clay minerals contents range from 4–49%. The argillaceous shales contain less
siliceous minerals contents (40–49%) and more clay minerals contents (51–64%) (Table 1).
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Figure 2. Lithofacies classification of studied Niutitang shale samples.

4.3. Pore Structure Characterization by FE-SEM Observation
4.3.1. Pore Type

According to the pore morphology, pores in shales are classified into three categories:
interparticle pores (interP), intraparticle pores (intraP) and organic pores [35,36]. The pore
morphology of Niutitang shales were investigated by FE-SEM.

Interparticle pores are observed between particles that vary from soft and ductile
(such as clay) to hard and rigid (such as quartz) and have multifarious shapes with pore
size ranging from tens of nanometers to about 3 µm (Figure 3). Moreover, interparticle
pores between authigenic microcrystalline quartz are identified, which are well preserved
and connected (Figure 3c,d).

Figure 3. Interparticle pores between detrital grains and authigenic quartz. (a) InterP pores between
clay minerals and rigid grains; (b) InterP pores between rigid grains; (c) InterP pores between
K-feldspar and clay minerals; interP pores between authigenic quartz; (d) InterP pores between
authigenic quartz.
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The intraparticle pores in Niutitang shale occur in three forms: (1) as cleavage-sheet
intraparticle pores within clay minerals, (2) as intraP pores within framboidal pyrite, (3) as
corrosion pores developed within certain unstable minerals, such as quartz, carbonate,
feldspar and euhedral pyrite (Figure 4). Cleavage-sheet intraparticle pores within clay
minerals are usually linear-shaped, with several micrometers long and tens to hundreds
of nanometers wide (Figure 4a,b). A certain amount of OM and clay minerals have
transformed into organo−clay complexes (Figure 4b). Pyrite framboids formed in anoxic
sea environments consists of many small pyrite crystals. Most pore sizes between pyrite
crystals is about 100 nm (Figure 4c). Dissolution-related intraP pores are usually observed
within primary detrital particles, such as quartz, carbonate, feldspar, and euhedral pyrite
(Figure 4d–f). When there are relatively high content carbonate grains in shale, a mass of
dissolution intraP pores can be observed (Figure 4e). Most dissolution pores are spherical,
ellipsoidal and some are slit-shaped (Figure 4). IntraP pores are usually in a dispersive
distribution and have poor connectivity or even disconnection, with pore size ranging from
tens nanometers to several micrometers (Figure 4).

Figure 4. Characteristics of intraparticle pores. (a,b) Cleavage-sheet intraP pores within clay minerals; (c) IntraP pores within
framboidal pyrite; (d–f) Corrosion intraP pores developed within quartz (Q), dolomite (D) and euhedral pyrite, respectively.

OM pores are produced by the generation and expulsion of hydrocarbons during
the thermal evolution of organic matter or related to the skeleton structure of organic
organisms [3,34,37]. OM pores created by hydrocarbon generation are mostly spherical,
ellipsoidal, or honeycomb-shaped (Figure 5a–c), while OM pores related to paleontology,
which may be algal sporangia [19], are generally featured by large pore size, local con-
centration and good connectivity (Figure 5d). Most OM pores in Niutitang shales occur
within clay minerals or between microcrystalline quartz (Figure 5b,c). InterP pores be-
tween authigenic quartz provided enough space for the filling of amorphous OM (probably
bitumen) during hydrocarbon generation and protected OM pores from collapsing during
compactional gas expulsion (Figure 5c) [6]. The organic pores show narrow size distribu-
tion with width ranging from tens to hundreds of nanometers. According to the current
2D images, theses OM pores display isolated or connected with each other (Figure 5).
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Figure 5. Characteristics of organic pores. (a) honeycomb-shaped OM pores; (b) OM pores within
clay minerals; (c) OM pores between microcrystalline quartz (AQ); (d) OM pores related to the
skeleton structure of organic organisms.

4.3.2. Pore Structure Characteristics in Different Lithofacies

Any shale facies that given perhaps are characterized by one pore type or an associa-
tion of several pore types. Mineralogy and sedimentary features of shale highly control
pore network and pore distribution [38]. As described above, two lithofacies were rec-
ognized in Niutitang Formation, and show various mineralogical compositions. Hence,
pore structure characteristics should be diverse from facies to facies. The pore structure
characteristics of different lithofacies are described in the sections below.

The Pore Characteristics of Siliceous Shale

Two siliceous shale samples from GCC section (GCC-09 and GCC-66) and two siliceous
shale samples from YWT section (YWT-49 and YWT-75) were investigated by FE-SEM for
the pore morphology of siliceous shale in Niutitang formation. FE-SEM images demon-
strate that organic pores are mainly developed in siliceous shale, and tend to increase as the
TOC content increases. The siliceous shale in GCC section are dominated by interparticle
pores with minor organic pores and intraparticle pores (Figure 3a; Figure 6a,b). The organic
pores in samples GCC-09 (TOC = 1.55 wt.%) and GCC-66 (TOC = 2.59 wt.%) are mostly
in honeycomb shape (Figure 5a; Figure 6a). In addition, a large number of macroscopic
voids, similar to algal sporangia as described by Yang et al., 2016, are observed in GCC-66
(Figure 5d; Figure 6c). The major pore types in siliceous shale of YWT section are inter-
particle pores (Figure 3b,d), while abundant organic pores are also observed, especially in
YWT-49 (TOC = 9.46 wt.%) (Figure 6d–f). Moreover, numerous interparticle pores between
authigenic microcrystalline quartz are identified, which are well preserved and connected
(Figure 4d; Figure 6d,e). These interparticle pores and cleavage-sheet intraparticle pores
within clay minerals in both samples YWT-75 and YWT-49 are usually filled by amorphous
organic matter, probably bitumen, in which abundant organic matter pores developed
(Figure 5b,c; Figure 6d–f). As describes above, authigenic microcrystalline quartz and clay
minerals (probably illite and smectite mixed-layer or illite) are blend with amorphous OM
(Figure 6e,f; Figure 5a–c), which indicates that the generation and migration of hydrocarbon
occurred after, or overlapped with authigenic quartz formation and the transformation of
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smectite to illite, moreover, the secondary pores between authigenic minerals were filled
by the newly formed bitumen [38].

Figure 6. Pore structure characteristics of siliceous shale in Niutitang Formation. (a–c) pores in siliceous shale from GCC
section, which show interparticle pores are the main pore type; (d–f) pores in siliceous shale from YWT section.

The Pore Characteristics of Argillaceous Shale

Two argillaceous shale samples (GCC-43 and GCC-67) from GCC section were investi-
gated by FE-SEM for the pore morphology of argillaceous shale in Niutitang formation.
Compared with siliceous shales, the argillaceous shales contain less siliceous minerals and
more clay minerals. Due to the high content of clay minerals, the argillaceous shales are
cemented tightly, resulting in interparticle pores are fewer compared with the siliceous
shales (Figure 7). Cleavage-sheet intraparticle pores within clay minerals are common, and
organic pores are rare and in honeycomb shape (Figure 7).

Figure 7. Pore structure characteristics of argillaceous shale in Niutitang Formation. (a) Cleavage-
sheet intraparticle pores within clay minerals; (b) Intraparticle pores within pyrite framboids and
interparticle pores between quartz and clay minerals; (c) interparticle pores between caly minerals
and rigid grains; (d) organic pores in honeycomb shape.
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4.4. Pore Characterization by Low Pressure Nitrogen Adsorption

Low pressure nitrogen adsorption was applied to quantitatively analyze mesopore
(2 nm < d < 50 nm) structure. The isotherm of N2 adsorption-desorption of Niutitang
shale samples are shown in Figure 8. Based on the classification of International Union
of Pure and Applied Chemistry (IUPAC), the isotherms of siliceous shales can be divide
into type H3 and H4, among which the hysteresis loops of ND1-28 and ND1-96 belong to
H4, mainly corresponding to narrow slit-like pores, and the other siliceous shale samples
(GCC09, GCC66, YWT-75, YWT-49) are similar to H3 hysteresis loop associated with slit-
shaped pores (Figure 8a). The hysteresis loops of argillaceous shale samples are of type H3,
indicating mainly slit-shaped pores (Figure 8b).

Figure 8. N2 adsorption/desorption isotherms at low temperature (77 K) for siliceous shales (a) and argillaceous shales (b).

The specific surface areas and the mesopore volumes figured by the BET model and
the BJH model, respectively, are presented in Table 2. The BET surface areas of siliceous
shales and argillaceous shales range between 4.3–30.43 m2/g (average 16.19 m2/g) and
8.15~11.91 m2/g (average 10.8 m2/g), respectively; the mesopore volumes of siliceous
shales and argillaceous shales range between 0.66–4.61 cm3/100 g (average 2.59 cm3/100 g)
and 1.54~2.12 cm3/100 g (average 2.06 cm3/100 g), respectively; the N2 adsorbed maxi-
mum volumes of siliceous shales and argillaceous shales range between 4.80~31.84 cm3/g
(average 18.15 cm3/g) and 10.89~14.81 cm3/g (average 14.36 cm3/g), respectively.
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Table 2. Micropore and mesopore volumes and surface areas based on gas adsorption.

Samples Lithology TOC Illite Excess-Si

N2 Adsorption CO2 Adsorption

BET Surface
Area, m2/g

BJH Mesopore
Volume,

cm3/100 g

Maximum
Adsorption

Volume, cm3/g

DFT Micropore
Surface Area,

m2/g

DFT Micropore
Volume,

cm3/100 g

Maximum
Adsorption

Volume, cm3/g

GCC-09 Siliceous shale 1.55 36 7.62 10.84 2.54 16.94 6.74 0.200 1.82

GCC-66 Siliceous shale 2.59 34 - 30.43 4.61 31.84 7.59 0.245 1.94

ND1-28 Siliceous shale 0.36 11 3.23 4.47 0.66 4.80 2.13 0.071 0.82

ND1-96 Siliceous shale 4.35 5 18.29 22.11 1.15 11.41 11.75 0.361 2.59

YWT-49 Siliceous shale 9.46 6 27.57 4.30 2.17 13.92 13.31 0.394 2.65

YWT-75 Siliceous shale 3.20 4 31.27 25.02 4.42 29.97 9.46 0.294 2.15

GCC-31 Argillaceous shale 0.90 43 2.51 11.91 2.12 14.81 5.95 0.188 1.62

GCC-34 Argillaceous shale 1.00 45 1.65 8.22 1.86 12.73 5.09 0.166 1.41

GCC-39 Argillaceous shale 0.97 47 4.91 16.53 3.05 21.02 6.77 0.212 1.55

GCC-43 Argillaceous shale 1.01 42 2.74 8.15 1.75 12.34 4.99 0.149 2.03

GCC-67 Argillaceous shale 3.97 30 6.02 9.18 1.54 10.89 0.90 0.031 0.36

Note: “-” means no data.
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4.5. Pore Characterization by Low Pressure CO2 Adsorption

The micropore (d < 2 nm) structure was quantitatively analyzed by low pressure CO2
adsorption. The CO2 physisorption curves of the studied siliceous shales and argillaceous
shales samples are presented in Figure 9, and their variations and trends are similar to
Type I, indicating microporous solids [39]. DFT micropore surface areas of siliceous shales
and argillaceous shales range from 2.13~13.31 m2/g (mean 8.49 m2/g) and 0.90~6.77 m2/g
(mean 4.74 m2/g); DFT micropore volumes of siliceous shales and argillaceous shales are
in the range of 0.071~0.394 cm3/100 g (average 0.26 cm3/100 g) and 0.031~0.188 cm3/100 g
(average 0.15 cm3/100 g); the maximum volumes of CO2 adsorbed of siliceous shales and
argillaceous shales range from 0.82~2.65 cm3/g (average 2.00 cm3/g) and 0.36~2.03 cm3/g
(average 1.39 cm3/g), respectively (Table 2).

Figure 9. CO2 adsorption isotherms for siliceous shales (a) and argillaceous shales (b).

Micropore size distributions of the studied siliceous shales and argillaceous shales
samples calculated by the DFT model are shown in Figure 10, indicating that the pore
size distributions of siliceous shales and argillaceous shales are similar and present as
bimodal distribution. The peak value of siliceous shales is in the range of 0.4–0.68 nm and
0.72~0.92 nm, and the peak value of argillaceous shales is in the range of 0.4–0.68 nm and
0.72~0.88 nm, indicating that pores in these pore size ranges make significant contribution
to the micropore volumes.

Figure 10. Micropore pore size distribution characteristics of siliceous shales (a) and argillaceous shales (b) in Niutitang Formation.

5. Discussion
5.1. Impacts of Organic Matter on Shale Pore Structure

Figures 11 and 12 show the correlations between TOC content and pore structure
parameters of siliceous shales and argillaceous shales, respectively. TOC is positively
correlated with micropore surface areas (R2 = 0.76) and micropore volume (R2 = 0.73) of
siliceous shales (Figure 11c,d), suggesting that siliceous shales with higher TOC content
tend to form more micropores, which is consistent with the results of FE-SEM observation
(Figure 6d–f). While, TOC is weakly related with micropore surface areas and micropore
volume of argillaceous shales (Figure 12c,d), suggesting that organic matter make little
contributions to micropore structure of argillaceous shales, which is consistent with the
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FE-SEM observation results (Figure 7). In addition, there is no correlation between meso-
pore parameters and TOC both in siliceous shales and argillaceous shales (Figure 11a,b;
Figure 12a,b), which may indicate OM pores are mainly nanopores of microscale.

Figure 11. Mesopore surface areas and volume versus TOC content (a,b); micropore surface areas and volume versus TOC
content (c,d) for siliceous shales.

Figure 12. Mesopore surface areas and volume versus TOC content (a,b); micropore surface areas and volume versus TOC
content (c,d) for argillaceous shales.
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5.2. Impacts of Clay Minerals on Shale Pore Structure

The relationship between illite and pore structure parameters of siliceous shales and
argillaceous shales are presented in Figure 13. The mesopore and micropore parameters
of siliceous shales display no correlation with illite content (Figure 13), indicating that
illite make no contributions to siliceous shales pore. Figure 13 shows both the mesopore
and micropore parameters of argillaceous shales increase linearly with the increase of
illite content, especially micropore parameters, suggesting that the contribution to pore
surface areas and volumes of argillaceous shales is dominated by clay mineral pores. This
can be confirmed by the results of FE-SEM observation, namely that argillaceous shale is
dominated by cleavage-sheet intraparticle pores within clay minerals (Figure 8).

Figure 13. Mesopore surface areas and volume versus illite content (a,b); micropore surface areas and volume versus illite
content (c,d) for siliceous shales (blue color) and argillaceous shales (orange color).

5.3. Impacts of Authigenic Quartz on Shale Pore Structure

The formation of authigenic quartz plays an important role in the pore structure of
shale [40]. Li et al., 2018 [38] pointed out that porosity highly depends on the amount of
interparticle pores between authigenic quartz grains and the abundance of authigenic silica
and TOC is the major factor that controls the porosity of Ordovician-Silurian shale. The
rigid framework created by authigenic quartz cementation can protect primary interparticle
pores from compaction, as well as facilitate the formation of OM-related pores [7,41–43],
while some scholars argued that authigenic quartz cementation leads to the decrease of
shale porosity [9,44,45].

In general, the content of excess silicon (Excess-Si) is used to represent the authigenic
quartz content [46], which is determined by applying the following equation:

Siexcess = Sisample − [(Si/Al)background × Alsample]. (1)
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The (Si/Al)background represents the ratio of Si to Al in the background debris flow and
(Si/Al)background equals 2.60 [31,47]. The content of excess silicon in siliceous shale and
argillaceous shale ranges from 3.23% to 31.27% and 1.65% to 6.02%, respectively (Table 2),
which indicating there are much higher authigenic quartz content in siliceous shale.

To investigate the influence of authigenic quartz on the pore structures of Niutitang
shales, mesopore and micropore structure parameters were plotted against Excess-Si for
samples from siliceous shales and argillaceous shales (Figures 14 and 15). Both mesopore
surface areas and mesopore volume of siliceous shales display a weak positive correlation
with Excess-Si (Figure 14a,b), while there is a strong positive correlation between micropore
parameters and Excess-Si in siliceous shales (Figure 14c,d), stressing a large number of
smaller pores within authigenic quartz. As described above, the results of FE-SEM observa-
tion show that numerous interparticle pores exist within authigenic microcrystalline quartz
in siliceous shales (Figure 4d; Figure 6d,e), which supports the great positive correlation
between micropore parameters and Excess-Si in siliceous shales. Figure 15 shows that
there is no correlation between mesopore parameters and Excess-Si and a weak negative
correlation between micropore parameters and Excess-Si in argillaceous shales, indicating
authigenic quartz make no or little contribution to argillaceous shales pore structure. This
may be due to the low content of authigenic quartz in argillaceous shales.

Figure 14. Mesopore surface areas and volume versus Excess-Si content (a,b); micropore surface areas and volume versus
Excess-Si content (c,d) for siliceous shales.
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Figure 15. Mesopore surface areas and volume versus Excess-Si content (a,b); micropore surface areas and volume versus
Excess-Si content (c,d) for argillaceous shales.

Numerous previous studies have shown that mature shales pore development highly
depends on TOC content, while the dataset presented herein suggests that authigenic quartz
content also greatly controls the pore development of siliceous shale. The rigid framework
formed by authigenic quartz is believed to be able to prevent primary interparticle pores
from mechanical compaction and facilitate the formation of organic matter-associated
pores. Argillaceous shales contain less quartz and more clay minerals than siliceous shales
(Table 1 and Figure 2). Most of quartz in argillaceous shales is of detrital origin [30], and the
pores related to detrital quartz grains were few (Figure 7). Owing to the lack of authigenic
quartz formed in the shallow-intermediate burial depth in argillaceous shales, most of the
interparticle pores were lost due to mechanical compaction. Therefore, the argillaceous
shales were cemented tightly and interparticle pores were rarely developed (Figure 7).

6. Conclusions

(1) Three types of pores in Niutitang Formation were observed by FE-SEM. Pores in
siliceous shales are dominated by interparticle pores and OM pores, among which the
interparticle pores are mainly developed between authigenic quartz. Furthermore, most of
these interparticle pores and cleavage-sheet intraparticle pores within clay minerals are
usually filled by amorphous organic matter that is host to OM pores. Owing to the lack
of rigid minerals, argillaceous shale was cemented densely, resulting in few interparticle
pores, while cleavage-sheet intraparticle pores within clay minerals are common.

(2) The combined characterization of N2 adsorption and CO2 adsorption indicates
that compared siliceous shales with argillaceous shales, specific surface areas and pore
volumes of siliceous shales are higher than those of argillaceous shales, apart from the
sample ND1-28.

(3) In terms of siliceous shales in Niutitang Formation, the content of TOC and authi-
genic quartz have great influence on micropore structures, but less on mesopore structure.
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The rigid framework formed by authigenic quartz is believed to be able to prevent primary
interparticle pores from mechanical compaction and facilitate the formation of organic
matter-associated pores. In terms of argillaceous shales, due to the lack of authigenic
quartz, interparticle pores were rarely developed and its pore structure is mainly controlled
by illite content.
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