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Abstract: Available Alumina (AvAl2O3) and Reactive Silica (RxSiO2), the main parameters of bauxite
controlled in the beneficiation process are traditionally measured by laborious, expensive, and time-
consuming wet chemistry methods. Alternative methods based on XRD analysis, capable to provide
a reliable estimation of these parameters and valuable mineralogical information of the ore, are being
studied. In this work, X-ray diffraction data in transmission mode was used to estimate AvAl2O3

and RxSiO2 from Brazilian bauxites using the Partial Least Square Regression (PLSR) statistical tool.
The proposed method comprises a routine of sample classification according to their similarities by
Principal Component Analysis (PCA) and K-means, calibration of the PLSR model for each group of
samples, grouping new bauxite samples according to the generated clustering model, and subsequent
estimation of the parameters AvAl2O3 and RxSiO2 using the PLSR models for these samples. The
results showed good accuracy and precision of the models generated for samples of the main ore
lithology. The quality and pre-processing of the XRD data required for this method are discussed.
The results demonstrated that this method has the potential to be industrially applied to quality
control of bauxites as a rapid and automated procedure.

Keywords: bauxite; available alumina; reactive silica; XRD; PLSR

1. Introduction

Bauxite is the main aluminum ore with global resources estimated to be 55–75 billion
tons. Brazil holds the 4th largest reserve and produces annually 35 million tons of bauxite,
mainly to produce smelter grade alumina [1].

The main aluminum-ore mineral present in Brazilian lateritic bauxite is gibbsite
(known as available alumina—AvAl2O3), and therefore, these bauxites are processed in
low-temperature digestion (LTD) conditions (100–150 ◦C) [2,3]. In this context, among
the silicon-bearing minerals, only kaolinite is leached in the Bayer process. This gangue
mineral is well known in the industry as reactive silica (RxSiO2) since it rapidly and unde-
sirably reacts with the sodium hydroxide solution releasing Na2SiO3 to the pregnant liquor
(Equation (1)), which must be precipitated as zeolitic phases known as DSP (desilication
product) even during the digestion stage (Equation (2)) [4]. These neoformed products sig-
nificantly affect the costs of the process, either because they dictate the time and influence
the temperature of digestion, but mainly because of the loss of caustic soda, making it, in
many cases, economically unfeasible to process bauxites with RxSiO2 > 5% [3–5].

3Al2Si2O5(OH)4 (s) + 18NaOH(aq) → 6Na2SiO3 (aq) + 6NaAl(OH)4 (aq) + 3H2O(l) (1)

6Na2SiO3 (aq)+6NaAl(OH)4 (aq) + Na2X(aq)

→ Na6(Al6Si6O24)Na2X(s) + 12NaOH(aq) + 6H2O(l)
(2)
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In the mineral industry, it is common to have quality control and process parameters
based on chemical data instead of mineralogical. It is mainly due to the consolidation
and availability of quantitative chemical analysis using wet methods, while methods for
mineralogical determination are still under development. In the aluminum industry, it is no
different. Quality control of ore in the mine and the Bayer process is done almost exclusively
in terms of its chemical composition. Thus, samples from geological research, beneficiation,
and Bayer process feedstock are analyzed to determine the content of available alumina
(AvAl2O3) and reactive silica (RxSiO2)—traditionally determined by wet chemistry [2,6,7].

Paz et al. [2] report that the RxSiO2 content determined by such methods can be
underestimated, depending on the content and the degree of crystallinity of the kaolinite
in bauxite, which may change significantly over the bauxite profile. This means that the
clay mineral present can be more reactive to the process, despite its concentration [2,8].
Thus, there is no guarantee that simple knowledge of the chemical composition of bauxite
will allow efficient control in metallurgical processes [9]. Another downside of traditional
methods is that they are time-consuming, demand manpower and space, and involve the
handling of dangerous reagents [10,11].

In this context, several methods based on the mineralogical composition of the ore,
obtained by X-ray diffraction (XRD) are being developed as an alternative for the process
control in the bauxite and alumina industry. These methods are, in general, based on
powder XRD data using Rietveld refinement [6,10–17] and multivariate statistics [18–21].
Feret [13] states that XRD has become a fundamental and irreplaceable tool in the control
of raw materials of the aluminum industry. The advent of high-speed XRD detectors
have enabled a fast data collection and, consequently, the development of rapid and
accurate methods, as they use the whole XRD pattern, reducing the effect of preferred
orientation and reflection extinction and even mitigating the inaccuracies due to amorphous
content [10,11,13–15]. König et al. [10] demonstrated the mineralogical quantification of
certified bauxite samples from several countries. Aylmore and Walker [14] and Nong
et al. [15] also applied Rietveld-XRD for the quantification of Australian lateritic and
Chinese karstic bauxites, respectively. Applications of powder XRD to quantify Brazilian
bauxites from Paragominas and Juruti (northern Brazil) were also studied by Angélica
et al. [6] and Negrão et al. [16], respectively. Feret and See [17] reported a bauxite analysis
by XRD using synchrotron radiation to improve mineralogical quantification.

Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR)
are two statistical methods widely used in the chemometric field [22–24]. Viscarra Rossel
et al. [25,26] demonstrated the use of PLSR from UV-Vis and infrared data to predict various
soil properties (such as pH, organic carbon (OC), cation exchange capacity (CEC), etc.) and
to determine the composition of mineral-organic mixtures in soils, while PCA was used
to compare the synthetic mixtures with respective soils. Olatunde [27] reported excellent
results using PLSR on infrared data to estimate the extractible total petroleum hydrocarbon
(ETPH) in soils. The author highlights the accuracy and rapidness of this method. PLSR
was also used on Energy dispersive X-ray fluorescence (EDXRF) data to predict some
soil parameters (CEC, sum of exchangeable bases (SB), and base saturation percentage
(BSP)) [28]. From XRD data, König et al. [29] demonstrated the utilization of PLSR for
quality control of iron ore sinter as a reliable, easy and rapid method in contrast to wet
chemistry.

Melo et al. [19,20] developed a methodology using PLSR on XRD data (reflection
geometry), applied to estimate the bauxite quality control parameters. The authors re-
ported that the estimation of AvAl2O3 and RxSiO2 obtained were in good agreement with
the reference and within the acceptable limits of precision (<1.0–1.5% and <0.5%, respec-
tively) [30]. However, it was observed that in samples of marginal ore lithologies with
higher kaolinite content and degree of crystallinity (low defects kaolinite), the method
does not meet the precision limits, probably due to the preferred orientation effect from
manual sample preparation. To overcome this issue, this study aimed to use XRD data in
transmission mode following a methodology similar to that of Melo et al. [19] applied to
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Brazilian gibbsitic bauxites. It is worth mentioning that the proposed method has several
advantages over the traditional methods: rapidness, can be completely automated, no
chemical reagents are required, and the ore mineralogy can also be monitored providing
relevant information to the process.

2. Materials and Methods

The bauxite samples were provided by Mineração Paragominas SA (Norsk Hydro) and
correspond to a drilling campaign on the Miltonia 3 plateau, Pará state, northern Brazil [31].
In this study, 105 samples were used, corresponding to four lithologies: Nodular Bauxite
(BN), Nodular-Crystalized Bauxite (BNC), Crystalized Bauxite (BC), and Crystalized-
Amorphous Bauxite (BCBA). Details of this lithological profile and sample preparation can
be found in Silva et al. [32] and Melo et al. [19]. Figure 1 depicts a schematic representation
of the Miltonia location and geological profile.

Figure 1. Location and typical geological profile of Miltonia plateau (Pará state, northern Brazil). Legend: BN: Nodular
Bauxite, BNC: Nodular-Crystalized Bauxite, LF: Ferruginous Laterite, BC: Crystalized Bauxite, and BCBA: Crystalized-
Amorphous Bauxite lithology.

The powder XRD data were collected using a diffractometer (Empyrean, Panalytical,
Almelo, The Netherlands), Co X-ray tube (Kα1 = 1.789 Å), Fe Kβ filter, and PIXel3D 2 × 2
area detector (linear scanning mode) with an active length of 3.3473◦ 2θ (255 channels). The
following conditions of data collection were used: Transmission mode; 40 kV and 35 mA;
soller slit of 0.04 rad; fixed divergent and anti-scattering slits of 1/8◦; 0.066◦ 2θ step-size;
22.96 s of time/step and scanning range from 5◦ to 70◦ 2θ. The step-size was defined based
on Melo et al.’s [14] optimization conditions. Diffractograms were evaluated using the
software HighScore Plus 4.8 (Panalytical, Almelo, The Netherlands).

Each sample was assembled in the sample holder and analyzed in duplicate by XRD.
To perform the PCA, K-means and PLSR analyses, XRD data were used as dataset. Thus, all
diffractograms are organized as an m × n matrix, where m (rows) are the bauxite samples
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and n (columns) are the intensity count value for each ◦2θ step of the XRD measurement
for the respective sample. Here, the complete XRD pattern is taken as dependent variables,
resulting in 984 features for modeling [19].

PCA was carried out to identify possible outliers and samples with mineralogical
similarity; and K-means clustering algorithm (with k = 3, considering Euclidean distance
measure) was used to group the samples with similarities (the clusters were named as C1,
C2, and C3).

The samples classified in each cluster were randomly divided into two subsets: a
calibration set (containing ~70% of the samples) and a test set (~30% of the samples). The
samples from the calibration set were used to build the PLSR models. This statistical
algorithm is particularly suitable for handling multi-collinear data, and an interesting
alternative for predicting relevant information Y (obtained from expensive, difficult, or time-
consuming measurements—e.g., wet chemistry) from X data (in general, cheap, easy, or
fast measurements—e.g., XRD, Fourier Transform Infrared Spectroscopy (FTIR)) [18,22,33].
Thus, in this study, the content of AvAl2O3 and RxSiO2 (from wet chemistry) was predicted
by using XRD data.

A “leave-one-out” cross-validation was used to find the best number of factors to
include in the models and the Root Mean Square Error of Prediction (RMSEP, Equation (3)),
Ratio of Prediction Deviation (RPD, Equation (4)), and Relative Error (RE, Equation (5))
were used to assess the performance of the models.

RMSEP =

√√√√∑n
i=1

(
yi, predicted − yi, re f erence

)2

n
(3)

RPD =
SDprediction set

RMSEP
(4)

RE (%) = 100

√√√√√∑n
i=1

(
yi, predicted − yi, re f erence

)2

∑n
i=1 yi, re f erence

2 (5)

3. Results and Discussion
3.1. XRD Data

Figure 2 shows the X-ray diffractograms of all the bauxite samples used in this study
collected by transmission mode. It can be noted that the bauxites of the four lithologies
have the same mineralogical composition. The main phase is gibbsite (d002 = 4.85 Å and
d110 = 4.37 Å). In general, the only SiO2 mineral identified is kaolinite (d001~7.14 Å and
d002~3.58 Å). Quartz (d101 = 3.34 Å) may be present in some samples, but in minor content.
Hematite (d104 = 2.69 Å) is observed as the main iron mineral, with intensity varying
significantly among the lithologies, and Al-goethite (d101 ranging from 4.18 Å to 4.14 Å) is
also observed, usually as a broad peak due to variations in the isomorphic substitution of
Al in the structure [12,34]. Anatese (d101 = 3.52 Å) is also present in all samples.

Layered minerals (such as clay minerals) tend to orient themselves strongly during
samples’ assembling in the sample holders for XRD analysis. Thus, for those samples rich
in kaolinite and/or gibbsite, it is common to observe high intensities of the basal reflections
(d00l) in detriment of the other reflections of the XRD pattern [35]. This effect is believed
to be the major source of error in quantitative analysis based on XRD data [14,36]. It is
interesting to note that this deleterious effect was avoided using the transmission mode,
as evidenced by the intensity ratio of the peaks d110 and d002 of the gibbsite (~50%). For
comparison, the same samples were analyzed by reflection mode with manual sample
holder assembling [14], resulting in a ratio d110/d002 of only ~8%, a very low value consid-
ering the scale factor of this phase. At low angles, the noise is significant, although this
mode of data collection allows a better resolution of possible peaks in this region of the
diffractogram.
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Figure 2. XRD patterns of the bauxite samples from BN, BNC, BC and BCBA lithologies.

3.2. Data Evaluation by Principal Component Analysis (PCA)

Figure 3 presents the score-plots for the first three principal components. As noted,
the principal components PC-1, PC-2, and PC-3 explain, respectively, 35%, 22%, and 12% of
the data variability (only 69% of the explained variance). Even considering 8 components,
the explained variance remains lower than 75%. In contrast, Melo et al. [19] achieved 98%
of the explained variance with only two components by using XRD reflection data. This
shows that, although the preferred orientation effect was mitigated, the conditions of data
collection by transmission mode used in this work resulted in a significant reduction in
the intensities, which in turn, reduced the sensitivity of the statistical treatment in finding
significant factors to reduce the data dimensionality.
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Figure 3. PCA score-plots: (a) PC-1 vs. PC-2; (b) PC-1 vs. PC-3. Explained variance of each component given in parentheses.

It is observed that no clustering is evidenced, even for those samples of the same
lithology [8]. In this context, a K-means method was used to group the samples for further
PLSR prediction. Figure 4 shows the PCA score-plot with the three clusters obtained (C1,
C2, and C3). Although samples from the same lithology were classified into different
clusters, C1 mostly contains BC; BNC and BCBA were mainly grouped in C1 and C2, while
most BN samples were grouped in C3.

Figure 4. Clustering of samples by K-means represented in the PCA score-plot.

Figure 5 presents the linear-plot of the PCA loadings for PC-1, PC-2 (Figure 5a), and
PC-6 (Figure 5b). It is observed that the reflections of the main mineral in the bauxite
(gibbsite) have greater effect on PC-1 whilst PC-2 is more influenced by noise from low
angles. The variability related to kaolinite were most extracted by PC-6.
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Figure 5. Linear-plot of PCA loadings: (a) PC-1 and PC-2; (b) PC-6. Dashed line represents 70% of the factors on the
principal components.

3.3. Prediction of AvAl2O3 and RxSiO2 by PLSR

Once the samples were classified into C1, C2, and C3 clusters, the respective sample
calibration sets were used to build the PLSR models. Melo et al. [19] achieved an optimized
condition of XRD data collection by increasing the step-size from 0.026◦ to 0.065◦ (2θ) and
reducing the 2θ range up to 13–34◦, such optimized condition for reflection mode allowed
a less than 1 min XRD scan time. As observed in the PCA loadings-plot (Figure 5), using
transmission data, the full pattern is relevant to extract the latent variables, therefore, in this
study, the diffractograms were reduced only to the 13–65◦ (2θ) interval, just removing the
background noise. This treatment resulted in a scan time of 1 min 15 s. Comparing to the
traditional wet chemistry in which analyses can take 3–8 h, the use of PLSR on XRD data is
much faster, being able to provide quick feedback to the process for decision-making.

After calibrating the models, defining the best pre-processing method for the dataset
(mean-centered or standardized) and the number of factors to be included in the models
through cross-validation, each sample in the test set was classified into one of the three
clusters and then the parameters of bauxite quality control—AvAl2O3 and RxSiO2 were
predicted using the respective models. It can be observed in Figure 6 that there is a good fit
of the predicted values for both parameters, mainly in those samples classified in C1.

Although the predicted mean values are close to the reference values, the models
C2 and C3 showed a precision slightly lower than the acceptable limits for the quality
control of bauxites [30]. The parameters that indicate the performance of the models are
summarized in Tables 1 and 2 for AvAl2O3 and RxSiO2, respectively.

A mean of residuals (mean of the difference between reference and predicted) close to
zero denotes that the models present a good accuracy. The RMSEP denotes the precision of
the model in the same unit as the predicted parameters (%AvAl2O3 and %RxSiO2). Thus,
a model with high precision presents lower RMSEP. In terms of bauxite quality control,
a precision of <1.0–1.5% for AvAl2O3 and <0.5% for RxSiO2 [14,25] is usually required.
Feret [30] argues that these numbers are sometimes difficult to attain in the industrial
practice using traditional wet chemistry methods.

The RPD indicates how well the model performs compared to using only the average
of the original data [26]. Some authors argue that RPD < 1.0 denotes a very poor model,
1.0 ≤ RPD < 1.4 a poor model, 1.4 ≤ RPD < 1.8 a fair model, 1.8 ≤ RPD < 2.0 a good model
and RPD ≥ 2.0 an excellent model [26–28]. It can be observed that the models C1 and C2
for both AvAl2O3 and RxSiO2 performed well with RPD ~2.0. It is interesting to note that,
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although the RMSEP of C3 model is high, it presented RPD = 2.9 which means an excellent
model to predict AvAl2O3, denoting that the samples in this cluster have a wide range
of AvAl2O3 content (min: 38.57%, max: 52.79%), and therefore, the model is sensitive to
variations and capable of predicting this parameter satisfactorily.

Figure 6. Comparison of reference and estimated values using PLSR models for each cluster: (a) AvAl2O3; (b) RxSiO2. Bars
indicating residual standard deviation (RSD).

Table 1. Results of the prediction of AvAl2O3 with the models for each cluster.

Models Mean of Residuals RMSEP (%) RE (%) RPD Preprocessing Method
(No. of Factors in the Model)

C1 0.24 0.85 1.63 1.98 Mean-centered (5)
C2 0.35 1.24 2.37 1.98 Mean-centered (4)
C3 −0.30 1.71 3.58 2.90 Mean-centered (5)

Table 2. Results of the prediction of RxSiO2 with the models for each cluster.

Models Mean of Residuals RMSEP (%) RE (%) RPD Preprocessing Method
(No. of Factors in the Model)

C1 −0.28 0.49 10.72 2.38 Standardized (3)
C2 −0.14 0.78 17.90 2.04 Mean-centered (5)
C3 −0.11 0.78 19.16 1.36 Standardized (4)

It is interesting to note that the best model (C1) mostly contains samples of the main
ore lithology (BC), denoting that the method is suitable for quality control. In contrast,
the worst model (C3) is mainly related to the samples of the marginal ore (BN, generally
considered as gangue). This bauxite lithology presents the highest kaolinite content and the
lowest gibbsite content in the Miltonia 3 bauxite profile. The low degree of crystallinity of
the kaolinite in this lithology affects the XRD profile [13,14]. Melo et al. [19] also observed
a lower precision for this material that could be related to the preferred orientation. As this
effect was eliminated using transmission mode, the low precision of the C3 model may be
related to the wide range of AvAl2O3 and RxSiO2 content in the sample group or another
unknown effect. It also may represent a limitation of this method (or an optimization
point), that is, it is not suitable for geological survey applications; where it may be present,
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samples that strongly deviate from the ore in terms of mineralogical composition and
phases’ content.

Feret et al. [37] state that methods of phase quantification based on regression may
successfully be used in bauxite exploration, however, they are deposit-specific. Similarly,
the method presented in this work (and also in Melo et al. [19]) represents a case study
with lateritic gibbsitic bauxite from the Miltonia plateau. Although König and Norberg [18]
reported satisfactory prediction using a generic PLSR model for bauxites from different
locations, the results suggest that changes in the ore’s mineralogy, related only to the
concentration and crystallinity of the phases, may impact prediction. Nevertheless, it is
believed that the methodology can be easily adapted to bauxites of different origins, in
particular, the Amazon lateritic bauxites (Paragominas plateau Miltonia 5, Juruti, Trombetas
and Rondon do Pará) with similar mineralogy and containing only gibbsite as an aluminum-
bearing mineral [6,12,16,38].

As depicted in Figure 7, the coefficients and factors of each PLSR model can be plotted
in relation to the ◦2θ position, allowing to interpret the obtained model in terms of the XRD
pattern of the clustered bauxite samples. It is observed that the largest coefficients of the
AvAl2O3 models (C1, C2, and C3) are negatively correlated with kaolinite basal reflections
and positively correlated with gibbsite (d110), whereas basal gibbsite reflection (d002) has
greater weights on the factor loadings. The asymmetry shape of this reflection, however,
was revealed as at least two generations of gibbsites. Similar results were observed by Melo
et al. [19], and according to König et al. [10] and Negrão et al. [16], it could be associated
with aluminum-rich horizons, where along the bauxite profile, well-formed coarse gibbsite
crystals fills microvoids, and a new generation of fine, poor-crystalline gibbsite is dispersed
in the matrix. Interestingly, Al-goethite (d110) has a high impact on model coefficients
(highlighted area in Figure 7a,c). The respective broad peak area in C1 and C2 coefficients
denote the presence of several %Al-substitution in the goethite structure. It is also noted
that, in the C3 model, a wide area from 15–20◦ 2θ presented high coefficients. This area,
however, has no XRD reflection associated, and therefore, may be related to the amorphous
in these samples. It was not possible to quantify the amorphous, but it is assumed that this
is more evident in the overlying lithologies, in particular, BNC and BN due to different
laterization cycles and the greater presence of neoformed minerals [8,16]. This assumption
is in agreement with the results since BN samples were mainly grouped in C3, and is
probably related to the relatively low prediction of this model.

On the models for RxSiO2, higher coefficients related to kaolinite and Al-goethite were
also observed, however, positively. For models with standardized datasets (C1 and C3),
the basal reflections of kaolinite have greater impact on loadings, while in the C2 model
(mean-centered), the d002 peak of gibbsite had greater weight. A double peak referring
to the d001 of kaolinite was observed for the coefficients of models C2 and C3, which
must also be associated with kaolinite generations with different degrees of crystallinity.
Melo et al. [8] demonstrated that this difference actually occurs, so that kaolinites from
the overlying lithologies are less ordered and, consequently, more reactive to the Bayer
process. It is interesting to note that, although this significantly impacts processing costs,
this information is not known by the industry in the context where all the quality control
of bauxite is by traditional wet methods. The variability of kaolinite crystallinity in these
two clusters may be associated with the reduced accuracy of the respective models.
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Figure 7. Linear representation of the coefficients and main factors of the models: (a) AvAl2O3 (C1); (b) RxSiO2 (C1); (c)
AvAl2O3 (C2); (d) RxSiO2 (C2); (e) AvAl2O3 (C3), and (f) RxSiO2 (C3).
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4. Conclusions

In this work, the use of a method for quality control of bauxites based on statistical
tools on XRD transmission data was evaluated. The method comprises classifying bauxite
samples by PCA and K-means according to their latent mineralogical characteristics,
building PLSR models for each sample group, and using these models to predict the
AvAl2O3 and RxSiO2 parameters in new samples.

The samples were classified into three clusters (C1, C2, and C3) and the respective
models were evaluated in relation to the wet chemistry reference values. The C1 model
presented satisfactory accuracy and precision for both parameters. The RMSEP of 0.85%
(AvAl2O3) and 0.49% (RxSiO2) attain the required limits (1.0–1.5% and 0.5%, respectively).
The C2 and C3 models, related to marginal ore lithologies presented satisfactory accuracy
but low precision.

These results also indicate that, although the preferred orientation was eliminated us-
ing the XRD transmission data collection, there was no incremental improvement compared
with the PLSR models obtained with reflection data [14].

These results cleared showed that the methodology can be applied for quality control
in the beneficiation plant, but not suitable for geological survey applications. It is worth
mentioning that this method presents several advantages over traditional wet chemistry,
mainly due to its speed (less than 5 min to run XRD analysis and obtain the prediction),
ease of being completely automated, and no dangerous chemical reagents are required.
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