Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Research Methods
4. Results
4.1. Sedimentological Analysis—Lithofacies Characteristics and Cyclicity
4.1.1. Aalenian
4.1.2. Upper Aalenian
4.1.3. Lower Bajocian
4.1.4. Upper Bajocian
4.1.5. Lower and Middle Bathonian
4.1.6. Upper Bathonian and Callovian
4.2. Petrology
4.2.1. Clayey Siderites
4.2.2. Sideritic Sandstones
4.2.3. Sideritic Conquinas
4.2.4. Sideritic Claystones and Sideritic Mudstones
4.2.5. Sideritic Conglomerates
4.3. Isotopic Studies
5. Interpretation and Discussion
5.1. Sedimentary Environments
5.1.1. Lower Aalenian
5.1.2. Upper Aalenian and Lower Bajocian
5.1.3. Upper Bajocian
5.1.4. Lower and Middle Bathonian
5.1.5. Upper Bathonian and Callovian
5.2. Isotopes
5.3. Diagenetic Processes
5.4. Origin of Siderite
5.5. Environment and Sideritic Rocks
6. Conclusions
- (1)
- The Lower Aalenian deposits were accumulated in a zone extending very close to the shore, probably in the outer and central parts of a tide-dominated estuary. Siderite horizons of this age are associated with fine-grained deposits that formed in the mud-flats, marginal zones of the estuary in close proximity to salt marshes.
- (2)
- Deposition of the Upper Aalenian and the lowermost Bajocian deposits was related to a poorly oxygenated offshore environment in a vast and shallow epeirogenic sea. The upper Lower Bajocian deposits were accumulated in the transition zone between the shoreface and offshore zones, located between the storm and normal wave bases, and then above the normal wave base in the lower shoreface environment. Siderites appear in them only in the form of small concretions.
- (3)
- A sedimentological analysis of the Upper Bajocian and Lower-Middle Bathonian deposits showed that they are composed of several coarsening-upward cycles interpreted as prograding cycles related to a gradual shallowing of the sea. The origin of the lower members of the cycles is related to the offshore environment and/or to the transition zone between the normal and storm wave bases. The upper members were deposited in the lower and middle shoreface and, locally, also in the upper shoreface. The numerous siderite interbeds and concretions, as well as sideritization of sandstones, found in fine-grained deposits of this age are clearly related to the transition and lower shoreface zones. In the Mołdawa and Władysław boreholes, the upper section of the Middle Bathonian should be associated with the estuarine environment (the zone of sand bars and sand flat within a bayhead delta, a mud flat).
- (4)
- The youngest rocks, Upper Bathonian-Callovian in age, were deposited in well-oxygenated environments of the upper shoreface (subtidal and intertidal zones), tide-dominated estuary, and middle and outer carbonate ramp. These rocks are barren of siderites.
- (5)
- The Middle Jurassic sideritic rocks are most often represented by clayey siderites, which also include muddy and sandy varieties and siderite sandstones. There are also local occurrences of coquinas, claystones, mudstones, and siderite conglomerates. Most of the sideritic rocks were deposited in the transition and (lower and middle) shoreface zones.
- (6)
- The main component of sideritic rocks is sideroplesite that was formed during early diagenesis under hypoxia conditions, in the zone of microbial methanogenesis. The isotopic composition of oxygen in sideroplesite indicates its crystallization from sea waters with the participation of meteoric waters at various proportions in a given environment.
- (7)
- The sideroplesites that formed during early diagenesis are characterized by different crystal sizes. In general, sideroplesite is commonly very finely crystalline in clayey siderites, while, in sandy siderites and sideritic sandstones, the crystals often exceed 20 μm in size. Locally, in larger sideroplesite crystals, their outer parts are enriched in magnesium compared to the central zone. Crystallization of sideroplesite in the sediment was linked with an increasing inflow of magnesium (up to 22.5 mol% MgCO3) as the sediment burial proceeded, which is clearly visible in the crystals that show a zonal structure. The proportion of calcium in sideroplesite is variable, within the range of 0.4–16.1-mol% CaCO3. A relatively high content of magnesium and calcium in sideroplesite may indicate its marine origin.
- (8)
- An important component of sideritic rocks is berthierine. It occurs mainly as the cement in sandstones and sideritic coquinas and in the form of berthierine ooids. Berthierine in ooids is often replaced by carbonates: ankerite, calcite, sideroplesite, pistomesite, and pyrite, as well as altered into kaolinite.
- (9)
- Sideritic rocks contain varying amounts of bioclasts. These are fragments of bivalves, brachiopods, gastropods, foraminifera, echinoderms, and serpulid tubes. The primary components of bioclasts underwent the processes of replacement, especially by sideroplesite and ankerite. Pyrite and phosphates are also observed within the bioclasts.
- (10)
- The rich mineral composition observed in the sideritic sandstones may be a result of the persistent porosity of the sandstones, which facilitates the circulation of pore fluids. The sequence of carbonate minerals composing the sandstone cements is as follows: sideroplesite I (micrite) → sideroplesite II (microspar and spar) → pistomesite → calcite → ankerite. Calcite is found in sideritic rocks in the southern part of the study area, while ankerite is present mostly in the northern part.
- (11)
- The action of diagenetic processes of cementation, compaction, replacement and alteration within the Middle Jurassic deposits was most intense during the eo- and mesodiagenesis. The most important process in the formation of siderites was cementation.
- (12)
- Sedimentological analysis shows that most of the studied siderites were formed in a low-oxygenated marine environment, mainly in the transition zone between the normal and storm wave bases and in the lower shoreface zone. On the other hand, the Lower Aalenian siderites were formed in a very shallow water environment, probably in the marginal parts of the estuary (mud flat) near salt marshes. The results of petrographic, mineralogical and geochemical studies indicate the origin of sideritic rocks mainly in the marine environment, with the participation of meteoric water.
- (13)
- There are slight differences in the chemical composition of sideroplesite depending on the environment it crystallized. The highest average content of FeCO3 (83.3 mol%) is in the transition zone; of MgCO3 (>11 mol%) in the shoreface and estuary; of CaCO3 (9 mol%) in the transition, shoreface, and fluvial zones; and of MnCO3 (2.8 mol%) in the estuary.
- (14)
- There is no correlation between the values of carbon isotope determinations in sideroplesite and the environmental conditions of its crystallization. The average values of δ13C in the individual environments are similar and are about −7.00 ‰VPDB, which proves the same carbon source. Slight differences are visible in the case of average values of δ18O in sideroplesite. They vary from −3.58 ‰VPDB in the offshore zone to + 0.50 ‰VPDB in the fluvial zone, which indicates the presence of both sea water and meteoric water at different proportions, depending on the environment.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuźniar, C. O rudach żelaznych okolic Chlewisk. Posiedz. Nauk. Państw. Inst. Geol. 1924, 8, 1–2. (In Polish) [Google Scholar]
- Kuźniar, C. O rudach żelaznych okolic Stąporkowa. Posiedz. Nauk. Państw. Inst. Geol. 1925, 10, 6–7. (In Polish) [Google Scholar]
- Kuźniar, C. Złoże rud żelaznych oolitowych w Parczewie. Spraw. Państw. Inst. Geol. 1928, 4, 710–763. (In Polish) [Google Scholar]
- Jaskólski, S. Złoża oolitowych rud żelaznych obszaru częstochowskiego. Rocz. Pol. Tow. Geol. 1928, 4, 1–91. (In Polish) [Google Scholar]
- Jaskólski, S.; Sawicka-Ekiert, E. Badania petrograficzne.InBadania geologiczne iłów rudonośnych jury krakowsko-wieluńskiej, obszar między Krzepicami a Wręczycą. Biul. Inst. Geol. 1955, 1, 5–46. (In Polish) [Google Scholar]
- Znosko, J. Uplift of the Kłodawa salt dome during the Jurassic, and its influence upon the formation of the sideritic lumachel rocks. Kwart. Geol. 1957, 1, 90–105. (In Polish) [Google Scholar]
- Znosko, J. Górny wezul jury łęczyckiej. Biul. Inst. Geol. 1958, 126, 477–507. (In Polish) [Google Scholar]
- Różycki, S.Z. Badania geologiczne i roboty poszukiwawcze w roku 1938 w strefie występowania jury na północnym i wschodnim obrzeżeniu Gór Świętokrzyskich. Państw. Inst. Geol. Biul. 1939, 15, 43–58. (In Polish) [Google Scholar]
- Różycki, S.Z. Parkinsonie, garantiany i strenocerasy z doggeru obrzeżenia Gór Świętokrzyskich i ich znaczenie stratygraficzne. Acta Geol. Polonica 1955, 5, 305–341. (In Polish) [Google Scholar]
- Karaszewski, W. Sprawozdanie z Badań z Okolicy Inowłodza nad Pilicą; Archive Materials; Narodowe Archiwum Geologiczne Polish Geolological Institute, NRI: Warsaw, Poland, 1947. (In Polish) [Google Scholar]
- Cieśla, E. Aalenian beds in bore-hole Brudzewice (Central Poland). Kwart Geol. 1957, 1, 440–448. (In Polish) [Google Scholar]
- Cieśla, E. Nowe dane o przebiegu północnej części antykliny Inowłodzkiej. Prz. Geol. 1958, 3, 125. (In Polish) [Google Scholar]
- Daniec, J. The Dogger of the middle part of the northeastern surrounding cover of the Święty Krzyż Mountains. Biul. Inst. Geol. 1963, 168, 37–85. (In Polish) [Google Scholar]
- Daniec, J. Middle Jurassic. In The Stratigraphy of the Mesozoic in the Góry Świętokrzyskie; Prace Instytutu Geologicznego; Pożaryski, W., Ed.; Państwowy Instytut Geologiczny: Warsaw, Poland, 1970; Volume 56, pp. 99–133. (In Polish) [Google Scholar]
- Turnau-Morawska, M. Petrographic character of the ironstone of the Vesulian in the Łęczyca region. Biul. Inst. Geol. 1961, 172, 5–69, (In Polish with English Summary). [Google Scholar]
- Dadlez, J. Niektóre wyniki badań nad wykształceniem i rudonośnością wezulu w okolicach Kamienia Pomorskiego. Biul. Inst. Geol. 1963, 168, 5–36. (In Polish) [Google Scholar]
- Dadlez, J. Wyniki Badań Rudonośności Osadów Wezulu w Rejonie Niczonowa; Archive Materials; Narodowe Archiwum Geologiczne Polish Geolological Institute, NRI: Warsaw, Poland, 1964. (In Polish) [Google Scholar]
- Ekiert, E. Opracowanie Petrograficzne Rud Liasowych Środkowej Części Antyklinorium Pomorskiego; Archive Materials; Narodowe Archiwum Geologiczne Polish Geolological Institute NRI: Warsaw, Poland, 1964. (In Polish) [Google Scholar]
- Maliszewska, A. (Ed.) Middle Jurassic. In Diagenesis of the Upper Permian and Mesozoic Deposits of the Kujawy Region (Central Poland); Prace Instytutu Geologicznego; Państwowy Instytut Geologiczny: Warsaw, Poland, 1999; Volume 167, pp. 78–93. (In Polish) [Google Scholar]
- Maliszewska, A.; Kozłowska, A.; Kuberska, M. Origin od Middle Jurassic siderite rocks from Central Poland. Vol. Jurass. 2006, 4, 95–96. [Google Scholar]
- Maliszewska, A.; Kozłowska, A.; Kuberska, M. Petrologia Jurajskich Skał Syderytowych na Niżu Polskim; Archive materials; Archiwum Geologiczne MNiSW: Warsaw, Poland, 2007. (In Polish) [Google Scholar]
- Maliszewska, A.; Kozłowska, A.; Kuberska, M. Syderyty Jurajskie Kujaw i Wielkopolski: Studium Petrologiczne; Archive materials; Narodowe Archiwum Geologiczne Polish Geolological Institute, NRI: Warsaw, Poland, 2007. (In Polish) [Google Scholar]
- Maliszewska, A.; Kozłowska, A.; Kuberska, M. The Middle Jurassic sideritic rocks of the Kujawy area—Petrological study. Prz. Geol. 2018, 66, 118–129, (In Polish with English Summary). [Google Scholar]
- Kozłowska, A.; Feldman-Olszewska, A.; Kuberska, M.; Maliszewska, A.; Złonkiewicz, Z. Skały Syderytowe Jury Środkowej w Północnym Obrzeżeniu Gór Świętokrzyskich a Warunki Ich Sedymentacji i Diagenezy; Archive materials; Narodowe Archiwum Geologiczne Polish Geolological Institute NRI: Warsaw, Poland, 2008. (In Polish) [Google Scholar]
- Kozłowska, A.; Feldman-Olszewska, A.; Kuberska, M.; Maliszewska, A. Sedimentary environments and diagenesis of the Middle Jurassic siderites in the Noth Margin of the Holy Cross Mountains, Poland. In Proceedings of the 28th Meeting of Sedimentology (IAS 2011), Book of Abstracts, Zaragoza, Spain, 5–8 July 2011; p. 522. [Google Scholar]
- Kozłowska, A.; Feldman-Olszewska, A.; Jarmołowicz-Szulc, K.; Kuberska, M.; Maliszewska, A. Diageneza Syderytowych Rud Żelaza Jury Środkowej z Północnego Obrzeżenia Gór Świętokrzyskich i Obszaru Częstochowsko-Wieluńskiego; Archive Materials; Archiwum Geologiczne MniSW: Warsaw, Poland, 2013; In Polish. [Google Scholar]
- Kozłowska, A. Diageneza skał syderytowych jury środkowej na południe od Tomaszowa Mazowieckiego. In Proceedings of the Przewodnik Wycieczek terenowych, Abstrakty i Artykuły, Konferencja Jurassica XI, Jurajskie Utwory Synkliny Tomaszowskiej, Spała, Poland, 9–11 October 2014; Volume 50. (In Polish). [Google Scholar]
- Kozłowska, A.; Maliszewska, A. Berthieryn in the Middle Jurassic sideritic rocks from southern Poland. Geol. Quart. 2015, 59, 551–564. [Google Scholar]
- Jarmołowicz-Szulc, K.; Kozłowska, A. Temperature and isotopic relations in carbonate minerals in the Middle Jurassic sideritic rocks of central and southern Poland. Geol. Quart. 2016, 60, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, A. Instrumental methods applied in the investigations of carbonate minerals in the Middle Jurassic sideritic rocks with respect to diagenetic processes. Biul. PIG 2019, 474, 31–42. [Google Scholar] [CrossRef]
- Kozłowska, A.; Feldman-Olszewska, A.; Jarmołowicz-Szulc, K.; Kuberska, M.; Maliszewska, A. The Middle Jurassic siderites from Częstochowa-Wieluń area, southern Poland. In Proceedings of the 34 IGC International Geological Congres, Brisbane, Australia, 5–10 August 2012; p. 1526. [Google Scholar]
- Majewski, W. Middle Jurassic concretions from Częstochowa (Poland) as indicator of sedimentation rates. Acta Geol. Pol. 2000, 50, 431–439. [Google Scholar]
- Zatoń, M.; Marynowski, L. Konzentrat-Lagerstätte—Type carbonate concretions from the upper-most Bajocian (Middle Jurassic) of the Częstochowa area, SW Poland. Geol. Quart. 2004, 48, 339–350. [Google Scholar]
- Zatoń, M.; Marynowski, L.; Bzowska, G. Hiatus concretions from the ore-bearing clays of the Cracow-Częstochowa Upland (Polish Jura). Prz. Geol. 2006, 54, 131–138, (In Polish with English Summary). [Google Scholar]
- Szczepanik, P.; Witkowska, M.; Sawłowicz, Z. Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): Interpretation of the depositional redox conditions. Geol. Quart. 2007, 54, 57–66. [Google Scholar]
- Geld, P.; Kaim, A.; Leonowicz, P.; Boczarowski, A.; Dudek, T.; Kędzierski, M.; Rees, J.; Smoleń, J.; Szczepaniak, P.; Sztainer, P.; et al. Palaeoenvironmental reconstruction of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geol. Pol. 2012, 62, 463–484. [Google Scholar]
- Leonowicz, P. Sedimentology and ichnology of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków–Silesia Homocline, Poland. Acta Geol. Pol. 2012, 62, 281–296. [Google Scholar] [CrossRef]
- Leonowicz, P. The significance of mudstone fabric combined with palaeoecological evidence in determing sedimentary processes—An example from the Middle Jurassic of southern Poland. Geol. Quart. 2013, 57, 243–260. [Google Scholar]
- Leonowicz, P. Storm-influenced deposition and cyclicity in a shallow-marine mudstone succession–example from the Middle Jurassic ore-bearing clays of the Polish Jura (southern Poland). Geol. Quart. 2015, 59, 325–344. [Google Scholar] [CrossRef] [Green Version]
- Leonowicz, P. Nearshore transgresive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies 2016, 62, 16. [Google Scholar] [CrossRef] [Green Version]
- Khim, B.-K.; Coi, K.-S.; Park, Y.-A.; Oh, J.-K. Occurrence of authigenic siderites in the Early Holocene coastal deposit in the west coast of Korea: An indicator of depositional environment. Geosci. J. 1999, 3, 163–170. [Google Scholar] [CrossRef]
- Akinlotan, O. Sideritic ironstones as indicators of depositional environments in the Weald Basin (Early Cretaceous) SE England. Geol. Mag. 2017, 156, 533–546. [Google Scholar] [CrossRef]
- Campbell, M.D.; Campbell, M.D. Paleoenvironmental implicatoms of selected siderite zones in the Upper Atoka Formation, Arkoma Basin, Oklahoma-Arkansas: A look back and current views on siderite genesis in a sedimentary environment. Int. J. Earth Sci. Geol. 2018, 1, 1000103. [Google Scholar]
- Mizerski, W. Holy Cross Mountains in the Caledonian, Variscan and alpine cycles—Major problems, open questions. Prz. Geol. 2004, 8, 774–779. [Google Scholar]
- Dadlez, R. Holy Cross Mts. area—Crustal structure, geophysical data and general geology. Geol. Quart. 2001, 45, 99–106. [Google Scholar]
- Konon, A. Strike-slip faulting in the Kielce Unit, Holy Cross Mountains, central Poland. Acta Geol. Pol. 2007, 57, 415–441. [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P.; Buła, Z.; Karnkowski, P.H.; Konon, A.; Oszczypko, N.; Ślączka, A.; Żaba, J.; Żytko, K. Regionalizacja Tektoniczna Polski; Komitet Nauk Geologicznych PAN: Wrocław, Poland, 2011. (In Polish) [Google Scholar]
- Narkiewicz, M.; Dadlez, R. Geological regional subdivision of Poland: General guidelines and proposed schemes of sub-Cenozoic and sub-Permian units. Prz. Geol. 2008, 56, 391–397, (In Polish with English Summary). [Google Scholar]
- Kutek, J. The Polish Permo-Mesozoic Rift Basin. In Mémoires du Muséum National d’Histoire Naturelle; Editions du Muséum: Paris, France, 2001; Volume 186, pp. 213–236. [Google Scholar]
- Złonkiewicz, Z. Evolution of the Miechów Depression basin in the Jurassic as a result of regional tectonical changes. Prz. Geol. 2006, 54, 534–540, (In Polish with English Summary). [Google Scholar]
- Dadlez, R.; Marek, S.; Pokorski, J. (Eds.) Palaeogeographical Atlas of the Epikontinental Permian and Mesozoic in Poland 1: 2,500,000; Wydawnictwa Geologiczne: Warsaw, Poland, 1998. [Google Scholar]
- Krzywiec, P. Mid-Polish Trough inversion—Seismic examples, main mechanisms, and its relationship to the Alpine-Carpathian collision. In EGS Stephan Mueller Special Publication Series; European Geological Society: Munich, Germany, 2002; Volume 1, pp. 233–258. [Google Scholar]
- Marek, S.; Znosko, J. Tectonics of the Kujawy Region. Kwart. Geol. 1972, 16, 1–18, (In Polish with English Summary). [Google Scholar]
- Pożaryski, W. Budowa Geologiczna Polski, Tektonika, Niż Polski; Wydawnictwa Geologiczne: Warsaw, Poland, 1974; Volume 4, p. 1. (In Polish) [Google Scholar]
- Stupnicka, E. Geologia Regionalna Polski; Wydawnictwa Geologiczne: Warsaw, Poland, 1989. (In Polish) [Google Scholar]
- Dadlez, R.; Marek, S.; Pokorski, J. Mapa Geologiczna Polski bez Utworów Kenozoiku (Skala 1:1,000,000); Państwowy Instytut Geologiczny: Warsaw, Poland, 2000. [Google Scholar]
- Mader, A.; Mniszków, I.G. Profile Głębokich Otworów Wiertniczych Państwowego; Państwowy Instytut Geologiczny Państwowy Instytut Badawczy: Warsaw, Poland, 2021; in press. (In Polish) [Google Scholar]
- Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; Self-Trail, J.M.; Alautier, J.C. Standardizing Texture and Facies Codes for a Process-Based Classification of Clastic Sediment and Rock. J. Sediment. Res. 2012, 82, 364–378. [Google Scholar] [CrossRef]
- Zieliński, T.; Pisarska-Jamroży, M. Which features of deposits should be included in a code and which not? Prz. Geol. 2012, 60, 387–397, (In Polish with English Summary). [Google Scholar]
- Reineck, H.E.; Singh, I.B. Depositional Sedimentary Environments; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1975. [Google Scholar]
- Walker, R.G. Facies Models; Geoscience Canada Reprint 1; Geological Association of Canada Publications: St. John’s, NL, Canada, 1984. [Google Scholar]
- Einsele, G. Sedimentary Basins; Springer: Berlin/Heidelberg, Germany, 1992; p. 628. [Google Scholar]
- MacEachern, J.A.; Pemberton, S.G. Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. In Application of Ichnology to Petroleum Exploration, SEPM Core Workshop; Pemberton, G.S., Ed.; Society for Sedimentary Geology: Tulsa, OK, USA, 1992; Volume 17, pp. 57–84. [Google Scholar]
- Pemberton, S.G.; Van Wagoner, J.; Wach, G.D. Ichnofacies of wave-dominated shoreline. In Application of Ichnology to Petroleum Exploration, SEPM Core Workshop; Pemberton, G.S., Ed.; Society for Sedimentary Geology: Tulsa, OK, USA, 1992; Volume 17, pp. 339–382. [Google Scholar]
- Pemberton, S.G.; Spila, M.; Pulham, A.J.; Saunders, T.; Maceachern, J.A.; Robbins, D.; Sinclair, I.K. Ichnology and Sedimentology of Shallow to Marginal Marine Systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 2001; Volume 15, p. 343. [Google Scholar]
- Reading, H.G. Sedimentary Environments: Processes, Facies and Stratigraphy; Blackwell Science Ltd.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Feldman-Olszewska, A. Środowiska Sedymentacji w Jurze Środkowej Kujaw. Ph.D. Thesis, Polish Geological Institute-National Research Institute, Warsaw, Poland, 2005. (In Polish). [Google Scholar]
- Feldman-Olszewska, A. Sedimentary environments of the Middle Jurassic epicontinental deposits from the central part of the Polish Basin (Kuiavian Region). In Volumina Jurassica IV, Abstracts of Talks and Posters 86 Presented during the 7th International Congerss on the Jurassic System, Kraków, Poland, 6–18 September 2006; Polish Geological Institute: Warsaw, Poland, 2006. [Google Scholar]
- Feldman-Olszewska, A. Analiza sedymentologiczna utworów środkowej jury. In Ciechocinek IG 2, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2007; Volume 117, pp. 54–65. (In Polish) [Google Scholar]
- Feldman-Olszewska, A. Wyniki badań sedymentologicznych utworów jury środkowej w otworze wiertniczym Brześć Kujawski IG 2. In Brześć Kujawski IG 1, IG 2, IG 3, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2008; Volume 125, pp. 151–154. (In Polish) [Google Scholar]
- Feldman-Olszewska, A. Wyniki badań sedymentologicznych utworów jury środkowej w otworze wiertniczym Brześć Kujawski IG 3. In Brześć Kujawski IG 1, IG 2, IG 3, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2008; Volume 125, pp. 154–157. (In Polish) [Google Scholar]
- Feldman-Olszewska, A. Trace fossils in the Middle Jurassic epicontinental deposits from the central part of the Polish Basin (Kuiavian region). In Proceedings of the Second International Congress on Ichnology, Cracow, Poland, 29 August–8 September 2008; Abstract book and the intra-congress field trip guidebook. 2008; pp. 38–39. [Google Scholar]
- Feldman-Olszewska, A. Wyniki badań sedymentologicznych utworów jury środkowej w wierceniu Wojszyce IG 1a. In Wojszyce IG 1/1a, Wojszyce IG 3, Wojszyce IG 4, Brześć Kujawski IG 1, IG 2, IG 3, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2012; Volume 137, pp. 149–152. (In Polish) [Google Scholar]
- Feldman-Olszewska, A. Wyniki badań sedymentologicznych utworów jury środkowej w wierceniu Wojszyce IG 3. In Wojszyce IG 1/1a, Wojszyce IG 3, Wojszyce IG 4, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2012; Volume 137, pp. 152–158. (In Polish) [Google Scholar]
- Feldman-Olszewska, A. Wyniki badań sedymentologicznych utworów jury środkowej w wierceniu Wojszyce IG 4. In Wojszyce IG 1/1a, Wojszyce IG 3, Wojszyce IG 4, Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologiczneg; Feldman-Olszewska, A., Ed.; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warsaw, Poland, 2012; Volume 137, pp. 158–166. (In Polish) [Google Scholar]
- Dayczak-Calikowska, K.; Kopik, J. Jura środkowa. In Budowa Geologiczna Polski, Mezozoik; Sokołowski, S., Ed.; Wydawnictwa Geologiczne: Warsaw, Poland, 1973; Volume 2, pp. 237–325. (In Polish) [Google Scholar]
- Dayczak-Calikowska, K. Aalen i dolny bajos w południowej części Kujaw. Kwart. Geol. 1976, 20, 751–763. (In Polish) [Google Scholar]
- Dayczak-Calikowska, K.; Moryc, W. Evolution of sedimentary basin and palaeotectonics of the Middle Jurassic in Poland. Kwart. Geol. 1988, 32, 117–135, (In Polish with English Summary). [Google Scholar]
- Feldman-Olszewska, A. Early Aalenian–Callovian Palaeogeography. In Palaeogeographical Atlas of the Epikontinental Permian and Mesozoic in Poland 1: 2,500,000; Dadlez, R., Marek, S., Pokorski, J., Eds.; Wydawnictwa Geologiczne: Warsaw, Poland, 1998; pp. 37–48. [Google Scholar]
- McCrea, J.M. On the isotopic geochemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 1950, 18, 849–857. [Google Scholar] [CrossRef]
- Al-Aasm, I.S.; Taylor, B.E.; South, B. Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol. 1990, 80, 119–125. [Google Scholar] [CrossRef]
- Hałas, S. An automatic inlet system with pneumatic changeover valves for isotope ratio mass spectrometer. J. Phys. E Sci. Instrum. 1979, 18, 417–420. [Google Scholar]
- Hałas, S.; Skorzyński, Z. An unexpensive device for digital measurements of isotopic ratios. J. Phys. E Sci. Instrum. 1980, 13, 346–349. [Google Scholar] [CrossRef]
- Durakiewicz, T.; Hałas, S. Triple collector system for isotope ratio mass spectrometer. IF UMCS Repor. 1994, 131–132. [Google Scholar]
- Durakiewicz, T. Electron emission controller with pulsed heating of filament. Int. J. Mass. Spectrom. Ion Process. 1996, 156, 31–40. [Google Scholar] [CrossRef]
- Bolewski, A. Mineralogia Szczegółowa; Wydawnictwa Geologiczne: Warsaw, Poland, 1982. (In Polish) [Google Scholar]
- Folk, R.L. Practical petrographic classification of limestones. AAPG 1959, 43, 1–38. [Google Scholar]
- Allen, G.P.; Posamentier, H.W. Sequence stratigraphy and facies model of an incisted valley fill: The Gironde estuary, France. J. Sediment. Petrol. 1993, 63, 378–391. [Google Scholar]
- Nichols, M.M.; Johnson, G.H.; Peebles, P.C. Modern sediments and facies model for a microtidal coast plain estuary, the James Estuary, Virginia. J. Sediment. Petrol. 1991, 61, 883–899. [Google Scholar]
- Walker, R.G. An incisted valley in the Cardium Formation at Ricinus, Alberta: Reinterpretation as an estuary fill. In Sedimentary Facies Analysis: A Tribute to the Research and Teaching of Harold, G. Reading; Special Publication International Association of Sedimentologists Series; Plint, A.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 22, pp. 47–74. [Google Scholar]
- Terwind, J.H.J. Litho-facies of inshore estuarine and tidal-inlet deposits. Geol. Mijnbow 1971, 50, 515–526. [Google Scholar]
- Visser, M.J. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note. Geology 1980, 8, 543–546. [Google Scholar] [CrossRef]
- Bergman, K.M. Shannon Sandstone in Hartzog draw fields (Cretaceous, Wyoming, USA) reinterpreted as lowstand shoreface deposits. J. Sediment. Res. 1994, 64, 184–201. [Google Scholar]
- Seilacher, A. Bathymetry of trace fossils. Mar. Geol. 1967, 5, 413–428. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine facies models: Conceptual basis and stratigraphic implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Clifton, H.E. Estuarine deposits. In Sandstone Depositional Environments; Schole, P.A., Spearing, D., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1982; Volume 31, pp. 179–189. [Google Scholar]
- Pieńkowski, G.; Michael, E.; Schudack, M.E.; Bosák, P.; Enay, R.; Feldman-Olszewska, A.; Golonka, J.; Gutowski, J.; Herngreen, G.F.W.; Jordan, P.; et al. The Geology of Central Europe, Mesozoic and Cenozoic; McCann, T., Ed.; The Geologfical Society: London, UK, 2008; Volume 2, pp. 823–922. [Google Scholar]
- Feldman-Olszewska, A. Depositional architecture of the Polish epicontinental Middle Jurassic basin. Geol. Quat. 1997, 41, 491–508. [Google Scholar]
- Wignal, P.B. Black Shales; Oxford University Press: Oxford, UK, 1994; p. 127. [Google Scholar]
- Reineck, H.E.; Wünderlich, F. Classification and origin of flasher and lenticular bedding. Sedimentology 1968, 11, 99–104. [Google Scholar] [CrossRef]
- Gradziński, R.; Kostecka, A.; Radomski, A.; Unrug, R. Zarys Sedymentologii; Wydawnictwa Geologiczne: Warszawa, Poland, 1986. (In Polish) [Google Scholar]
- Dott, R.H.; Bourgeois, J. Hummocky stratification: Significance of its variable bedding sequences. Geol. Soc. Am. Bull. 1982, 93, 663–680. [Google Scholar] [CrossRef]
- Lott, G.; Wong, T.; Dusar, M.; Andsbjerg, J.; Monnig, E.; Feldman-Olszewska, A.; Verreussel, R. Jurassic. In Petroleum Geological Atlas of the Southern Permian Basin Area; Doornenbal, H., Stevenson, A., Eds.; EAGE Publications: Houten, The Netherlands, 2010; pp. 173–193. [Google Scholar]
- Swift, D.J.P. Fluid and sediment dynamics on continental shelves. In Shelf Sands and Sandstone Reservoirs; SEPM Short Course Notes; Tillman, R.W., Swift, D.J.P., Walker, R.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1985; Volume 13, pp. 47–134. [Google Scholar]
- Walker, R.G. Cardium Formation 4. Review of facies and depositional processes in the southern foothils and plains, Alberta, Canada. In Shelf Sands and Sandstone Reservoirs; SEPM Short Course Notes; Tillman, R.W., Swift, D.J.P., Walker, R.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1985; Volume 13, pp. 353–402. [Google Scholar]
- Walker, R.G. Comparison of shelf environments and deep basin turbidite systems. In Shelf Sands and Sandstone Reservoirs; SEPM Short Course Notes; Tillman, R.W., Swift, D.J.P., Walker, R.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1985; Volume 13, pp. 465–502. [Google Scholar]
- Walker, R.G. Cardium and Viking sandstone cores. In Shelf Sands and Sandstone Reservoirs; SEPM Short Course Notes; Tillman, R.W., Swift, D.J.P., Walker, R.G., Eds.; Society for Sedimentary Geology: Tulsa, OK, USA, 1985; Volume 13, pp. 645–676. [Google Scholar]
- Fruit, D.J.; Elmore, R.D. Tide and storm-dominated sand ridges on a muddy shelf: Cottage Grove Sandstone (Upper Pennsylvanian), Northwestern Oklahoma. AAPG Bull. 1988, 72, 1200–1211. [Google Scholar]
- Porębski, S.J. Świebodzice succession (Upper Dewonian-Lowest Carboniferous Western Sudetes): A prograding, mass-flow dominated fan-delta complex. Geol. Sudet. 1981, 16, 101–194, (In Polish with English Summary). [Google Scholar]
- Leckie, D.; Walker, R.G. Storm-and tide-dominated shorelines in Cretaceous Moosebar-Lower Gates interval—Outcrop equivalents of deep basin gas trap in Western Canada. AAPG Bull. 1982, 66, 138–157. [Google Scholar]
- Leckie, D. Tidally influenced, transgressive shelf sediments in the Viking Formation, Caroline, Alberta. Bull. Can. Pet. Geol. 1986, 34, 111–125. [Google Scholar]
- Cheel, R.J.; Leckie, D.A. Hummocky cross-stratification. In Sedimentology Review; Wright, V.P., Ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1993; pp. 103–122. [Google Scholar]
- Worden, R.H.; Griffiths, J.; Wooldridge, L.J.; Utley, J.E.P.; Lawan, A.Y.; Muhammed, D.D.; Simon, N.; Armitage, P.J. Chlorite in sandstones. Earth Sci. Rev. 2020, 204, 103105. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2010; p. 984. [Google Scholar]
- Irvin, H.; Curtis, C.; Coleman, M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 1977, 269, 209–213. [Google Scholar]
- Morad, S. (Ed.) Carbonate Cementation in Sandstone: Distribution Patterns and Geochemical Evolution; Special Publicaiton International Association of Sedimentologists; Wiley-Blackwell: Hobooken, NJ, USA, 1998; Volume 26, pp. 1–26. [Google Scholar]
- Gruszczyński, T. Chemistry of Jurassic seas and its bearing on the existing organic life. Acta Geol. Pol. 1998, 48, 1–30. [Google Scholar]
- Coleman, M.L.; Feldman-Olszewska, A.; Gaździcka, E.; Gruszczyński, M. Sekwencje depozycyjne, a zapis izotopowo-geochemiczny wybranych odcinków czasowych jury środkowej i górnej w centralnej części Niżu Polskiego. In Materiały Konferencyjne, VI Krajowe Spotkanie Sedymentologów, Lewin Kłodzki; WIND: Wrocław, Poland, 1997; pp. 4–6. (In Polish) [Google Scholar]
- Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J. Experimental oxygen isotope fractional between siderite-water and phosphoric acid liberated CO2–siderite. Geochim. Cosmochim. Acta 1988, 52, 2445–2450. [Google Scholar] [CrossRef]
- Mc Kay, J.L.; Longstafee, F.J.; Plint, A.G. Early diagenesis and its relationship to depositional environment and relative sea-level fluctuations (Upper Cretaceous) Marshybank Formation, Alberta and British Columbia. Sedymentology 1995, 42, 161–190. [Google Scholar] [CrossRef]
- Baker, J.C. Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland, Australia. Sedimentology 1991, 38, 819–838. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematic of fluid inclusions in diagenetic minerals. SEMP Short Course 1994, 31, 199. [Google Scholar]
- Friedman, I.; O’Neil, J. Compilation of stable isotope fractionation factors of geochemical interst. In Data of Geochemistry; Fleischer, M., Ed.; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1977; Volume 440-K, pp. 1–12. [Google Scholar]
- Ayalon, A.; Longstaffe, F.J. Stable isotope evidence for the origin of diagenetic carbonate minerals from Lower Jurassic Inmar Formation, Southern Israel. Sedimentology 1995, 42, 147–160. [Google Scholar] [CrossRef]
- Dutton, S.P.; Land, L.S. Meteoric burial diagenesis of pensylvanian arkosic sandstones, Southwestern Anadarko Basin, Texas. AAPG Bull. 1985, 69, 22–38. [Google Scholar]
- Kearsley, A.T. Iron-rich ooids, their mineralogy and microfabric: Clues to their origin and evolution. In Phanerozoic Ironstones; Geological Society Special Publications; Young, T.P., Taylor, W.E.G., Eds.; The Geological Society: London, UK, 1989; Volume 46, pp. 141–164. [Google Scholar]
- Hornibrook, E.R.C.; Longstaffe, F.J. Berthierine from the Lower Cretaceous Clearwater Formation, Alberta, Canada. Clays Clay Miner. 1996, 44, 1–21. [Google Scholar] [CrossRef]
- Jahren, J.S.; Aagaard, P. Compositional variations in diagenetic chlorites and illites and relationships with formation-water chemistry. Clay Miner. 1989, 24, 157–170. [Google Scholar] [CrossRef]
- Aagard, P.; Jahren, J.S.; Harstad, A.O.; Nilsen, O.; Ramm, M. Formation of grain-coating chlorite in sandstones. Laboratory synthesize vs. natural occurrences. Clay Miner. 2000, 35, 261–269. [Google Scholar] [CrossRef]
- Browne, G.H.; Kingston, D.M. Early diagenetic spherulitic siderites from Pensylvanian palaeosols in the Boss Point Formation, Maritime Canada. Sedimentology 1993, 40, 467–474. [Google Scholar] [CrossRef]
- Claypool, G.E.; Kaplan, I.R. The origin and distribution of methane in marine sediments. In Natural Gases in Marine Sediments; Kaplan, I.R., Ed.; Marine Science; Springer: Boston, MA, USA, 1974; Volume 3, pp. 97–139. [Google Scholar]
- Hugget, J.; Dennis, P.; Gale, A. Geochemistry of early siderite cements from the Eocene succession of Whitecliff Bay, Hampshire Basin, U.K. J. Sediment. Res. 2000, 70, 1107–1117. [Google Scholar] [CrossRef]
- Pearson, M.J. Geochemistry of the Hepworth Carboniferous sediment sequence and origin of the diagenetic iron minerals and concretions. Geochim. Cosmochim. Acta 1979, 43, 927–941. [Google Scholar] [CrossRef]
- Price, G.D.; Sellwood, B.W. ”Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? Palaeogeogr. Palaeoclimatol. Palaeocol. 1997, 129, 315–327. [Google Scholar] [CrossRef]
- Narębski, W. Mineralogia i geochemiczne warunki genezy tzw. syderytów fliszu karpackiego. Arch. Miner. 1958, 21, 5–100. (In Polish) [Google Scholar]
- Mozley, P.S. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology 1989, 17, 704–706. [Google Scholar] [CrossRef]
- Osborne, M.; Haszeldine, R.S.; Fallick, A.E. Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluids, Brent Group: UK North Sea. Clay Miner. 1994, 29, 591–608. [Google Scholar] [CrossRef]
- Sawłowicz, Z. Framboids: From their origin to application. Pr. Mineral. 2000, 88, 1–70. [Google Scholar]
- Morad, S.; Ben Ismail, H.N.; De Ros, L.F.; Al-Aasm, I.S.; Sherrhini, N.E. Diagenesis and formation water chemistry of Triassic reservoir sandstones from Southern Tunisia. Sedimentology 1994, 41, 1253–1272. [Google Scholar] [CrossRef]
- Desborough, G.A. A biogenic–chemical stratified lake model for the origin of oil shale of the Green River Formation: On alternative to the playa–lake model. Geol. Soc. Am. Bull. 1978, 89, 961–971. [Google Scholar] [CrossRef]
- Dadlez, R.; Marek, S. Structural style of the Zechstein–Mesozoic complex in some areas of the Polish Lowland. Kwart. Geol. 1969, 13, 3, (In Polish with English Summary). [Google Scholar]
- Wojciechowski, J.; Ziomek, J. On sphalerite occurence in siderites of ore-bearing series at Łęczyca (Central Poland). Prz. Geol. 1966, 7, 319–321, (In Polish with English Summary). [Google Scholar]
Code of Lithofacies after [58,59] Modified | Lithofacies | Main Features | Color | Deposition Mechanism |
---|---|---|---|---|
GB | Medium- or pour sorted conglomerates | lack of bedding | grey, brown | erosional surface or deposition in upper plane bed (upper regime flow) |
Mm | Massive claystones and shales | lack of bedding, cleavage | dark grey | deposition of clay from suspension in very calm marine environment |
Mlam | Claystones and shales with single 1 mm thick lenses of silt | lenticular lamination | dark grey | deposition from suspension alternately with rare deposition by low-density currents of very low velocity |
Tm TSm | Massive mudstones and sandy mudstones | massive | dark grey | deposition of mud and silt from suspension |
Tbiot | Completely bioturbated mudstones | very strong bioturbation up to total obliteration of sedimentary structures | dark grey, grey | deposition of mud from suspension, strong bioturbation by bottom fauna during the slowing down the rate of sedimentation or improvement of degree of oxygenation of the bottom water |
HF>S1 | Lenticular laminated mudy heteroliths with flat, elongated lenses of sand | lenticular lamination | dark grey/light grey | alternately deposition of mud from suspension in condition of lack of water movement and deposition from currents poor in sand; predominance of quiet periods |
HF>S2 | Lenticular bedded mudy heteroliths with thick lenses of sand | lenticular bedding | dark grey/light grey | alternately deposition of mud from suspension in condition of lack of water movement and deposition from currents richer in sand; predominance of quiet periods |
HF=S | Heteroliths with equal proportion of mud and sand | lenticular and wavy bedding | dark grey/light grey | alternately deposition of mud from suspension in condition of lack of water movement and deposition from currents rich in sand |
Sw | Wavy-bedded sandstones | wavy bedding | light grey/dark grey | deposition of sand from weak traction currents alternately with deposition of mud from suspension in condition of lack of water movement; predominance of sand deposition |
Sf | Flaser-bedded sandstones | flaser bedding | light grey | deposition of sand from weak traction currents alternately with deposition of mud from suspension in condition of lack of water movement; erosion of ripple marks ridges |
Slam | Sandstones with clay laminae | single horizontal or wavy clay laminae | light grey or grey | deposition of sand from strong traction currents alternately with rare deposition of mud from suspension |
Sb | Sandstones with clay or mud beds | horizontal intercalations | light grey or grey | deposition of sand from strong traction currents alternately with less frequent deposition of mud from suspension |
Sm | Massive sandstones | massive | light grey or grey | fast deposition from sharply decelerating density currents; mass deposition from highly concentrated gravity flows; deposition from traction currents in upper flow regime (antidunes); or obliteration of sedimentary structures as a result of sediment liquefaction |
Sl | Horizontally laminated sandstones | horizontal lamination | light grey | deposition from traction currents in “upper plane bed phase” |
Sxt | Tabular cross-bedded sandstone | tabular cross-bedding | light grey | deposition from strong traction currents in “lower plane bed phase” (migration of sand dunes) |
Sxl | Low-angle cross-bedded sandstones | low-angle cross-bedding | light grey | deposition from oscillatory flows caused by big storm waves and complex flows (HCS, SCS) or deposition from traction currents in upper regime flow (antidunes) |
Sr | Ripple-bedded sandstones | ripple-bedding | light grey | deposition from weak traction currents in “lower plane bed phase” (low flow regime) or deposition from oscillatory flows of low velocity |
Sxi | Trough (large-scale) cross-bedded sandstone | trough (large-scale) cross bedding | light grey or grey | deposition from strong traction currents in “lower plane bed phase” (low flow regime) (large ripple marks) |
SFe | Chamosite sandstones | massive or cross-bedding (tabular or trough); chamosite in cement | green-grey or green | deposition from traction currents in nearshore and tidal flats, near river mouth, in weakly reduction environments, in warm and humid climate |
S/L | Calcareous sandstones, sandy limestones | massive | light grey | deposition on the siliciclastic-calcareous shelf from sharply decelerating density currents or from traction currents in upper flow regime (antidunes) |
L | Crinoidal and marly limestones | pakstones or wakstones | rusty, light brown, light grey | sedimentation in situ on the middle ramp |
D | Sandy dolomites | massive | grey | dolomite cementation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, A.; Feldman-Olszewska, A.; Kuberska, M.; Maliszewska, A. Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland). Minerals 2021, 11, 1353. https://doi.org/10.3390/min11121353
Kozłowska A, Feldman-Olszewska A, Kuberska M, Maliszewska A. Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland). Minerals. 2021; 11(12):1353. https://doi.org/10.3390/min11121353
Chicago/Turabian StyleKozłowska, Aleksandra, Anna Feldman-Olszewska, Marta Kuberska, and Anna Maliszewska. 2021. "Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland)" Minerals 11, no. 12: 1353. https://doi.org/10.3390/min11121353
APA StyleKozłowska, A., Feldman-Olszewska, A., Kuberska, M., & Maliszewska, A. (2021). Diagenesis and the Conditions of Deposition of the Middle Jurassic Siderite Rocks from the Northern Margin of the Holy Cross Mountains (Poland). Minerals, 11(12), 1353. https://doi.org/10.3390/min11121353