Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Test System
2.3. Test Scheme
3. Creep Strength Characteristics of Composite Samples
3.1. Creep Strengths of Composite Samples
3.2. Analyses on Creep Strength Characteristics of Composite Samples
4. Creep Deformation Characteristics of Composite Samples
5. AE Characteristics of Composite Samples
6. Failure Characteristics of Composite Samples
6.1. Macro-Failure Patterns of Composite Samples
6.2. Macro-Progressive Failure Characteristics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Metallurgical Industry Energy Saving Committee of China Energy Saving Association. China’s Steel Industry Energy Saving and Low Carbon Development Report; Metallurgical Industry Energy Saving Committee of China Energy Saving Association: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Gao, M.; Xie, J.; Gao, Y.; Wang, W.; Li, C.; Yang, B.; Liu, J.; Xie, H. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing. Int. J. Min. Sci. Technol. 2021, 31, 825–841. [Google Scholar] [CrossRef]
- Gao, M.; Xie, J.; Guo, J.; Lu, Y.; He, Z.; Li, C. Fractal evolution and connectivity characteristics of mining-induced crack networks in coal masses at different depths. Géoméch. Geophys. Geo-Energy Geo-Resour. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Chen, S.; Yin, D.; Cao, F.; Liu, Y.; Ren, K. An overview of integrated surface subsidence-reducing technology in mining areas of China. Nat. Hazards 2016, 81, 1129–1145. [Google Scholar] [CrossRef]
- Lama, R.; Bodziony, J. Management of outburst in underground coal mines. Int. J. Coal Geol. 1998, 35, 83–115. [Google Scholar] [CrossRef]
- Cui, G.; Yang, L.; Fang, J.; Qiu, Z.; Wang, Y.; Ren, S. Geochemical reactions and their influence on petrophysical properties of ultra-low permeability oil reservoirs during water and CO2 flooding. J. Pet. Sci. Eng. 2021, 203, 108672. [Google Scholar] [CrossRef]
- Feng, G.R.; Bai, J.W.; Shi, D.X.; Qi, T.Y.; Wang, P.F.; Guo, J.; Wang, S.Y.; Kang, L.X. Key pillar theory in the chain failure of residual coal pillars and its application prospect. J. China Coal Soc. 2021, 46, 164–179. (In Chinese) [Google Scholar]
- Bertuzzi, R.; Douglas, K.; Mostyn, G. An Approach to model the strength of coal pillars. Int. J. Rock Mech. Min. Sci. 2016, 89, 165–175. [Google Scholar] [CrossRef]
- Chen, S.-J.; Guo, W.-J.; Zhou, H.; Shen, B.; Liu, J.-B. Field investigation of long-term bearing capacity of strip coal pillars. Int. J. Rock Mech. Min. Sci. 2014, 70, 109–114. [Google Scholar] [CrossRef]
- Cui, G.; Wang, W.; Dou, B.; Liu, Y.; Tian, H.; Zheng, J.; Liu, Y. Geothermal Energy Exploitation and Power Generation via a Single Vertical Well Combined with Hydraulic Fracturing. J. Energy Eng. 2022, 148, 04021058. [Google Scholar] [CrossRef]
- Salamon, M. Stability, instability and design of pillar workings. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1970, 7, 613–631. [Google Scholar] [CrossRef]
- Salamon, M.D.G.; Ozbay, M.U.; Madden, B.J. Life and design of board-and-pillar workings affected by pillar scaling. J. South. Afr. Inst. Min. Metall. 1998, 98, 135–145. [Google Scholar]
- Chen, S.J.; Yin, D.W.; Zhang, B.L.; Ma, H.F.; Liu, X.Q. Study on mechanical characteristics and progressive failure mechanism of roof-coal pillar structure body. Chin. J. Rock Mech. Eng. 2017, 37, 1588–1598. (In Chinese) [Google Scholar]
- Yin, D.W.; Chen, S.J.; Xing, W.B.; Huang, D.M.; Liu, X.Q. Experimental study on mechanical behavior of roof-coal pillar structure body under different loading rates. J. China Coal Soc. 2018, 43, 1249–1257. (In Chinese) [Google Scholar]
- Wang, T.; Jiang, Y.; Zhan, S.; Wang, C. Frictional sliding tests on combined coal-rock samples. J. Rock Mech. Geotech. Eng. 2014, 6, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, D.N.; Pereira, J.-M.; Vandamme, M.; Dangla, P.; Vidal-Gilbert, S. Desorption-induced shear failure of coal bed seams during gas depletion. Int. J. Coal Geol. 2015, 137, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-B.; Guo, W.-Y.; Lu, C.-P.; Zhao, G.-M. Failure characteristics of combined coal-rock with different interfacial angles. Géoméch. Eng. 2016, 11, 345–359. [Google Scholar] [CrossRef]
- Li, W.; Bai, J.; Cheng, J.; Peng, S.; Liu, H. Determination of coal–rock interface strength by laboratory direct shear tests under constant normal load. Int. J. Rock Mech. Min. Sci. 2015, 77, 60–67. [Google Scholar] [CrossRef]
- Yin, D.W.; Chen, S.J.; Liu, X.Q.; Ma, H.F. Effect of joint angle in coal on failure mechanical behavior of roof rock-coal combined body. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 202–209. [Google Scholar] [CrossRef]
- Yin, D.W.; Chen, S.J.; Ge, Y.; Liu, R. Mechanical properties of rockecoal bi-material samples with different lithologies under uniaxial loading. J. Mater. Res. Technol. 2021, 10, 322–338. [Google Scholar] [CrossRef]
- Chen, S.J.; Yin, D.W.; Jiang, N.; Wang, F.; Guo, W.J. Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer. Geomech. Eng. 2019, 17, 333–342. [Google Scholar]
- Yin, D.W.; Chen, S.J.; Sun, X.Z.; Jiang, N. Strength characteristics of roof rock-coal composite samples with different height ratios under uniaxial loading. Arch. Min. Sci. 2019, 64, 307–319. [Google Scholar]
- Zhao, Z.; Lv, X.; Wang, W.; Tan, Y. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect. SpringerPlus 2016, 5, 292. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.P.; Chen, Y.; Zhang, J.W.; Wang, J.T.; Sun, Y.J. Failure behavior and strength characteristics of coal-rock combined body under different confining pressures. J. China Coal. Soc. 2016, 41, 2706–2713. (In Chinese) [Google Scholar]
- Lu, J.; Huang, G.; Gao, H.; Li, X.; Zhang, D.; Yin, G. Mechanical Properties of Layered Composite Coal–Rock Subjected to True Triaxial Stress. Rock Mech. Rock Eng. 2020, 53, 4117–4138. [Google Scholar] [CrossRef]
- Chen, S.J.; Yin, D.W.; Liu, H.M.; Chen, B.; Jiang, N. Effects of coal’s initial macro-cracks on rockburst tendency of rock-coal bi-material samples. R. Soc. Open Sci. 2019, 6, 181795. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.X.; Liu, J.W. The effect of loading rate on the behavior of samples composed of coal and rock. Int. J. Rock Mech. Min. Sci. 2013, 61, 23–30. [Google Scholar] [CrossRef]
- Nie, B.S.; He, X.Q.; Zhu, C.W. Study on mechanical property and electromagnetic emission during the fracture process of combined coal-rock. Prog. Earth Planet. Sci. 2009, 1, 281–287. [Google Scholar]
- He, X.; Chen, W.; Nie, B.; Mitri, H. Electromagnetic emission theory and its application to dynamic phenomena in coal-rock. Int. J. Rock Mech. Min. Sci. 2011, 48, 1352–1358. [Google Scholar] [CrossRef]
- Jin, P.; Wang, E.; Liu, X.; Huang, N.; Wang, S. Damage evolution law of coal-rock under uniaxial compression based on the electromagnetic radiation characteristics. Int. J. Min. Sci. Technol. 2013, 23, 213–219. [Google Scholar] [CrossRef]
- Qu, X. Experimental Study on Influence of Mechanical Properties of Roof and Floor on Stability of Strip Coal Pillar; Shandong University of Science and Technology: Qingdao, China, 2018. (In Chinese) [Google Scholar]
- Yin, D.W. Experimental Study on Stabilities of Roof-Coal Pillar Structural Body; Shandong University of Science and Technology: Qingdao, China, 2018. (In Chinese) [Google Scholar]
- Guo, W.Y.; Tan, Y.L.; Yu, F.H.; Zhao, T.B.; Hu, S.C.; Huang, D.M.; Qin, Z. Mechanical behavior of rock-coal-rock specimens with different coal thicknesses. Geomech. Eng. 2108, 15, 1017–1027. [Google Scholar]
- Zhang, H.; Wan, Z.; Zhang, Y.; Wu, D. Mechanical Properties and Failure Behavior of Composite Samples. Adv. Mater. Sci. Eng. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Elsworth, D.; Wan, Z. Failure response of composite rock-coal samples. Géoméch. Geophys. Geo-Energy Geo-Resour. 2018, 4, 175–192. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Liu, J.F.; Wang, L.; Yang, H.T.; Zuo, J.P. Effects of combination mode on mechanical properties and failure characteristics of the coal rock combinations. J. China Coal Soc. 2012, 37, 1677–1681. (In Chinese) [Google Scholar]
- Fatemeh, S.R.; Mark, D.Z. Comparison of short-term and long-term creep experiments in shales and carbonates from unconventional gas reservoirs. Rock Mech. Rock Eng. 2018, 51, 1995–2014. [Google Scholar]
- Cao, P.; Wen, Y.D.; Wang, Y.X.; Yuan, H.P.; Yuan, B. Study on nonlinear damage creep constitutive model for high-stress soft rock. Environ. Earth Sci. 2016, 75, 900. [Google Scholar] [CrossRef]
- Maranini, E.; Brignoli, M. Creep behaviour of a weak rock: Experimental characterization. Int. J. Rock Mech. Min. Sci. 1999, 36, 127–138. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Jing, H.-W.; Cheng, L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Eng. Geol. 2014, 179, 10–23. [Google Scholar] [CrossRef]
- Yang, D.; Chen, L.; Yang, S.; Chen, W.; Wu, G. Experimental investigation of the creep and damage behavior of Linyi red sandstone. Int. J. Rock Mech. Min. Sci. 2014, 72, 164–172. [Google Scholar] [CrossRef]
- Zong, Y.; Han, L.; Jin, Y.; Zhao, W.; Meng, L. Experimental Investigation on the Post-Peak Short-Term and Creep Behavior of Fractured Sandstone. Energies 2020, 13, 598. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Wang, D.C.; Zhao, N.N.; Chen, S.J. Acoustic emission characteristics of coal creep under step load. J. Basic Sci. Eng. 2013, 21, 159–166. (In Chinese) [Google Scholar]
- Chen, S.J.; Guo, W.J.; Yang, Y.J. Experimental study of creep model and failure characteristics of coal. Rock Soil Mech. 2009, 30, 2595–2599. (In Chinese) [Google Scholar]
- Cao, S.G.; Liu, Y.B.; Zhang, L.Q.; Jiang, Y.D. Experimental on acoustic emission of outburst-hazardous coal under uniaxial compression and creep. J. China Coal Soc. 2007, 32, 1264–1268. (In Chinese) [Google Scholar]
- Wu, F.; Chen, J.; Zou, Q.L. A nonlinear creep damage model for salt rock. Int. J. Damage Mech. 2019, 28, 758–771. [Google Scholar] [CrossRef]
- Wu, L.X.; Wang, J.Z. Preliminary exploration to rheology and micro-effect characteristics of coal. Chin. J. Mech. Eng. 1996, 15, 328–332. (In Chinese) [Google Scholar]
Sample Type | Sample No. | Uniaxial Compressive Strength (UCS)/MPa | Peak Strain | Elastic Modulus/GPa (at 40–60% of Peak Stress) |
---|---|---|---|---|
Sandstone-coal composite sample | RC-1 | 14.36 | 0.00985 | 2.11 |
RC-2 | 14.08 | 0.00775 | 2.52 | |
RC-3 | 13.99 | 0.00853 | 2.44 | |
Average | 14.14 | 0.00871 | 2.36 |
Sample Type | Sample No. | S/h | t/s | Creep Coefficient | |||
---|---|---|---|---|---|---|---|
Sandstone-coal composite sample | A-1 | 2 | 13.44 | 12.73 | 380 | 12.77 | 90.24% |
A-2 | 14.14 | 13.44 | 782 | 13.52 | 95.47% | ||
A-3 | 13.44 | 12.73 | 1035 | 12.83 | 90.88% | ||
Average value | — | — | — | 13.05 | 92.20% | ||
B-1 | 6 | 13.44 | 12.73 | 2700 | 12.82 | 90.66% | |
B-2 | 12.02 | 11.31 | 3435 | 11.42 | 80.76% | ||
B-3 | 11.31 | 9.90 | 455 | 9.93 | 70.23% | ||
Average value | — | — | — | 11.39 | 80.55% |
Sample Type | Sample No. | t/s | T/h | |||
---|---|---|---|---|---|---|
Pure coal sample | PC-1 | 12.73 | 12.02 | 4481 | 12.46 | 2 |
PC-2 | 12.02 | 11.31 | 2480 | 11.39 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Wang, F.; Zhang, J.; Li, F.; Zhu, C.; Feng, F. Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples. Minerals 2021, 11, 1398. https://doi.org/10.3390/min11121398
Yin D, Wang F, Zhang J, Li F, Zhu C, Feng F. Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples. Minerals. 2021; 11(12):1398. https://doi.org/10.3390/min11121398
Chicago/Turabian StyleYin, Dawei, Feng Wang, Jicheng Zhang, Faxin Li, Chun Zhu, and Fan Feng. 2021. "Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples" Minerals 11, no. 12: 1398. https://doi.org/10.3390/min11121398
APA StyleYin, D., Wang, F., Zhang, J., Li, F., Zhu, C., & Feng, F. (2021). Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples. Minerals, 11(12), 1398. https://doi.org/10.3390/min11121398