Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision
Abstract
:1. Introduction
2. Regional Tectonic Setting
3. Stratigraphy
3.1. Muzaffarabad Formation
3.2. Hangu Formation
3.3. Patala Formation
3.4. Margalla Hill Limestone
3.5. Chorgali Formation
3.6. Kuldana Formation
3.7. Murree Formation
3.8. Quaternary Deposits
4. U-Pb Geochronology
4.1. Sampling and Methods
4.2. U-Pb Detrital Zircon Results
5. Discussion
5.1. Detrital Zircon Provenance
5.1.1. U-Pb Ages of Source Terranes
5.1.2. Sources to Tertiary Foreland Sequence
Patala Formation (~57–55 Ma)
Kuldana Formation (~56–43 Ma)
Murree Formation (~36.1–22 Ma)
5.2. Tectonic Implications
6. Conclusions
- The detrital zircon U-Pb ages show a major provenance change occurred in the upper part of the Patala Formation, which is more pronounced in the upper Tertiary Kuldana and Murree formations. This indicates that it is more likely associated with the India–Asia collision in northern Pakistan.
- The mixed provenance in the Patala Formation suggest that the ophiolites exhumed during the Late Paleocene contributed the source to the evolving foreland basin together with Kohistan Island arc and the Indian craton.
- This provenance change also suggests that the India–Asia collisional timing in the Kashmir basin, northwestern Himalaya, is constrained to be around 57–55 Ma considering the age of the Patala Formation.
- The up-section, the mixed detritus in the Kuldana and Murree formations, indicate the exhumation of Greater and lesser Himalayan blocks in response to the southward propagation of a fold–thrust belt during the Eocene–Miocene period.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 2006, 74, 1–72. [Google Scholar] [CrossRef]
- Bouilhol, P.; Jagoutz, O.; Hanchar, J.M.; Dudas, F.O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 2013, 366, 163–175. [Google Scholar] [CrossRef]
- Guillot, S.; Mahéo, G.; De Sigoyer, J.; Hattori, K.; Pecher, A. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics 2008, 451, 225–241. [Google Scholar] [CrossRef]
- Kaneko, Y.; Katayama, I.; Yamamoto, H.; Misawa, K.; Ishikawa, M.; Rehman, H.; Kausar, A.; Shiraishi, K. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J. Metamorph. Geol. 2003, 21, 589–599. [Google Scholar] [CrossRef]
- Leech, M.L.; Singh, S.; Jain, A.; Klemperer, S.L.; Manickavasagam, R. The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 2005, 234, 83–97. [Google Scholar] [CrossRef]
- Rehman, H.U.; Yamamoto, H.; Shin, K. Metamorphic P–T evolution of high-pressure eclogites from garnet growth and reaction textures: Insights from the Kaghan Valley transect, northern Pakistan. Isl. Arc 2013, 22, 4–24. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Yoshida, M.; Fujiwara, Y. Paleomagnetic study of Utror Volcanic Formation: Remagnetizations and postfolding rotations in Utror area, Kohistan arc, northern Pakistan. Earth Planets Space 2000, 52, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Zaman, H.; Otofuji, Y.-i.; Khan, S.R.; Ahmad, M.N. New paleomagnetic results from the northern margin of the Kohistan Island Arc. Arab. J. Geosci. 2013, 6, 1041–1054. [Google Scholar] [CrossRef]
- Sun, Z.; Jiang, W.; Li, H.; Pei, J.; Zhu, Z. New paleomagnetic results of Paleocene volcanic rocks from the Lhasa block: Tectonic implications for the collision of India and Asia. Tectonophysics 2010, 490, 257–266. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.; Lippert, P.C.; Li, S.; Huang, W.; Advokaat, E.L.; Spakman, W. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 2019, 760, 69–94. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.; Steinberger, B.; Doubrovine, P.V.; Gassmöller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth 2011, 116, B06101. [Google Scholar] [CrossRef] [Green Version]
- Bera, M.; Sarkar, A.; Chakraborty, P.; Loyal, R.; Sanyal, P. Marine to continental transition in Himalayan foreland. Geol. Soc. Am. Bull. 2008, 120, 1214–1232. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 2011, 305, 195–206. [Google Scholar] [CrossRef]
- Clyde, W.C.; Khan, I.H.; Gingerich, P.D. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology 2003, 31, 1097–1100. [Google Scholar] [CrossRef] [Green Version]
- DeCelles, P.; Kapp, P.; Gehrels, G.; Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics 2014, 33, 824–849. [Google Scholar] [CrossRef]
- Ding, L.; Qasim, M.; Jadoon, I.A.; Khan, M.; Xu, Q.; Cai, F.; Wang, H.; Baral, U.; Yue, Y. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 2016, 455, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Qasim, M.; Ding, L.; Khan, M.A.; Jadoon, I.A.; Haneef, M.; Baral, U.; Cai, F.; Wang, H.; Yue, Y. Tectonic implications of detrital zircon ages from lesser Himalayan Mesozoic-Cenozoic strata, Pakistan. Geochem. Geophys. Geosyst. 2018, 19, 1636–1659. [Google Scholar] [CrossRef]
- Najman, Y.; Carter, A.; Oliver, G.; Garzanti, E. Provenance of Eocene foreland basin sediments, Nepal: Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology 2005, 33, 309–312. [Google Scholar] [CrossRef]
- Beck, R.A.; Burbank, D.W.; Sercombe, W.J.; Riley, G.W.; Barndt, J.K.; Berry, J.R.; Afzal, J.; Khan, A.; Jurgen, H.; Metje, J. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 1995, 373, 55–58. [Google Scholar] [CrossRef]
- Bossart, P.; Ottiger, R. Rocks of the Murree Formation in northern Pakistan: Indicators of a descending foreland basin of late Paleocene to middle Eocene age. Eclogae Geol. Helv. 1989, 82, 133–165. [Google Scholar]
- Najman, Y.; Pringle, M.; Godin, L.; Oliver, G. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 2001, 410, 194–197. [Google Scholar] [CrossRef]
- Baig, M.; Lawrence, R. Precambrian to early Paleozoic orogenesis in the Himalaya. Kashmir J. Geol. 1987, 5, 1–22. [Google Scholar]
- Searle, M.; Khan, M.; Fraser, J.; Gough, S.; Jan, M.Q. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 1999, 18, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Coward, M.; Butler, R.; Khan, M.; Knipe, R. The tectonic history of Kohistan and its implications for Himalayan structure. J. Geol. Soc. 1987, 144, 377–391. [Google Scholar] [CrossRef]
- Searle, M.; Treloar, P. Was Late Cretaceous–Paleocene obduction of ophiolite complexes the primary cause of crustal thickening and regional metamorphism in the Pakistan Himalaya? Geol. Soc. Lond. Spec. Publ. 2010, 338, 345–359. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Wan, X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef] [Green Version]
- Gansser, A. Geology of the Himalayas; Interscience: London, UK, 1964. [Google Scholar]
- Kazmi, A.H.; Jan, M.Q. Geology and Tectonics of Pakistan; Graphic Publishers: Karachi, Pakistan, 1997. [Google Scholar]
- Nakata, T. Geomorphic history and crustal movement of the foot-hills of the Himalayas. Sci. Rep. Tohoku Univ. 1972, 22, 39–177. [Google Scholar]
- Nakata, T. Active faults of the Himalaya of India and Nepal. Geol. Soc. Am. Spec. Pap. 1989, 232, 243–264. [Google Scholar]
- Islam, M. Structure, stratigraphy, petroleum geology and tectonics of Mirpur, Khuiratta and Puti Gali areas of district Mirpur and Kotli, Azad Jammu and Kashmir. Pakistan. Unpublished MS Thesis, Institute of Geology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan, 2006; p. 170. [Google Scholar]
- Baig, M.; Snee, L. The evidence for Cambro-Ordovician orogeny in northwest Himalayas Pakistan. Geol. Soci. Am. 1995, 27, 305. [Google Scholar]
- Waagen, W.H.; Wynne, A. The Geology of Mount Sírban, in the Upper Punjâb; Memoir of the Geological Survey of India: Calcutta, India, 1872. [Google Scholar]
- Meddlicot, H. Notes on the sub-Himalayan series of Jammu Hills. Rec. Geol. Surv. India 1876, 9, 49. [Google Scholar]
- Wadia, D. The syntaxis of the northwest Himalaya: Its rocks, tectonics and orogeny. Rec. Geol. Surv. India 1931, 65, 189–220. [Google Scholar]
- Wadia, D.N. The Geology of Poonch State (Kashmir) and Adjacent Portions of the Punjab; Government of India Central Publication Branch: New Delhi, India, 1928.
- Latif, M. Stratigraphy and micropaleontology of the Galis Group of Hazara, Pakistan. Geol. Bull. Punjab Univ. 1976, 13, 1–64. [Google Scholar]
- Calkins, J.A.; Offield, T.W.; Abdullah, S.; Ali, S.T. Geology of the Southern Himalaya in Hazara, Pakistan, and Adjacent Areas; US Government Printing Office: Washington, DC, USA, 1975.
- Ashraf, M.; Chaudhary, M. Petrology of lower Siwalik rocks of Poonch area. Kashmir J. Geol. 1984, 2, 1–10. [Google Scholar]
- Ghazanfar, M.; Chaudhry, M.N. Reporting MCT in Northwest Himalaya, Pakistan. Univ. Punjab Geol. Bull. 1986, 11, 10–18. [Google Scholar]
- Cai, F.; Ding, L.; Leary, R.J.; Wang, H.; Xu, Q.; Zhang, L.; Yue, Y. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung–Zangpo suture zone, southern Tibet: Insights into subduction–accretion processes in the Neo-Tethys. Tectonophysics 2012, 574, 181–192. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Yuan, H.-L.; Gao, S.; Dai, M.-N.; Zong, C.-L.; Günther, D.; Fontaine, G.H.; Liu, X.-M.; Diwu, C. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol. 2008, 247, 100–118. [Google Scholar] [CrossRef]
- Ludwig, K. Isoplot/Ex 3: A Geochronological Toolkit Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Ravikant, V.; Wu, F.-Y.; Ji, W.-Q. U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth Planet. Sci. Lett. 2011, 304, 356–368. [Google Scholar] [CrossRef]
- Cawood, P.A.; Johnson, M.R.; Nemchin, A.A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 2007, 255, 70–84. [Google Scholar] [CrossRef]
- Aikman, A.B.; Harrison, T.M.; Lin, D. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet. Sci. Lett. 2008, 274, 14–23. [Google Scholar] [CrossRef]
- Myrow, P.; Hughes, N.; Paulsen, T.; Williams, I.; Parcha, S.; Thompson, K.; Bowring, S.; Peng, S.-C.; Ahluwalia, A. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett. 2003, 212, 433–441. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Goodge, J.W.; Fanning, C.M.; Williams, I.S.; Peng, S.; Bhargava, O.N.; Parcha, S.K.; Pogue, K.R. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geol. Soc. Am. Bull. 2010, 122, 1660–1670. [Google Scholar] [CrossRef] [Green Version]
- Myrow, P.M.; Hughes, N.C.; Searle, M.P.; Fanning, C.; Peng, S.-C.; Parcha, S. Stratigraphic correlation of Cambrian–Ordovician deposits along the Himalaya: Implications for the age and nature of rocks in the Mount Everest region. Geol. Soc. Am. Bull. 2009, 121, 323–332. [Google Scholar] [CrossRef]
- DeCelles, P.; Gehrels, G.; Najman, Y.; Martin, A.; Carter, A.; Garzanti, E. Detrital geochronology and geochemistry of Cretaceous–Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 2004, 227, 313–330. [Google Scholar] [CrossRef]
- Garzanti, E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J. Asian Earth Sci. 1999, 17, 805–827. [Google Scholar] [CrossRef]
- Hu, X.; Garzanti, E.; Moore, T.; Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 2015, 43, 859–862. [Google Scholar] [CrossRef]
- Kakar, M.I.; Kerr, A.C.; Mahmood, K.; Collins, A.S.; Khan, M.; McDonald, I. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos 2014, 202, 190–206. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Chung, S.-L.; Li, J.-X.; Liu, C.-Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Fraser, J.E.; Searle, M.P.; Parrish, R.R.; Noble, S.R. Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains. Geol. Soc. Am. Bull. 2001, 113, 1443–1455. [Google Scholar] [CrossRef]
- Heuberger, S.; Schaltegger, U.; Burg, J.-P.; Villa, I.M.; Frank, M.; Dawood, H.; Hussain, S.; Zanchi, A. Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss J. Geosci. 2007, 100, 85–107. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Singh, S. Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: Constraints from field observations and U–Pb SHRIMP ages. Tectonophysics 2008, 451, 186–205. [Google Scholar] [CrossRef]
- Ravikant, V.; Wu, F.-Y.; Ji, W.-Q. Zircon U–Pb and Hf isotopic constraints on petrogenesis of the Cretaceous–Tertiary granites in eastern Karakoram and Ladakh, India. Lithos 2009, 110, 153–166. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Baral, U.; Jadoon, I.A.K.; Umar, M.; Imran, M. Provenance of the Hangu Formation, Lesser Himalaya, Pakistan: Insight from the detrital zircon U-Pb dating and spinel geochemistry. Palaeoworld 2020, 29, 729–743. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; LaReau, B.; Spurlin, M. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Qasim, M.; Tanoli, J.I.; Ding, L.; Sattar, M.; Baig, M.S.; Pervaiz, S. Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision. Minerals 2021, 11, 1399. https://doi.org/10.3390/min11121399
Awais M, Qasim M, Tanoli JI, Ding L, Sattar M, Baig MS, Pervaiz S. Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision. Minerals. 2021; 11(12):1399. https://doi.org/10.3390/min11121399
Chicago/Turabian StyleAwais, Muhammad, Muhammad Qasim, Javed Iqbal Tanoli, Lin Ding, Maryam Sattar, Mirza Shahid Baig, and Shahab Pervaiz. 2021. "Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision" Minerals 11, no. 12: 1399. https://doi.org/10.3390/min11121399
APA StyleAwais, M., Qasim, M., Tanoli, J. I., Ding, L., Sattar, M., Baig, M. S., & Pervaiz, S. (2021). Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision. Minerals, 11(12), 1399. https://doi.org/10.3390/min11121399