Study on Adsorption Characteristics of Sulfonate Gemini Surfactant on Lignite Surface
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Surfactant-Lignite Adsorption System
3.1.1. Adsorption Configuration
3.1.2. Interaction Energy
3.1.3. Contact Surface Area
3.1.4. Order Parameter
3.2. Water-Surfactant-Lignite System
3.2.1. Relative Concentration Distribution
3.2.2. Number of Hydrogen Bonds
4. Conclusions
- (1)
- By analyzing the interaction energy of the surfactant-lignite system, it was found that the total interaction energy of the S2-lignite system was lower, indicating that S2 had the highest adsorption strength on the lignite surface.
- (2)
- Through the analysis of the order parameters of the surfactant-lignite system, it was found that the average included-angle between the SDS molecule and the Z axis was smaller, and the degree of order in the Z axis direction was higher. Further analysis of the angle distribution between the molecular chain and the Z axis before and after the MD simulation showed that during the adsorption process, the large-angle molecular chain in S2 tended to become smaller, the small-angle molecular chain tended to become larger, and the molecular chain distribution angle tended to concentrate.
- (3)
- Through the analysis of the relative concentration distribution and the number of hydrogen bonds in the water-surfactant-lignite system, it was found that the gemini surfactant S2 had a better hydrophobic effect, the network layer formed was denser. In SDS, the head groups were more adsorbed on the surface of lignite in a way that the hydrophilic head groups face the water phase, which also led to the decrease in the hydrophobic ability of SDS.
- (4)
- The study on the adsorption characteristics of sulfonate gemini surfactants on the surface of lignite will help to better understand the influence of the surfactant structure on the adsorption strength. The research results have important theoretical and practical significance for developing new surfactants, and enriching and developing the basic theory of coal wettability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohm, T.I.; Chae, J.S.; Lim, J.H.; Moon, S.H. Evaluation of a hot oil immersion drying method for the upgrading of crushed low-rank coal. J. Mech. Sci. Technol. 2012, 26, 1299–1303. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, S.Y.; Fan, M.Q.; Zhang, L. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel 2017, 197, 474–481. [Google Scholar] [CrossRef]
- Xia, W.C.; Xie, G.Y.; Peng, Y.L. Recent advances in beneficiation for low rank coals. Powder Technol. 2015, 277, 206–221. [Google Scholar] [CrossRef]
- Chang, Z.Y.; Chen, X.M.; Peng, Y.J. The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation. Powder Technol. 2019, 342, 840–847. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Xia, Y.C.; Liu, S.Y. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J. Mol. Graph. Model. 2017, 76, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.H.; Kunjappu, J.T.; Somasundaran, R.; Zhang, L. Adsorption of a double-chain surfactant on an oxide. Colloids Surf. A 2008, 324, 65–70. [Google Scholar] [CrossRef]
- Pham, T.D.; Tran, T.T.; Le, V.A.; Pham, T.T.; Dao, T.H.; Le, T.S. Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. J. Mol. Liq. 2019, 287, 110900. [Google Scholar] [CrossRef]
- Chernyshova, I.V.; Rao, K.H.; Vidyadhar, A.; Shchukarev, A.V. Mechanism of adsorption of long-chain alkylamines on silicates. A spectroscopic study. 1. Quartz. Langmuir 2000, 16, 8071–8084. [Google Scholar] [CrossRef]
- Paria, S.; Khilar, K.C. A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv. Colloid Interface Sci. 2004, 110, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.H.Y.; Le, T.T.; Nguyen, T.M.T.; Chu, T.H.; Pham, T.N.M.; Nguyen, T.A.H.; Pham, T.D. Simultaneous adsorption of anionic alkyl sulfate surfactants onto alpha alumina particles: Experimental consideration and modeling. Environ. Technol. Innov. 2021, 24, 101920. [Google Scholar] [CrossRef]
- Pham, T.D.; Kobayashi, M.; Adachi, Y. Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid Polym. Sci. 2015, 293, 217–227. [Google Scholar] [CrossRef]
- Pham, H.D.; Dang, T.H.M.; Nguyen, T.T.N.; Nguyen, T.A.H.; Pham, T.N.M.; Pham, T.D. Separation and determination of alkyl sulfate surfactants in wastewater by capillary electrophoresis coupled with contactless conductivity detection after preconcentration by simultaneous adsorption using alumina beads. Electrophoresis 2021, 42, 191–199. [Google Scholar] [CrossRef]
- Zhang, R.; Somasundaran, P. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 2006, 123, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Zhang, H.C.; Jia, Z.G.; Li, X.; Gao, W.C.; Wei, W.L. Wettability of coal pitch surface by aqueous solutions of cationic Gemini surfactants. Colloids Surf. A 2016, 494, 59–64. [Google Scholar] [CrossRef]
- Rosen, M.J.; Li, F. The adsorption of gemini and conventional surfactants onto some soil solids and the removal of 2-naphthol by the soil surfaces. J. Colloid Interface Sci. 2001, 234, 418–424. [Google Scholar] [CrossRef]
- Sakai, K.; Matsuhashi, K.; Honya, A.; Oguchi, T.; Sakai, H.; Abe, M. Adsorption Characteristics of Monomeric/Gemini Surfactant Mixtures at the Silica/Aqueous Solution Interface. Langmuir 2010, 26, 17119–17125. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, X.Y.; Guo, Z.Y.; Liu, Y.T.; Guo, J.Y.; Zhang, S.H. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant. Colloids Surf. A 2016, 508, 286–293. [Google Scholar] [CrossRef]
- Zhou, Q.; Somasundaran, P. Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica. J. Colloid Interface Sci. 2009, 331, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Zhou, G.; Li, S.L.; Wang, C.M.; Liu, R.L.; Jiang, W.J. Molecular dynamics simulation and experimental characterization of anionic surfactant: Influence on wettability of low-rank coal. Fuel 2020, 279, 118323. [Google Scholar] [CrossRef]
- Han, W.B.; Zhou, G.; Xing, M.Y.; Yang, Y.; Zhang, X.Y.; Miao, Y.N.; Wang, Y.M. Experimental investigation on physicochemical characteristics of coal treated with synthetic sodium salicylate-imidazole ionic liquids. J. Mol. Liq. 2021, 327, 114822. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.Y.; Guo, J.Y.; Zhang, L.; Sun, X.L. Increase in wettability difference between organic and mineral matter to promote low-rank coal flotation by using ultrasonic treatment. Appl. Surf. Sci. 2019, 481, 454–459. [Google Scholar] [CrossRef]
- Li, L.; He, M.; Li, Z.H.; Ma, C.D.; Yu, H.; You, X.F. Wettability effect of ethoxylated nonyl phenol with different ethylene oxide chain length on Shendong long-flame coal surface. Mater. Today Commun. 2021, 26, 101697. [Google Scholar] [CrossRef]
- Meng, J.Q.; Yin, F.F.; Li, S.C.; Zhong, R.Q.; Sheng, Z.Y.; Nie, B.S. Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation. Int. J. Min. Sci. Technol. 2019, 29, 577–584. [Google Scholar] [CrossRef]
- Yuan, M.Y.; Nie, W.; Zhou, W.W.; Yan, J.Y.; Bao, Q.; Guo, C.J.; Tong, P.; Zhang, H.H.; Guo, L.D. Determining the effect of the non-ionic surfactant AEO(9) on lignite adsorption and wetting via molecular dynamics (MD) simulation and experiment comparisons. Fuel 2020, 278, 118339. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.Y.; Fan, M.Q.; Zhang, L. The effect of ethylene oxide groups in dodecyl ethoxyl ethers on low rank coal flotation: An experimental study and simulation. Powder Technol. 2019, 344, 684–692. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, S.Y.; Cheng, Y.C.; Xu, G.J. Decrease in hydrophilicity and moisture readsorption of lignite: Effects of surfactant structure. Fuel 2020, 273, 117812. [Google Scholar] [CrossRef]
- Ni, G.H.; Qian, S.; Meng, X.; Hui, W.; Xu, Y.H.; Cheng, W.M.; Gang, W. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal. Fuel 2019, 257, 116077. [Google Scholar]
- Yao, Q.G.; Xu, C.C.; Zhang, Y.S.; Zhou, G.; Zhang, S.C.; Wang, D. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf. Environ. 2017, 111, 726–732. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, P.; Zhuo, Q.M.; Liu, W.L. Construction of Molecular Model and Adsorption of Collectors on Bulianta Coal. Molecules 2020, 25, 4030. [Google Scholar] [CrossRef]
- Chen, X.L.; Yan, G.C.; Yang, X.L.; Feng, Z.Z.; Wei, S. Molecular Dynamics Simulation of the Effect of SDS/SDBS on the Wettability of Anthracite. Coal Science and Technology. Available online: https://kns.cnki.net/kcms/detail/11.2402.TD.20210623.1502.004.html (accessed on 23 June 2021).
- Chen, X.; Yan, G.; Yang, X.; Xu, G.; Wei, S. Microscopic Diffusion Characteristics of Linear Alkylbenzene Sulfonates on the Surface of Anthracite: The Influence of Different Attachment Sites of Benzene Ring in the Backbone. Minerals 2021, 11, 1045. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.P.; Zou, J.X.; Bu, J.C. Recent Advances in the Synthesis of Sulfonate Gemini Surfactants. J. Surfactants Deterg. 2018, 21, 443–453. [Google Scholar] [CrossRef]
- Wu, J.H.; Liu, J.Z.; Yuan, S.; Wang, Z.H.; Zhou, J.H.; Cen, K.F. Theoretical Investigation of Noncovalent Interactions between Low Rank Coal and Water. Energy Fuel 2016, 30, 7118–7124. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, C.L.; Yan, K.F. Adsorption of collectors on model surface of Wiser bituminous coal: A molecular dynamics simulation study. Miner. Eng. 2015, 79, 31–39. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Qu, G.M.; Cheng, J.C.; Xue, C.L.; Gao, X.; Sun, T.; Ding, W. Molecular dynamics simulation of the aggregation behavior of N-Dodecyl-N, N-Dimethyl-3-Ammonio-1-Propanesulfonate/sodium dodecyl benzene sulfonate surfactant mixed system at oil/water interface. Colloids Surf. A 2017, 531, 73–80. [Google Scholar] [CrossRef]
- Lai, L.; Mei, P.; Wu, X.M.; Hou, C.; Zheng, Y.C.; Liu, Y. Micellization of anionic gemini surfactants and their interaction with polyacrylamide. Colloid Polym. Sci. 2014, 292, 2821–2830. [Google Scholar] [CrossRef]
- Pan, A.; Rakshit, S.; Sahu, S.; Bhattacharya, S.C.; Moulik, S.P. Synergism between anionic double tail and zwitterionic single tail surfactants in the formation of mixed micelles and vesicles, and use of the micelle templates for the synthesis of nano-structured gold particles. Colloids Surf. A 2015, 481, 644–654. [Google Scholar] [CrossRef]
- Wang, R.J.; Yan, H.T.; Hu, W.M.; Li, Y.H.; Mei, Z.K. Micellization of Anionic Sulfonate Gemini Surfactants and Their Interactions With Anionic Polyacrylamide. J. Surfactants Deterg. 2018, 21, 81–90. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, L.J.; Cheng, F. Influence of Spacer Nature on the Aggregation Properties of Anionic Gemini Surfactants in Aqueous Solutions. J. Surfactants Deterg. 2011, 14, 221–225. [Google Scholar] [CrossRef]
- Stanishneva-Konovalova, T.B.; Sokolova, O.S. Molecular dynamics simulations of negatively charged DPPC/DPPI lipid bilayers at two levels of resolution. Comput. Theor. Chem. 2015, 1058, 61–66. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.L.; Gao, S.; Jiang, Z.W.; Su, D.; Liu, G.S. Monolayer adsorption of dodecylamine Surfactants at the mica/water interface. Chem. Eng. Sci. 2014, 114, 58–69. [Google Scholar] [CrossRef]
Model | EV/(kcal·mol−1) | EL/(kcal·mol−1) | E/(kcal·mol−1) |
---|---|---|---|
S2-lignite | −289.13 | −9.64 | −298.77 |
SDS-lignite | −282.58 | −3.75 | −286.33 |
S2 Molecular Chain Number | Angle with Z Axis | Order Parameter |
---|---|---|
1 | 43.86 | 0.28 |
2 | 71.98 | −0.36 |
3 | 89.22 | −0.50 |
4 | 82.57 | −0.48 |
5 | 72.11 | −0.36 |
6 | 79.82 | −0.45 |
7 | 76.94 | −0.42 |
8 | 51.16 | 0.09 |
9 | 60.76 | −0.14 |
10 | 78.52 | −0.44 |
11 | 56.37 | −0.04 |
12 | 85.87 | −0.49 |
13 | 55.83 | −0.03 |
14 | 79.82 | −0.45 |
15 | 59.96 | −0.13 |
16 | 81.37 | −0.47 |
average value | 70.39 | −0.27 |
S2 Molecular Chain Number | Angle with Z Axis | Order Parameter |
---|---|---|
1 | 60.11 | −0.13 |
2 | 51.15 | 0.09 |
3 | 60.21 | −0.13 |
4 | 48.55 | 0.16 |
5 | 62.08 | −0.17 |
6 | 83.16 | −0.48 |
7 | 61.19 | −0.15 |
8 | 72.01 | −0.36 |
9 | 61.18 | −0.15 |
10 | 85.02 | −0.49 |
11 | 49.95 | 0.12 |
12 | 69.28 | −0.31 |
13 | 76.87 | −0.42 |
14 | 84.69 | −0.49 |
15 | 25.51 | 0.72 |
16 | 55.51 | −0.02 |
average value | 62.91 | −0.14 |
System | Number of Hydrogen Bonds |
---|---|
Coal-Water | 42 |
Coal-S2-Water | 15 |
Coal-SDS-Water | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yan, G.; Yang, X.; Xu, G. Study on Adsorption Characteristics of Sulfonate Gemini Surfactant on Lignite Surface. Minerals 2021, 11, 1401. https://doi.org/10.3390/min11121401
Chen X, Yan G, Yang X, Xu G. Study on Adsorption Characteristics of Sulfonate Gemini Surfactant on Lignite Surface. Minerals. 2021; 11(12):1401. https://doi.org/10.3390/min11121401
Chicago/Turabian StyleChen, Xuanlai, Guochao Yan, Xianglin Yang, and Guang Xu. 2021. "Study on Adsorption Characteristics of Sulfonate Gemini Surfactant on Lignite Surface" Minerals 11, no. 12: 1401. https://doi.org/10.3390/min11121401
APA StyleChen, X., Yan, G., Yang, X., & Xu, G. (2021). Study on Adsorption Characteristics of Sulfonate Gemini Surfactant on Lignite Surface. Minerals, 11(12), 1401. https://doi.org/10.3390/min11121401