Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Collection and Pretreatment
2.3. Adsorption Experiments
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Adsorption Kinetics of ASA on Iron Oxides
3.2. Effect of pH
3.3. Competing Ion (Phosphate) Effect on Equilibrium Adsorption
3.4. Actual Soil Adsorption of ASA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Lu, Y.; Wang, P.; Suriyanarayanan, S.; Meng, J.; Zhou, Y.; Liang, R.; Khan, K. Risk ranking of environmental contaminants in Xiaoqing River, a heavily polluted river along urbanizing Bohai Rim. Chemosphere 2018, 204, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yu, C.P.; Yue, M.; Liu, S.P.; Yang, X.Y. Occurrence of selected PPCPs and sulfonamide resistance genes associated with heavy metals pollution in surface sediments from Chao Lake, China. Environ. Earth Sci. 2016, 75, 1–8. [Google Scholar] [CrossRef]
- Xu, J.; Marsac, R.; Wei, C.; Wu, F.; Boily, J.F.; Hanna, K. Cobinding of Pharmaceutical Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic Acid and Niflumic Acid at Goethite Surfaces. Environ. Sci. Technol. 2017, 51, 11617–11624. [Google Scholar] [CrossRef]
- Xu, J.; Marsac, R.; Costa, D.; Cheng, W.; Wu, F.; Boily, J.F.; Hanna, K. Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces. Environ. Sci. Technol. 2017, 51, 8343–8349. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, C.; Wang, M.; Li, Y. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: Modeling and adsorption capacity analysis. Environ. Sci. Pollut. Res. 2014, 21, 399–406. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jia, D.A.; Sun, R.J.; Zhu, H.W.; Zhou, D.M. Adsorption and Cosorption of Tetracycline and Copper(II) on Montmorillonite as Affected by Solution pH. Environ. Sci. Technol. 2008, 42, 3254–3259. [Google Scholar] [CrossRef]
- Pei, Z.; Shan, X.Q.; Kong, J.; Wen, B.; Owens, G. Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH. Environ. Sci. Technol. 2010, 44, 915–920. [Google Scholar] [CrossRef]
- Neupane, G.; Donahoe, R.J.; Arai, Y. Kinetics of competitive adsorption/desorption of arsenate and phosphate at the ferrihydrite-water interface. Chem. Geol. 2014, 368, 31–38. [Google Scholar] [CrossRef]
- Goldberg, S. Competitive Adsorption of Arsenate and Arsenite on Oxides and Clay Minerals. Soil Sci. Soc. Am. J. 2002, 66, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Frost, D.V.; Overby, L.R.; Spruth, H.C. Studies with Arsanilic Acid and Related Compounds. J. Agric. Food Chem. 1955, 3, 235–243. [Google Scholar] [CrossRef]
- Shen, X.; Xu, J.; Pozdnyakov, I.P.; Liu, Z. Photooxidation of p-arsanilic acid in aqueous solution by UV/persulfate process. Appl. Sci. 2018, 8, 615. [Google Scholar] [CrossRef] [Green Version]
- Mangalgiri, K.P.; Adak, A.; Blaney, L. Organoarsenicals in poultry litter: Detection, fate, and toxicity. Environ. Int. 2015, 75, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Hu, Y.; Cheng, H. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS. Microchem. J. 2013, 108, 38–45. [Google Scholar] [CrossRef]
- Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environ. Sci. Technol. 2006, 40, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.D.; Wang, Y.J.; Liu, C.; Qin, W.X.; Zhou, D.M. Kinetics, intermediates and acute toxicity of arsanilic acid photolysis. Chemosphere 2014, 107, 274–281. [Google Scholar] [CrossRef]
- Xie, X.; Hu, Y.; Cheng, H. Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds. Water Res. 2016, 96, 136–147. [Google Scholar] [CrossRef]
- Xu, J.; Shen, X.; Wang, D.; Zhao, C.; Liu, Z.; Pozdnyakov, I.P.; Wu, F.; Xia, J. Kinetics and mechanisms of pH-dependent direct photolysis of p-arsanilic acid under UV-C light. Chem. Eng. J. 2018, 336, 334–341. [Google Scholar] [CrossRef]
- Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for arsenic removal from water: Current status and future perspectives. Int. J. Environ. Res. Public Health 2015, 13, 1–24. [Google Scholar] [CrossRef]
- Zeng, H.; Fisher, B.; Giammar, D.E. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environ. Sci. Technol. 2008, 42, 147–152. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Xia, J.; Wu, F.; Zhang, Y. A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension. Chem. Geol. 2018, 495, 67–75. [Google Scholar] [CrossRef]
- Leus, K.; Folens, K.; Nicomel, N.R.; Perez, J.P.H.; Filippousi, M.; Meledina, M.; Dîrtu, M.M.; Turner, S.; Van Tendeloo, G.; Garcia, Y.; et al. Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. J. Hazard. Mater. 2018, 353, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Tofan-Lazar, J.; Al-Abadleh, H.A. Kinetic ATR-FTIR studies on phosphate adsorption on iron (Oxyhydr)oxides in the absence and presence of surface arsenic: Molecular-level insights into the Ligand exchange mechanism. J. Phys. Chem. A 2012, 116, 10143–10149. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, W.; Goldberg, S.; Al-Abadleh, H.A. In situ ATR-FTIR and surface complexation modeling studies on the adsorption of dimethylarsinic acid and p-arsanilic acid on iron-(oxyhydr)oxides. J. Colloid Interface Sci. 2011, 358, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.R.; Huang, C.H. Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. J. Hazard. Mater. 2012, 227, 378–385. [Google Scholar] [CrossRef]
- Depalma, S.; Cowen, S.; Hoang, T.; Al-Abadleh, H.A. Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr)oxides: In-situ ATR-FTIR studies. Environ. Sci. Technol. 2008, 42, 1922–1927. [Google Scholar] [CrossRef] [PubMed]
- Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. Fe3O4@MIL-101 – A Selective and Regenerable Adsorbent for the Removal of As Species from Water. Eur. J. Inorg. Chem. 2016, 2016, 4395–4401. [Google Scholar] [CrossRef]
- Li, S.; Xu, J.; Chen, W.; Yu, Y.; Liu, Z.; Li, J.; Wu, F. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection. J. Environ. Sci. 2016, 47, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Giammar, D.E. Mass Action Expressions for Bidentate Adsorption in Surface Complexation Modeling: Theory and Practice. Environ. Sci. Technol. 2013, 47, 3982–3996. [Google Scholar] [CrossRef]
- Marsac, R.; Martin, S.; Boily, J.-F.F.; Hanna, K. Oxolinic acid binding at goethite and akaganéite surfaces: Experimental Study and Modeling. Environ. Sci. Technol. 2016, 50, 660–668. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, C.H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 2007, 66, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Z.; Hong, H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl. Clay Sci. 2013, 74, 66–73. [Google Scholar] [CrossRef]
- Manning, B.A.; Fendorf, S.E.; Goldberg, S. Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 1998, 32, 2383–2388. [Google Scholar] [CrossRef]
- Ghosh, M.M.; Yuan, J.R. Adsorption of inorganic arsenic and organoarsenicals on hydrous oxides. Environ. Prog. 1987, 6, 150–157. [Google Scholar] [CrossRef]
- Jaafar, J. Separation of Phenylarsonic Compounds by Ion Pairing–Reversed Phase–High Performance Liquid Chromatography. J. Teknol. 2001, 35, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.; Tasleem, S.; Naeem, A. Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents. J. Colloid Interface Sci. 2004, 275, 523–529. [Google Scholar] [CrossRef]
- Watanabe, H.; Seto, J. The Point of Zero Charge and the Isoelectric Point of γ-Fe2O3 and α-Fe2O3. Bull. Chem. Soc. Jpn. 1986, 59, 2683–2687. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.S.; Kanungo, S.B. Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH. J. Colloid Interface Sci. 2005, 284, 30–38. [Google Scholar] [CrossRef]
- Cheng, W.; Xu, J.; Wang, Y.; Wu, F.; Xu, X.; Li, J. Dispersion-precipitation synthesis of nanosized magnetic iron oxide for efficient removal of arsenite in water. J. Colloid Interface Sci. 2015, 445, 93–101. [Google Scholar] [CrossRef]
- Lin, T.Y.; Wei, C.C.; Huang, C.W.; Chang, C.H.; Hsu, F.L.; Liao, V.H.C. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers. J. Agric. Food Chem. 2016, 64, 2214–2222. [Google Scholar] [CrossRef]
- Chabot, M.; Hoang, T.; Al-Abadleh, H.A. ATR-FTIR studies on the nature of surface complexes and desorption efficiency of p-arsanilic acid on iron (oxyhydr)oxides. Environ. Sci. Technol. 2009, 43, 3142–3147. [Google Scholar] [CrossRef]
- Thakur, J.K.; Thakur, R.K.; Ramanathan, A.; Kumar, M.; Singh, S.K. Arsenic Contamination of Groundwater in Nepal—An Overview. Water 2010, 3, 1–20. [Google Scholar] [CrossRef]
- Hafeznezami, S.; Zimmer-Faust, A.G.; Dunne, A.; Tran, T.; Yang, C.; Lam, J.R.; Reynolds, M.D.; Davis, J.A.; Jay, J.A. Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling. Environ. Pollut. 2016, 215, 290–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolland, M.D.A.; Allen, D.G. Spatial variation of soil test phosphorus and potassium, oxalate-extractable iron and aluminum, phosphorus-retention index, and organic carbon content in soils of Western Australia. Commun. Soil Sci. Plant Anal. 1998, 29, 381–392. [Google Scholar] [CrossRef]
- Kuo, S.; Mikkelsen, D.S. Distribution of iron and phosphorus in flooded and unflooded soil profiles and their relation to phosphorus adsorption. Soil Sci. 1979, 127, 18–25. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Lambkin, D.C.; Alloway, B.J. Arsenate-induced phosphate release from soils and its effect on plant phosphorus. Water. Air. Soil Pollut. 2003, 144, 41–56. [Google Scholar] [CrossRef]
Parameters | Dosage | α-Fe2O3 | γ-Fe2O3 | α-FeOOH |
---|---|---|---|---|
qe (μmol·m−2) | 0.1 g·L−1 | 0.87 | 1.48 | 2.90 |
0.2 g·L−1 | 0.70 | 1.20 | 2.41 | |
0.5 g·L−1 | 0.32 | 0.60 | 2.50 | |
1.0 g·L−1 | 0.16 | 0.36 | 2.02 | |
k2 (m2·μmol−1·h−1) | 0.1 g·L−1 | 1.22 | 0.60 | 0.94 |
0.2 g L−1 | 2.32 | 0.92 | 1.20 | |
0.5 g·L−1 | 42.44 | 3.69 | 0.67 | |
1.0 g·L−1 | 602.02 | 13.30 | 0.97 |
Characters | SP1 | SP2 | SP3 | SP4 | SP5 | SP6 | SP7 | SP8 | SP9 |
---|---|---|---|---|---|---|---|---|---|
Fe2O3% | 4.284 | 4.917 | 5.276 | 5.921 | 6.031 | 6.518 | 6.717 | 7.509 | 8.228 |
TP% | 0.44 | 0.08 | 0.06 | 0.02 | 0.03 | 0.02 | 0.03 | 0.04 | 0.05 |
As% × 104 | 18.5 | 8.9 | 13.1 | 14.3 | 14.8 | 17.8 | 20.7 | 33.3 | 20.0 |
OM% | 6.77 | 3.54 | 2.12 | 6.96 | 3.63 | 3.79 | 6.92 | 4.22 | 3.82 |
BET surface area (m2·g−1) | 13.60 | 42.55 | 15.54 | 34.72 | 46.36 | 61.82 | 56.18 | 54.75 | 29.33 |
pH * | 7.21 | 7.42 | 7.17 | 7.37 | 7.05 | 7.14 | 7.11 | 7.42 | 7.44 |
Parameters | SP1 | SP2 | SP3 | SP4 | SP5 | SP6 | SP7 | SP8 | SP9 |
---|---|---|---|---|---|---|---|---|---|
qe × 102 (μmol m−2) | 0.37 | 0.62 | 1.47 | 2.64 | 0.93 | 2.01 | 1.50 | 3.09 | 2.04 |
k2 (m2·μmol−1·h−1) | 80.44 | 52.10 | 7.98 | 11.91 | 35.74 | 17.66 | 16.32 | 16.85 | 18.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tao, S.; Dong, Z.; Xu, J.; Zhang, X.; Pan, G. Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils. Minerals 2021, 11, 105. https://doi.org/10.3390/min11020105
Yang Y, Tao S, Dong Z, Xu J, Zhang X, Pan G. Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils. Minerals. 2021; 11(2):105. https://doi.org/10.3390/min11020105
Chicago/Turabian StyleYang, Yifan, Shiyong Tao, Zhichun Dong, Jing Xu, Xiang Zhang, and Guoyan Pan. 2021. "Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils" Minerals 11, no. 2: 105. https://doi.org/10.3390/min11020105
APA StyleYang, Y., Tao, S., Dong, Z., Xu, J., Zhang, X., & Pan, G. (2021). Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils. Minerals, 11(2), 105. https://doi.org/10.3390/min11020105