The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material and Analytics
2.2. Microorganisms and Adaptation
2.3. Stirred-Tank Bioleaching Tests
3. Results
3.1. Sample Material and Particle-Size Reduction
3.2. Stirred-Tank Bioleaching Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riekkola-Vanhanen, M. Talvivaara mining company—From a project to a mine. Miner. Eng. 2013, 48, 2–9. [Google Scholar] [CrossRef]
- Neale, J.; Seppälä, J.; Laukka, A.; Van Aswegen, P.; Barnett, S.; Gericke, M. The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation. Solid State Phenom. 2017, 262, 28–32. [Google Scholar] [CrossRef]
- Morin, D.H.R.; D’hugues, P. Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors. In Biomining; Rawlings, D.E., Johnson, D.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 35–54. [Google Scholar]
- Sand, W.; Gehrke, T.; Jozsa, P.-G.; Schippers, A. (Bio) chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Schippers, A.; Jozsa, P.-G.; Sand, W. Sulfur Chemistry in Bacterial Leaching of Pyrite. Appl. Environ. Microbiol. 1996, 62, 3424–3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brierley, C.L. Biological Processing: Biological Processing of Sulfidic Ores and Concentrates—Integrating Innovations. In Innovative Process Development in Metallurgical Industry; Lakshmanan, V., Roy, R., Ramachandran, V., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Peek, E.; Barnes, A.; Tuzun, A. Nickeliferous pyrrhotite-waste or a resource? Miner. Eng. 2011, 24, 625–637. [Google Scholar] [CrossRef]
- Falagán, C.; Grail, B.M.; Johnson, D.B. New approaches for extracting and recovering metals from tailings. Miner. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Anderson, C.; Napier-Munn, T.; Wills, B. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier Science & Technology: Amsterdam, The Netherlands; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Torma, A.E.; Walden, C.C.; Duncan, D.W.; Branion, R.M.R. The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate. Biotechnol. Bioeng. 1972, 14, 777–786. [Google Scholar] [CrossRef]
- Torma, A.E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. In Advances in Biochemical Engineering; Ghose, T.K., Fiechter, A., Blakebrough, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; Volume 6, pp. 1–37. [Google Scholar] [CrossRef]
- Miller, P.C.; Rhodes, M.K.; Winby, R.; Pinches, A.; Van Staden, P.-J. Commercialization of bioleaching for base-metal extraction. Min. Metall. Explor. 1999, 16, 42–50. [Google Scholar] [CrossRef]
- Rouchalova, D.; Rouchalova, K.; Janakova, I.; Cablik, V.; Janstova, S. Bioleaching of Iron, Copper, Lead, and Zinc from the Sludge Mining Sediment at Different Particle Sizes, pH, and Pulp Density Using Acidithiobacillus ferrooxidans. Minerals 2020, 10, 1013. [Google Scholar] [CrossRef]
- Bosecker, K. Bioleaching: Metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Mahmoud, A.; Cézac, P.; Hoadley, A.F.A.; Contamine, F.; D’Hugues, P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad. 2017, 119, 118–146. [Google Scholar] [CrossRef]
- Blancarte-Zurita, M.A.; Branion, R.M.R.; Lawrence, R.W. Particle Size Effects in the Microbiological Leaching of Sulfide Concentrates by Thiobacillus Ferrooxidans. Biotechnol. Bioeng. 1986, 28, 751–755. [Google Scholar] [CrossRef]
- Torvinen, J. PLS-Liuoksen Ferrianalytiikan Kehittäminen. Oulu University of Applied Sciences. 2015. Available online: http://urn.fi/URN:NBN:fi:amk-201505087053 (accessed on 18 January 2021).
- Bomberg, M.; Mäkinen, J.; Salo, M.; Kinnunen, P. High Diversity in Iron Cycling Microbial Communities in Acidic, Iron-Rich Water of the Pyhäsalmi Mine, Finland. Geofluids 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, J.; Salo, M.; Khoshkhoo, M.; Sundkvist, J.-E.; Kinnunen, P. Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study. Hydrometallurgy 2020, 196, 105418. [Google Scholar] [CrossRef]
- Silverman, M.P.; Lundgren, D.G. Studies on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans. l. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 1959, 77, 642–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- London Metal Exchange. 2020. Available online: https://www.lme.com/ (accessed on 16 December 2020).
- Riekkola-Vanhanen, M.; Heimala, S. Electrochemical control in the biological leaching of sulfide ores. In Biohydrometallurgical Technologies; Torma, A.E., Wey, J.E., Lakshmanan, V.L., Eds.; The Minerals, Metals and Materials Society: Warrendale, PA, USA, 1993; pp. 561–570. [Google Scholar]
- Ghassa, S.; Noaparast, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Boroumand, Z. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy 2017, 171, 362–373. [Google Scholar] [CrossRef]
- Altinkaya, P.; Mäkinen, J.; Kinnunen, P.; Kolehmainen, E.; Haapalainen, M.; Lundström, M. Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching. Miner. Eng. 2018, 129, 47–53. [Google Scholar] [CrossRef]
- Arpalahti, A.; Lundström, M. The leaching behavior of minerals from a pyrrhotite-rich pentlandite ore during heap leaching. Miner. Eng. 2018, 119, 116–125. [Google Scholar] [CrossRef]
- Rawlings, D.E.; Tributsch, H.; Hansford, G.S. Reasons why ’Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 1999, 145, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002, 56, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Babcan, J. Synthesis of jarosite KFe3(SO4)2(OH)6. Geol. Zb. 1971, 22, 299–304. [Google Scholar]
- Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 82, 81–108. [Google Scholar] [CrossRef]
- Hasab, M.G.; Raygan, S.; Rashchi, F. Chloride–hypochlorite leaching of gold from a mechanically activated refractory sulfide concentrate. Hydrometallurgy 2013, 138, 59–64. [Google Scholar] [CrossRef]
Compound | Concentration (g/L) |
---|---|
(NH4)2SO4 | 3.0 |
K2HPO4 | 0.50 |
MgSO4·7H2O | 0.50 |
KCl | 0.10 |
Ca(NO3)2·4H2O | 0.014 |
Experiment | Target pH | Particle Size, d80 < (µm) |
---|---|---|
BR1 | 1.8 ± 0.2 | 19 |
BR2 | 1.5 ± 0.2 | 19 |
BR3 | 1.3 ± 0.2 | 19 |
BR4 | 1.3 ± 0.2 | 19 |
BR5 | 1.3 ± 0.2 | 28 |
BR6 | 1.3 ± 0.2 | 50 |
BR7 | 1.3 ± 0.1 | 150 |
Element | Concentration (wt %) | In-Situ Value (USD/t) |
---|---|---|
Fe | 39.8 | n.a. |
S | 38.4 | n.a. |
sulfide-S * | 37.8 | n.a. |
Si | 2.02 | n.a. |
Ca | 1.02 | n.a. |
Zn | 0.76 | 21 |
Co | 0.70 | 222 |
Cu | 0.53 | 41 |
Mg | 0.52 | n.a. |
Ni | 0.374 | 66 |
Al | 0.167 | n.a. |
As | 0.097 | n.a. |
Mn | 0.0711 | n.a. |
Na | 0.0388 | n.a. |
Mineral | Equation | Concentration (wt %) |
---|---|---|
Pyrite | FeS2 | 49.9 |
Pyrrhotite | Fe1−xS (x = 0 to 0.2) | 31.1 |
Quartz | SiO2 | 10.0 |
Tremolite | Ca2(Mg5.0–4.5Fe2+0.0–0.5)Si8O22(OH)2 | 1.8 |
Chalcopyrite | CuFeS2 | 1.2 |
Sphalerite | (Zn,Fe)S | 1.2 |
Dolomite | CaMg(CO3)2 | 1.0 |
Calcite | CaCO3 | 0.7 |
Linnaeite_polydymite | Co2+Co23+S4 to Ni2+Ni23+S4 | 0.5 |
Plagioclase | NaAlSi3O8–CaAl2Si2O8 | 0.5 |
Pentlandite_Co | (Co,Ni,Fe)9S8 | 0.4 |
Talc | Mg3Si4O10(OH)2 | 0.4 |
Phlogopite | KMg3(AlSi3O10)(F,OH)2 | 0.4 |
Cobaltite | CoAsS | 0.2 |
Pentlandite | (Fe,Ni)9S8 | 0.1 |
K_feldspar | KAlSi3O8 | 0.1 |
Unknown | 0.5 | |
Total | 100.0 |
Milling Time (min) | Particle Size (d80 <µm) | Particle Size (d10 <µm) | Sulfide-S (wt %) | Total-S (wt %) |
---|---|---|---|---|
0 (native) 60 | 150 50.3 | 23.4 | 37.8 | 38.6 |
7.67 | 36.5 | 37.3 | ||
120 | 28.1 | 3.24 | 36.3 | 37.3 |
200 | 19.5 | 1.68 | 35.8 | 37.0 |
Experiment | Acid Consumption g/kg H2SO4 | Base Consumption g/kg CaCO3 |
---|---|---|
BR1 (pH 1.8/19 µm) | 277 | 839 |
BR2 (pH 1.5/19 µm) | 346 | 814 |
BR3 (pH 1.3/19 µm) | 568 | 595 |
BR4 (pH 1.3/19 µm) | 427 | 756 |
BR5 (pH 1.3/28 µm) | 513 | 645 |
BR6 (pH 1.3/50 µm) | 534 | 573 |
BR7 (pH 1.3/150 µm) | 315 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäkinen, J.; Heikola, T.; Salo, M.; Kinnunen, P. The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate. Minerals 2021, 11, 317. https://doi.org/10.3390/min11030317
Mäkinen J, Heikola T, Salo M, Kinnunen P. The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate. Minerals. 2021; 11(3):317. https://doi.org/10.3390/min11030317
Chicago/Turabian StyleMäkinen, Jarno, Tiina Heikola, Marja Salo, and Päivi Kinnunen. 2021. "The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate" Minerals 11, no. 3: 317. https://doi.org/10.3390/min11030317
APA StyleMäkinen, J., Heikola, T., Salo, M., & Kinnunen, P. (2021). The Effects of Milling and pH on Co, Ni, Zn and Cu Bioleaching from Polymetallic Sulfide Concentrate. Minerals, 11(3), 317. https://doi.org/10.3390/min11030317