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Abstract: The equations of state of different phases in the CaSiO3 system (wollastonite, pseudowol-
lastonite, breyite (walstromite), larnite (Ca2SiO4), titanite-structured CaSi2O5 and CaSiO3-perovskite)
are constructed using a thermodynamic model based on the Helmholtz free energy. We used known
experimental measurements of heat capacity, enthalpy, and thermal expansion at zero pressure and
high temperatures, and volume measurements at different pressures and temperatures for calculation
of parameters of equations of state of studied Ca-silicates. The used thermodynamic model has
allowed us to calculate a full set of thermodynamic properties (entropy, heat capacity, bulk moduli,
thermal expansion, Gibbs energy, etc.) of Ca-silicates in a wide range of pressures and temperatures.
The phase diagram of the CaSiO3 system is constructed at pressures up to 20 GPa and temperatures
up to 2000 K and clarifies the phase boundaries of Ca-silicates under upper mantle conditions. The
calculated wollastonite–breyite equilibrium line corresponds to equation P(GPa) = −4.7 × T(K) +
3.14. The calculated density and adiabatic bulk modulus of CaSiO3-perovskite is compared with the
PREM model. The calcium content in the perovskite composition will increase the density of mineral
and it good agree with the density according to the PREM model at the lower mantle region.

Keywords: equation of state; the Helmholtz free energy; thermodynamic properties; CaSiO3; wollas-
tonite; breyite; perovskite; phase transition; diamond; mantle

1. Introduction

The thermodynamic description and phase equilibria in the CaSiO3 system are im-
portant for modern mineralogical research because Ca-silicates are common components
of the Earth’s crust and mantle. The low-pressure CaSiO3 polymorphs (wollastonite and
pseudowollastonite) are rock-forming minerals in the Earth’s crust and constitute cement
substances [1,2], while the high-pressure Ca-silicate phases (breyite (walstromite), larnite,
titanite-structured CaSi2O5 and CaSiO3-perovskite) are stable in the mantle P-T conditions
and detected as solid-phase inclusions in natural diamonds [3–7]. The presence of CaSiO3
phase in diamonds indicates the possibility of transporting the substance from the lower
mantle to the surface in an unchanged form and provides insights into the nature of dia-
mond formation. Thus, the present study will expand the possibility for thermodynamic
modeling of physicochemical processes in the Earth’s deep mantle.

It is well known that calcium metasilicate (CaSiO3) has a number of structural mod-
ifications at relevant pressures and temperatures. Wollastonite structure is stable under
ambient conditions and transforms to pseudowollastonite phase at high temperatures
above ~1400 K [8]. The transition of wollastonite to walstromite-structured CaSiO3 is
detected at 3 GPa and 1173 K [9]. The name breyite for this phase is approved by IMA
in 2018 [10], therefore it is used in the text below. The wollastonite–breyite equilibrium
was studied by different authors [1,11,12]. The subsequent decomposition of breyite to
association of larnite (Ca2SiO4) and titanite-structured CaSi2O5 was determined at higher
pressures by Kanazaki’s study [13]. The CaSiO3-perovskite is formed at pressure ~14 GPa
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from (larnite + CaSi2O5) assemblage [14] and retains its structure until lower mantle condi-
tions. The phase diagram of the CaSiO3 is well studied at low pressures up to 3–4 GPa and
high temperatures by experimental methods in [11,15]. In the present calculation, we also
used the phase diagram of the CaSiO3 system, which was proposed in [1,11].

The thermodynamics of Ca-silicates can be calculated from their equations of state
(EoS). The equations of state of wollastonite, pseudowollastonite, breyite, larnite (Ca2SiO4),
titanite-structured CaSi2O5 and CaSiO3-perovskite can be constructed based on the thermo-
dynamic model, which was successfully used in our previous studies for the MgSiO3–MgO
system [16,17]. We use a thermodynamic model based on the Helmholtz free energy,
which allows us to calculate a full set of thermodynamic properties (entropy, heat capac-
ity, bulk moduli, thermal expansion, Gibbs energy, etc.) at given P-T or V-T parameters.
The proposed thermodynamic model is based on optimization of different experimental
measurements (dilatometric, X-ray diffraction, ultrasonic interferometry, etc.) and theoreti-
cal data (calculations and reference) by analogy with our studies for metals [18–20] and
compounds [21,22]. The proposed equations of state of studied Ca-silicates are constructed
with a small number of fitting parameters. There are also other different forms of EoSes,
which contain a small number of parameters and reliably describe the properties of metals
and mixtures [23–26], but in this study, we will use our model that previously showed its
versatility.

2. Thermodynamic Model

The equations of state of wollastonite, pseudowollastonite, breyite, larnite (Ca2SiO4),
titanite-structured CaSi2O5 and CaSiO3-perovskite are constructed using the thermody-
namic model based on the Helmholtz free energy. According to the proposed thermo-
dynamic model, the Helmholtz free energy can be represented in general form as the
sum [27]:

F(V, T) = U0 + FT0(V) + Fth(V, T) + Fanh(V, T), (1)

where U0 is the reference energy, FT0 is the potential part of the Helmholtz free energy at
the reference isotherm T0 = 298.15 K, which depends only on volume; Fth is the thermal
part of the Helmholtz free energy, which depends on volume and temperature; Fanh is
an additional contribution to the Helmholtz free energy, which connects with intrinsic
anharmonicity, as a function of temperature and volume.

The potential part of the Helmholtz free energy from Equation (1) is determined by the
integration of the equation of pressure at the reference isotherm. Many different equations
are known to express the equation of pressure at the reference isotherm, each of which has
its advantages and limitations (review in [17]). We use the Kunc equation [28], which is
flexible in calculations because it contains parameter k:

PT0(V) = 3K0X−k(1− X) exp[η(1− X)], (2)

where X = (V/V0)1/3, η = 1.5K′ − k + 0.5, K0 is the isothermal bulk modulus under ambient
conditions (P0 = 1 bar = 10−4 GPa, T0 = 298.15 K), K′ = ∂K0/∂P0 and k is an additional
parameter.

When k = 2, the Kunc equation corresponds to the Vinet equation [29], which is often
used in calculation of equations of state of metals in solid state physics. The values of k = 5
and k > 5 transform the Kunc equation into one of the forms of the Holzapfel equation
(HO2) [30] and into the Birch–Murnaghan equation [31], respectively. We use k = 5 for all
Ca-silicate phases in the present study.

Differentiating Equation (2) with respect to volume at constant temperature, we
determine the isothermal bulk modulus at the reference isotherm and calculate of its
derivation by pressure:

KT0(V) = −V
(

∂PT0

∂V

)
T
= K0X−k exp[η(1− X)][X + (1− X)(ηX + k)], (3)
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K′(V) =

(
∂KT0

∂PT0

)
=

1
3

[
k + ηX +

kX + 2X2η − X(1 + η)

X + (1− X)(ηX + k)

]
. (4)

The thermal part of the Helmholtz free energy from Equation (1) can be calculated
by Debye, Einstein, Bose–Einstein models, or their combinations [32,33]. A more simple
approach is to use the Einstein model with two characteristic temperatures, which makes it
possible to good approximate of the heat capacity in the temperature range from ~100 K to
the melting point of the substance:

Fth(V, T) = ∑
i=1,2

miRT ln
(

1− exp
−Θi

T

)
, (5)

where mi is proportionality factor, which is calculated from the total number of atoms in
the compound (i = 1, 2), m1 + m2 = 3n, n is the number of atoms in a chemical formula
of the compound, Θi is the Einstein characteristic temperature, which depends only on
volume, and R is the gas constant (R = 8.31451 Jmol−1K−1).

The volume dependence of characteristic temperature in Equation (5) is determined
by Al’tshuler equation [34]:

Θi = Θ0ix−γ∞ exp
[

γ0 − γ∞

β

(
1− xβ

)]
, (6)

where Θ0i is the characteristic temperature under ambient conditions (i = 1, 2), x = V/V0,
γ0 is the Grüneisen parameter at ambient conditions, γ∞ is the Grüneisen parameter at
infinite compression, when x→ 0, and β is an additional fitting parameter.

The advantage of Equation (6) is that it can be explicitly differentiated in the simple
form to determine the Grüneisen parameter:

γ = −
(

∂ln Θ
∂ ln V

)
T
= γ∞ + (γ0 − γ∞)xβ, (7)

where Θ is the characteristic temperature in general case.
We assume that the Grüneisen parameter will be the same for both characteristic tem-

peratures (Θ1 and Θ2) in Equation (6). In addition, if γ∞ = 0, then Equation (7) transforms
to the classical form γ = γ0xβ.

Differentiating Equation (5) with respect to temperature at constant volume, we
determine entropy and then calculate internal energy:

S = −
(

∂Fth
∂T

)
V
= ∑

i=1,2
3nR

[
− ln

(
1− exp

−Θi
T

)
+

Θi/T
exp(Θi/T)− 1

]
, (8)

Eth = Fth + TS = ∑
i=1,2

3nR
[

Θi
exp(Θi/T)− 1

]
. (9)

Differentiating Equation (5) with respect to volume at constant temperature, we obtain
the thermal part of pressure:

Pth = −
(

∂Fth
∂V

)
T
= ∑

i=1,2
3nR

γ

V

[
Θi

exp(Θi/T)− 1

]
=

γ

V
Eth. (10)

Differentiating Equation (9) with respect to temperature at constant volume and
Equation (10) with respect to volume at constant temperature, we obtain the isochoric heat
capacity and thermal part of isothermal bulk modulus:

CV =

(
∂Eth
∂T

)
V
= ∑

i=1,2
3nR

(
Θi
T

)2 exp(Θi/T)

(exp(Θi/T)− 1)2 , (11)
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KTth = −V
(

∂Pth
∂V

)
T
= Pth(1 + γ− q)− γ2CV

T
V

, (12)

where q is additional parameter, which is calculated from Equation (7) according to [34].
Differentiating Equation (10) with respect to temperature at constant volume, we

determine the slope:

(∂Pth/∂T)V =
γ

V
CV . (13)

The additional contribution of the intrinsic anharmonicity to the Helmholtz free energy
in Equation (1) can be expressed by classical equation from [27]:

Fanh(V, T) = −3
2

nRaT2 = −3
2

nRa0xmT2. (14)

The contribution of the intrinsic anharmonicity to entropy, internal energy, thermal
part of pressure, isochoric heat capacity, thermal part of isothermal bulk modulus and
slope can be obtained by analogy with Equations (8)–(13), respectively:

Sanh = 3nRaT,

Eanh = 3
2 nRaT2,

CVanh = 3nRaT,

Panh = 3
2 nRa m

V T2 = m
V Eanh,

KTanh = Panh(1−m),

(∂Panh/∂T)V = m
V CVanh ,

(15)

where a = a0xm, a0 is the intrinsic anharmonicity parameter and m is the anharmonic
analogue of the Grüneisen parameter.

The Equation (10) for the thermal part of pressure and equation for anharmonicity
part of pressure (Panh in Equation (15)), as can be seen, are very similar. The Grüneisen
parameter in Equation (10) is the coefficient of proportionality between pressure and
internal energy, just like the parameter m in Equation (15). Therefore, we use this name for
the parameter m. The parameters a0 and m are fitting parameters in the general cause, but
we use the fixed value for m (m = 1) in the present study.

The full equations of pressure and isothermal bulk modulus are calculated as the sum
of potential, thermal, and anharmonicity components: P = PT0(V) + Pth(V,T) + Panh(V,T)
and KT = KT0(V) + KTth(V,T) + KTanh(V,T). Further, it is easy to calculate the coefficient of
thermal expansion α = (∂Pth/∂T)V / KT, the heat capacity at constant pressure CP = CV +
α2TVKT, the adiabatic bulk modulus KS = KT + VT(αKT)2/CV, and the thermodynamic
Grüneisen parameter γth = αVKT/CV = αVKS/CP. The enthalpy and Gibbs energy are
determined from the linear relations H = Eth + PV − P0V0 and G = F(V,T) + PV − P0V0,
respectively. The parameter U0 in Equation (1) define the Gibbs energy under ambient
conditions, which also can be found from the simple relation: U0 = ∆Gf,298 = ∆Hf,298 −
S298T0, where ∆Hf,298 and S298 are enthalpy and entropy at ambient conditions, respectively.

Thus, Equations (1)–(15) contain a group of fixed parameters (V0, k, mi) and a group
of fitting parameters (K0, K’, Θ0i, γ0, γ∞, β, a0, m) derived by least squares method in Excel
worksheet. Using the proposed approach, it is easy to calculate a full set of thermodynamic
functions of Ca-silicates that depend on temperature, pressure, and volume.

3. Results

The equations of state of studied Ca-silicates were constructed using thermodynamic
model described above. Table 1 shows parameters of equations of state for wollastonite
(Wol), pseudowollastonite (PsWol), breyite (Brt), larnite (β-Lrn), titanite-structured CaSi2O5
(Ca-Tit) and CaSiO3-perovskite (Ca-Pv) obtained by simultaneous optimization of known
thermochemical measurements of the heat capacity, enthalpy, thermal expansion, and
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numerous P-V-T data including modern X-ray diffraction measurements for the Ca-silicate
minerals. The optimization procedure is described in detail in our previous works [16,20,33].
In the present study, we also offer the open working MS Excel spreadsheets for each of the
studied Ca-silicates (Files S1–S6 in Supplementary Material). Detailed instructions and
descriptions of worksheets are provided in [17,19]. Therefore, below we will focus on the
features of calculating of equation of state for each of the phases.

Table 1. Parameters of equations of state of Ca-silicates at ambient conditions.

Parameters Wol
CaSiO3

PsWol
CaSiO3

Brt CaSiO3
β-Lrn

Ca2SiO4

Ca-Tit
CaSi2O5

Ca-Pv
CaSiO3
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0, kJmol−1 −1658.007 −1655.531 −1651.400 −2344.025 −2524.000 −1567.400
V0, cm3mol−1 39.9 40.3 37.78 51.88 48.19 27.403

K0, GPa 81.5 86 78.6 105 178 239
K’ 3.28 3.8 4 6.27 4 4.13
k 5 5 5 5 5 5

Θ01, K 966 1039 952 838 975 935
m1 7.5 7.5 7.5 10.5 12 7.5

Θ02, K 270 244 280 257 370 388
m2 7.5 7.5 7.5 10.5 12 7.5
γ0 1 1 0.745 1.263 1.3 1.913
γ∞ 0 0 0 0 0 0
β 1 1 1 1.041 1 0.486

a0, 10−6 K−1 20.8
m 1

Wollastonite (Wol). A review of the heat capacity measurements of wollastonite and
other CaSiO3 phases can be found in [35]. The most reliable measurements we found of
molar volume of wollastonite as a function of temperature are published in [36]. The only
known measurement of the volume of wollastonite as a function of pressure in [37] shows
the following values of K0 = 54.7 GPa and ∂K/∂P = 23.5. However, at these values, our
equation of state of wollastonite becomes unstable at temperatures above 700 K (this is
easily verified by substituting the parameters to the present Excel file for wollastonite).
Therefore, we use measurements of volume, depending on pressure for pseudowollastonite
from [38]. The simultaneous optimization of known experimental data for wollastonite
at γ0 = 1, β = 1 and γ∞ = 0 determine the obtained parameters of its equation of state
(Table 1). Figure 1a shows a comparison of the calculated isobaric (CP) and isochoric (CV)
heat capacity of wollastonite with measurements from [39–42]; Figure 1c shows calculated
molar volume at reference pressure (P0 = 1 bar = 10−4 GPa) with Swamy’s data [36]; and
Figure 1e shows calculated compressibility as a function of pressure with measurements
from [37]. It can be seen that calculated data are in good agreement with different reference
and experimental data.

The calculated thermodynamic functions of wollastonite at different temperatures and
pressures (0.0001 and 3 GPa) are presented in Table 2. The last column shows the Gibbs
energy at given P-T parameters. The parameter U0 is calculated from the enthalpy at ambient
conditions ∆Hf,298 = −1633.750 kJmol−1 from [43] and entropy S298 = 81.358 Jmol−1 K−1

at ambient conditions from Table 2, then U0 = ∆Gf,298 = −1,633,750 − 81.358 × 298.15 =
−1,658,007 Jmol−1. The same scheme was used for calculation of the Gibbs energy for Mg-
silicates in the Mg2SiO4 system [16]. We have shown calculation thermodynamic functions for
wollastonite in the Table 2. Further tabulated values of calculated thermodynamic functions
for other Ca-silicates are presented in the Supplementary Material (Tables S1–S5).

Table 2. Thermodynamic functions of wollastonite at different pressures and temperatures.

P, GPa T, K V, cm3 mol−1 α × 106, K−1 S, Jmol−1 K−1 CP, Jmol−1 K−1 CV, Jmol−1 K−1 KT, GPa KS, GPa ∆G, kJmol−1

0.0001 298.15 39.900 26.458 81.358 86.715 86.037 81.50 82.14 −1658.007
0.0001 500 40.147 33.714 132.366 108.976 107.159 79.66 81.01 −1679.826
0.0001 1000 40.907 40.288 214.108 124.900 119.946 74.62 77.70 −1768.341
0.0001 1398 41.596 43.519 256.827 130.068 122.310 70.44 74.91 −1862.474
0.0001 2000 42.763 48.446 304.482 136.431 123.596 63.94 70.58 −2032.169

3 298.15 38.536 23.175 78.447 84.890 84.327 91.20 91.81 −1540.406
3 500 38.746 29.732 128.623 107.621 106.089 89.43 90.72 −1561.542
3 1000 39.393 35.446 209.562 123.771 119.586 84.55 87.51 −1647.956
3 1500 40.130 38.619 260.949 129.599 122.464 79.48 84.11 −1766.352
3 2000 40.944 41.668 298.850 134.050 123.490 74.28 80.63 −1906.702
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Figure 1. The calculated heat capacity (a,b), molar volume at reference pressure (c,d) and compressibility as a function of
pressure (e,f) of wollastonite (Wol) and pseudowollastonite (PsWol) in comparison with different reference and experimental
data from [36,37,39–42] for Wol and from [38,42,44–47] for PsWol.

Pseudowollastonite (PsWol). As follows from the review in [2], wollastonite at ambient
conditions has a triclinic structure (space group P1). The crystal structure of a synthetic
two-layer polytype of pseudowollastonite was studied using single-crystal X-ray diffraction
data at pressures up to 10 GPa by Yang and Prewitt [38]. It is determined that such a poly-
type has monoclinic structure (space group C2/c) and molar volume at ambient condition
(V0 = 796.9 A3 = 39.99 cm3mol−1) coincides with the volume of wollastonite (Table 2). The
molar volume of pseudowollastonite was studied at temperature range 307–1793 K by Richet
et al. [44]. There are two-, four-, and six-layer polytypes of CaSiO3-pseudowollastonite in this
temperature range. The parameters of K0 and K’ for our calculation were extracted from [38];
parameters of Θ01 and Θ02 are calculated from the heat capacity and relative enthalpy mea-
surements from [42,45–47]. The parameter U0 is calculated from the condition of equality of
the Gibbs energy of wollastonite and pseudowollastonite at T = 1398 K and P = 0.0001 GPa.
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The difference of calculated entropy at 1398 K for wollastonite–pseudowollastonite transi-
tion is ∆S1398 = 1.586 Jmol−1K−1 (see Table 2 and Table S1), while in Richet’s study, it is
∆S1398 = 4.2 ± 2 Jmol−1K−1 [42]. However, taking into account ∆V1398 = 0.3036 cm3mol−1,
we obtain the slope ∂P/∂T = ∆S/∆V = 52.2 × 10−4 GPa/K, which is in good agreement with
data from [11,48].

The calculated thermodynamic functions of pseudowollastonite are compared with dif-
ferent reference and experimental data [38,44] by analogy with wollastonite on Figure 1b,d,f.
The tabulated values of calculated thermodynamic functions of pseudowollastonite as
a function of temperature at different pressures (0.0001 and 3 GPa) is presented in the
Supplementary Material (Table S1).

Breyite (Brt). Regarding of breyite, in the literature, we can find the different names
of its structural isomorphs (Ca-walstromite, wollastonite-II, walstromite-like CaSiO3(III)).
The crystal structures of breyite (or walstromite), CaSiO3-walstromite, and wollastonite-II
are very similar. This issue is discussed in detail by Joswig et al. [49]. Breyite probably
crystallizes in the triclinic structure (space group P1) and it is stable in the pressure range
from ~3 GPa and above, since the remaining pressure of investigated inclusions of breyite
in natural diamonds [3,4] was also estimated to be 3 GPa. The direct P-V-T measurements
of breyite are carried out in [5,50]. The parameters of V0, K0 and K’ are taken from Anzolini
et al. [5]. The parameter U0 is calculated from the phase transition of wollastonite–breyite.
The calculated volume of breyite as a function of temperature and pressure is compared
with experimental data on Figure 2a,b. The tabulated values of calculated thermodynamic
functions of breyite depending on temperature at different pressures (0.0001, 5 and 10 GPa)
is presented in the Supplementary Material (Table S2).
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Figure 2. The calculated volume of breyite as a function of temperature (a) and pressure (b) is compared with experimental
data from [5,50].

Larnite (β-Lrn). As temperature increases, the composition of Ca2SiO4 can form a
series of polymorphs (γ-, β-, α′L-, α’H- and α). The review of crystal structures of Ca2SiO4
is presented for example in [51,52]. The β-larnite is formed as metastable monoclinic phase
(space group P21/n11) in the stability field of γ-Ca2SiO4 by its cooling. We considered here
only the beta modification, which is typical for natural larnite [53]. Larnite (β phase) has
a wide stability field at high pressures and temperatures; therefore, this phase is used in
the present study. The parameter V0 is taken from Remy et al. [51], and other parameters
(K0, K’, Θ0i, γ0, γ∞ and β) are calculated from optimization of experimental measurements
of heat capacity and P-V-T data from [51,54–57]. The parameter U0 is calculated from
the enthalpy at ambient conditions ∆Hf,298 = −2307.04 kJmol−1 from [43] and entropy at
ambient conditions S298 = 124.047 Jmol−1K−1 from Table S3 (Supplementary Material). The
other tabulated values of calculated thermodynamic functions of larnite depending on
temperature at different pressures (0.0001, 10 and 15 GPa) is presented also in Table S3.
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The calculated volume of larnite as a function of pressure and temperature is compared
with experimental data on Figure 3a,b.

1 

 

 
Figure 3. The calculated volume of larnite (β phase) as a function of temperature (a) and pressure (b) is compared with
experimental data from [51,56,57].

Titanite-structured CaSi2O5 (Ca-Tit). The titanite-structured CaSi2O5 phase is iden-
tified by in situ XRD analyses in natural diamonds from Guinea and Brazil [3–5], but
thermochemical data for this phase are not available. Therefore, the present equation of
state of titanite-structured CaSi2O5 (space group C2/c) is constructed on the values of pa-
rameters of V0, K0 and K’ from [58], and other parameters (Θ0i, γ0, γ∞ and β) are calculated
from optimization of experimental data from [2,58]. The parameter U0 for Ca-titanite is
calculated from values of enthalpy and entropy at ambient conditions with analogy for
wollastonite and larnite calculations. The tabulated values of calculated thermodynamic
functions of titanite-structure CaSi2O5 as a function of temperature at different pressures
(0.0001, 10 and 15 GPa) is presented in the Supplementary Material (Table S4).

Perovskite (Ca-Pv). CaSiO3-perovskite is considered as the one of the main Ca-
bearing phase in the Earth’s lower mantle [59]. Therefore, findings of Ca-perovskite
in natural diamond [6] may explain the mechanisms of diamond formation in general.
The question of nature of “super-deep” diamond is discussed widely; however, the aim
of this study is to reliably calculate the thermodynamic functions of CaSiO3-perovskite
in a wide range of pressures and temperatures. CaSiO3-perovskite is stabilized in the
cubic structure (space group Pm3m) at temperatures above 1000 K and pressures above
11–16 GPa, according to [1]. At low temperatures up to 500 K and high pressures up
to 156 GPa, the CaSiO3-perovskite has a distorted cubic structure, which is identified
in [60,61] as tetragonal modification (space group I4/mcm). The direct measurements of
heat capacity and bulk modulus as a function of temperature at ambient pressure for cubic
Ca-perovskite are not available [62]; therefore, all parameters (K0, K’, Θ0i, γ0, γ∞ and β) for
proposed equation of state were calculated by authors. However, numerous experimental
measurements of molar volume of Ca-perovskite at different pressures and temperatures
are known (Table 3). The proposed equation of state of CaSiO3-perovskite is constructed
on the modern P-V-T measurement from [60,61,63] and simultaneous sound velocities and
density measurements at pressures up to 23 GPa and temperatures up to 1700 K from [64].
The pressure measurements in [63] were recalculated based on the equation of state of Pt
from [65]; the pressure from [60] was calculated using a self-consistent pressure scale of Pt
from [66]; and pressure from [64] was monitored during the experiment by the unit-cell
volume of NaCl [67].
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Table 3. Direct experimental measurements of molar volume of CaSiO3-perovskite.

Pressure Range, GPa Temperature Range, K Method Reference

0–134 300 XRD [68]
16.8–108 300 XRD [69]

28–62 300 XRD [61]
0.59–13 301–1600 XRD [70]
18–96 1238–2419 XRD [71]

51–130 700–2300 XRD [63]
21.2–156 1200–2600 XRD [60]

12–23 700–1700 XRD [64]

The differences in measurements of volume in Table 3 are significant, so the proposed
equation of state of Ca-perovskite here is important. Figure 4a,b shows the deviations of the
experimental measured pressure in [60,63] and calculated pressure from the proposed equa-
tion of state. It can be seen that the most differences are observed at pressure over 100 GPa.
Figure 5a,b shows a difference between calculated pressure and adiabatic bulk modulus
and experimental data from [64]. The tabulated values of calculated thermodynamic func-
tions of cubic CaSiO3-perovskite as a function of temperature at different pressures (0.0001,
10, 15 and 100 GPa) are presented in the Supplementary Material (Table S5).
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4. Discussion

The proposed equations of state of wollastonite, pseudowollastonite, breyite (wal-
stromite), larnite, titanite-structured CaSi2O5 and CaSiO3-perovskite allow us to calculate
the phase diagram of the CaSiO3 system (Figure 6). The wollastonite–pseudowollastonite
equilibrium corresponds to the data from [11,48], which were used for calibration of the
Gibbs energy of pseudowollastonite. At a pressure of about 3 GPa and temperature of
about 1100 K wollastonite transforms to breyite (walstromite). The Gibbs energy of breyite
is calibrated based on measurements from [11,15]. The calculated wollastonite–breyite
equilibrium line coincides with the line P(GPa) = −4.7 × T(K) + 3.14, that was recom-
mended by Essene [11] (Figure 6). At higher pressures, breyite transforms to the two-phase
assembly of larnite (Ca2SiO4) and CaSi2O5 [1]. Based on this phase transition, the sum of
the Gibbs energy of both phases is calculated. The phase boundary of breyite–(larnite +
CaSi2O5) is calculated from equation 3Brt = β-Lrn + CaSi2O5 [12,57], using equilibrium of
the Gibbs energy of breyite, larnite and Ca-titanite. After that, we can estimate the Gibbs
energy of Ca-perovskite and calculate the line of phase transition from equation β-Lrn +
CaSi2O5 = 3Ca-Pv [12,57]. It should be noted that the position of the calculated equilibrium
lines (breyite–(larnite + CaSi2O5) and (larnite + CaSi2O5)–Ca-perovskite) depends entirely
on the choice of the primary experimental data, which have a very significant scatter (see
Figure 6). We performed a calibration of the Gibbs energy of Ca-perovskite based on the
thermochemical data from [12], because we consider these data to be the most reliable.
The stability field of high-pressure Ca-silicates were studied by [71,72] and significant
deviations were determined. Thus, the obtained phase diagram of the CaSiO3 system is
based on modern P-V-T measurements for Ca-silicates and clarifies the phase boundaries
under upper mantle conditions at the depth up to ~600 km.
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There are many first-principles calculations based on density functional theory (DFT)
for CaSiO3-perovskite [73–76], however some of these were made at zero temperature [75,76].
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The equation of state of CaSiO3-perovskite based on ab initio molecular dynamic (AIMD)
simulations was constructed in [74]. The authors believe that tetragonal structure of Ca-
perovskite is stable at temperature range 1000–4000 K and pressure range 15–130 GPa.
However, this assumption does not agree well with the melting line calculations in the
CaSiO3 system (see Figure 7). First-principle molecular dynamics calculations to investigate
the structure of Ca-perovskite at high temperatures and pressures were made in [77]. The
cubic structure of CaSiO3-perovskite was found to be stable at temperatures higher 1000 K
and at all pressures according to [77]. The phase boundaries in Ca-perovskite based on LDA
and GGA approximations were calculated by Stixrude et al. [73]. The location of the phase
transition from tetragonal to cubic structure in Ca-perovskite is shown in Figure 7. The
gray area indicates the stability field of the tetragonal structure of Ca-perovskite according
to [73,77].
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The melting line in the CaSiO3 system was studied experimentally at pressure up to
58 GPa in [1,78,79] and based on first-principles calculations in [80,81]. Figure 7 shows
the comparison of the experimental data and different calculations. As can be seen, the
experimental data from [79] are in good agreement with calculations [80,81] at the temper-
ature range 2750–3500 K and at the pressure range 15–30 GPa. The melting line from [78]
is lower than other estimates and difference increases at high pressures. The melting
of CaSiO3-perovskite is predicted in the range of very high temperatures and pressures
up to 6400 K and 300 GPa, respectively, according to the recent study [81]. The melting
temperature of CaSiO3-perovskite significantly increases with pressure and is higher than
that of MgSiO3-perovskite.

The proposed equation of state of Ca-perovskite is of great interest for deep mineralogy.
The thermodynamic parameters of the Earth’s lower mantle can be estimated using the
equation of state of Ca-perovskite. Table 4 shows the parameters of the Earth’s lower
mantle according to the PREM model (Preliminary Reference Earth Model) [82], where
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temperature is calculated from [83]. We calculated the density and adiabatic bulk modulus
of CaSiO3-perovskite at these P-T parameters (from Table 4) and compared it with the
PREM model and with the density and adiabatic bulk modulus of MgSiO3-perovskite
from our previous study [16] (Figure 8). It can be seen that the density of Ca-perovskite is
higher than the density of Mg-perovskite by about 0.1–0.15 gcm−3 and almost coincides
with the density according to the PREM model (Figure 8a). The adiabatic bulk moduli
of Ca-perovskite and Mg-perovskite differs slightly. However, with increasing pressure,
adiabatic bulk modulus of CaSiO3-perovskite exceeds the PREM model by 40 GPa at
pressures of 120–130 GPa (Figure 8b). Moreover, we added the first-principle calculated
data for the density and adiabatic bulk modulus of Ca-perovskite according to Li et al. [74].
The calculated density from [74] and calculated density from our equation of state for
CaSiO3-perovskite are very similar, especially in the high pressure range above 80 GPa
(Figure 8a). The calculated values of the adiabatic bulk modulus are in less agreement
(Figure 8b).

Table 4. Density and adiabatic bulk modulus of cubic CaSiO3-perovskite at temperature, pressure,
and depth of the lower mantle from the Preliminary Reference Earth Model (PREM) model.

Depth, km P, GPa T, K Density, gcm−3 Ks, GPa

2891 135.75 3739 5.483 686.56
2771 128.71 2838 5.499 673.01
2741 126.97 2740 5.492 668.35
2571 117.35 2668 5.412 637.46
2371 106.39 2596 5.317 601.82
2171 95.76 2525 5.220 566.86
1971 85.43 2452 5.122 532.51
1771 75.36 2379 5.022 498.60
1571 65.52 2302 4.920 465.04
1371 55.9 2227 4.814 431.71
1171 46.46 2144 4.705 398.53
971 37.29 2060 4.592 365.70
771 28.29 1974 4.474 332.80
670 23.83 1931 4.412 316.19
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Thus, the obtained results of the present study can be used to interpret of the phase
and seismic boundaries in the Earth’s upper mantle. Since calcium is one of the main
components of the Earth’s mantle, it has its influence on the location of the observed seismic
boundaries. At a depth of about ~350 km, CaSiO3 phase is contained as a component
of clinopyroxene minerals, whereas below 350 km, it is concentrated as a component of
complex garnet solid solutions (majorite garnet) [9,59]. The phase of CaSiO3-perovskite is
stabilized at increasing pressure and is considered one of the main minerals of the lower
mantle, comprising up to 7 wt.% of peridotitic mantle, according to the modern geophysical
data [84]. There is the view that the transition of the CaSiO3 component in the garnet solid
solution to form denser of Ca-perovskite is associated with seismic discontinuity at a depth
of 520 km [59]. The phase transition of wadsleyite–ringwoodite in the Mg2SiO4 system also
occurs at this depth at pressure 17–18 GPa, but it is characterized by a slight increase in
density and adiabatic bulk modulus as was calculated and shown in our earlier study [16].
Accordingly, the phase transition in olivine cannot fully explain the seismic boundary at
520 km. Moreover, the olivine–wadsleyite transition at the depth 410 km at 14–15 GPa
calculated in [16] corresponded to a temperature of ~1700 K [16], but according to the
estimations in [85], the temperature in this depth is 1790 to 1830 K. The calculated phase
transition of (larnite + CaSi2O5)–Ca-perovskite occurs at a depth of 410 km at temperatures
1700–1800 K (Figure 6). Although the phase transitions in the CaSiO3 system cannot be
directly responsible for the seismic boundaries in the upper mantle, they have an effect on
the location of discontinuities and point to the role of calcium-containing minerals in the
upper mantle.

It is well known that magnesium is the most abundant element in mantle minerals,
but the ratios of main elements Mg, Fe, Ca, and Al remain an open question. The calculated
density of MgSiO3-perovskite from the mantle geotherm [83] is too low with respect to the
PREM model. However, the calculated density of CaSiO3-perovskite is in good agreement
with the density by the PREM model (Figure 8a). The calcium content in the perovskite
composition will increase the density of mineral, as well as the presence of iron. Such a
composition will obviously be close to the real composition of the mantle material. The
obtained thermodynamic data in the present study can be used in the calculation of silicate
mixtures of different compositions, as was done for example in [86]. Thus, the possibilities
of thermodynamic modeling for future calculations and investigation of deep mineralogy
in the area that is not available for direct experimentation are opened.

5. Conclusions

We have constructed the equations of state of wollastonite, pseudowollastonite,
breyite, larnite (Ca2SiO4), titanite-structured CaSi2O5 and CaSiO3-perovskite using a ther-
modynamic model based on the Helmholtz free energy. The proposed equations of state are
developed based on optimization of different experimental measurements at ambient con-
ditions and to a high temperatures and pressures. The full set of thermodynamic properties
(volume, thermal expansion, entropy, isobaric and isochoric heat capacity, bulk moduli,
Gibbs energy, etc.) of studied Ca-silicates is calculated at given pressures and temperatures
and is presented in the form of Tables to the present article. The calculated properties are
compared with reference and experimental data. It is shown that the proposed equations
of state reliably describe properties of studied Ca-silicates in a wide range of pressures and
temperatures.

The phase diagram of the CaSiO3 system is constructed at pressures up to 20 GPa and
temperatures up to 2000 K. The calculated phase diagram are compared with experimental
data for different phases and clarifies the phase boundaries in the CaSiO3 system under
upper mantle conditions. The phase transition of majorite garnet, which contains CaSiO3
phase in its composition, to Ca-perovskite is associated with seismic boundary at the depth
520 km; therefore, it points to the role of calcium-containing minerals in the upper mantle
region. The calculated density of CaSiO3-perovskite is in good agreement with the density
according to the PREM model at the lower-mantle region. The calculated thermodynamic
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data for Ca-perovskite open the possibilities of thermodynamic modeling at high pressures
and temperatures.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-163
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S4: MS Excel spreadsheet for larnite (Lrn.xls), File S5: MS Excel spreadsheet for titanite-structured
CaSi2O5 (CaTit.xls), File S6: MS Excel spreadsheet for CaSiO3-perovskite (CaPv.xls); Table S1: Ther-
modynamic functions of pseudowollastonite at different pressures and temperatures, Table S2: Ther-
modynamic functions of breyite at different pressures and temperatures, Table S3: Thermodynamic
functions of larnite (Ca2SiO4) at different pressures and temperatures, Table S4: Thermodynamic
functions of titanite-structured CaSi2O5 at different pressures and temperatures, Table S5: Thermody-
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