Origin of Ru-Os Sulfides from the Verkh-Neivinsk Ophiolite Massif (Middle Urals, Russia): Compositional and S-Os Isotope Evidence
Abstract
:1. Introduction
2. Geological Characteristics of Samples
3. Analytical Techniques
4. Results
4.1. Compositional Characteristics of Ru-Os Sulfides, Os-Rich Alloys, and High-Magnesian Olivine from Primary PGM Assemblage
4.2. Sulfur Isotope Data
4.3. Osmium Isotope Data
5. Discussion
6. Conclusions
- A multi-technique approach, including the use of in-situ analytical methods for geochemical and isotopic analysis, provided a new set of mineralogical and S-Os isotope-geochemical constraints on the origin of detrital Ru-Os sulfides from primary PGM assemblage of the Verkh-Neivinsk ophiolite-type massif.
- Ru-Os sulfides are recognized within two morphological types, including (i) solitary Ru-Os sulfide grains that have sizes from 0.5 to 1.5 mm and a wide compositional range for the laurite (RuS2)–erlichmanite (OsS2) solid solution series, and (ii) tiny euhedral inclusions of laurite hosted by Os-Ir(Ru) alloys. The primary nature of Ru-Os sulfides is supported by the occurrence of euhedral inclusions of high-Mg olivine (Fo92–94) that fall within the compositional range of mantle (primitive) olivine (Fo 88–93).
- The δ34S values in solitary Ru-Os sulfide grains of type 1 have a narrow range from 0.3 to 2.8‰, with a mean of 1.82 ± 0.83‰ (n = 14), corresponding, within an error, to that for laurite inclusions of type 2 characterized by δ34S variations ranging from 1.5 to 3.3‰ and a slightly higher δ34S mean of 2.66 ± 0.73‰ (n = 5). The similar sub-chondritic δ34S values reported for the detrital Ru-Os sulfides of the oceanic mantle origin [24,51] is consistent with derivation of sulfur from a sub-chondritic source.
- The osmium isotope results identified two distinct sources of HSE for Ru-Os sulfides. A considerable range of the sub-chondritic 187Os/188Os values in Ru-Os sulfides (0.1173–0.1278, n = 18 [50], this study) and Ru-Os-Ir alloys (0.1162–0.1227, n = 34 [49], this study) clearly indicate a common near-chondritic source for the HSE.
- The osmium isotope data display a restricted range of sub-chondritic 187Os/188Os values for intimately intergrown laurite type 2 and Os-rich alloy pairs that form the primary PGM assemblage. This is consistent with similar findings for PGM from Witwatersrand, South Africa [42], Shetland, Scotland [35], and Hochgrossen, Austria [49].
- A single value of 187Os/188Os = 0.13459 ± 0.00002 identified in the erlichmanite indicated derivation from the source that evolved with a long-term supra-chondritic Re/Os. This feature may be interpreted as evidence of a radiogenic crustal component, which was introduced during a subduction-related event or an indication of an enriched mantle source. Consequently, supra-chondritic 187Os/188Os values (>0.12810) may indicate derivation from a distinct source other than residual dunite–harzburgite sequences of an ophiolite complex.
- With the exception of two outliers (samples 160 and 161), the obtained TRD ages of Ru-Os sulfides at Verkh-Neivinsk imply that the mantle domain under Middle Urals experienced melt extraction between 1525 and 435 Ma, and they record much older melting events than would be expected from a single-melting model of un-depleted mantle around 440 Ma. We suggest that variations in the TRD ages of the Verkh-Neivinsk PGM point to prolonged melt-extraction processes and likely multi-stage evolution of HSE within the upper mantle.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Augé, T. Platinum-group-mineral inclusions inophiolitic chromite from the Vourinos Complex, Greece. Can. Mineral. 1985, 23, 163–171. [Google Scholar]
- Augé, T. Platinum-group minerals in the Tiebaghi and Vourinos ophiolitic complexes: Genetic implications. Can. Mineral. 1988, 26, 177–192. [Google Scholar]
- Rudashevsky, N.S. Platinum-Group Elements in Rocks of Ultramafic Formations (Mineralogy and Genesis). Habil. Thesis, Mining Institute, Leningrad, Russia, 1989. (In Russian). [Google Scholar]
- Cabri, L.-J.; Harris, D.C.; Weiser, T.W. Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor. Min. Geol. 1996, 5, 73–167. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Moloshag, V.; Alimov, V. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Rai-Iz ultramafic complex, Polar Urals, Russia. Can. Mineral. 1999, 37, 1099–1115. [Google Scholar]
- Melcher, F. Chromite and Platinum-Group Elements as Indicators of Mantle Petrogenesis. Mining University of Leoben, Leoben, Austria, 2000. Unpublished Habil Thesis. [Google Scholar]
- Zaccarini, F.; Pushkarev, E.; Garuti, G. Platinum-group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia). Ore Geol. Rev. 2008, 33, 20–30. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G.; Kazakov, I. Platinum-group minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Malitch, K.N.; Thalhammer, O.A.R.; Knauf, V.V.; Melcher, F. Diversity of platinum-group mineral assemblages in banded and podiform chromitite from the Kraubath ultramafic massif, Austria: Evidence for an ophiolitic transition zone? Miner. Depos. 2003, 38, 282–297. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Gervilla, F.; Proenza, J.A.; Augé, T.; Kerestedjian, T. Distribution of platinum-group minerals in ophiolitic chromitites. Appl. Earth Sci. 2010, 118, 101–110. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N.; Lord, R.A.; Meisel, T.C. Origin of primary PGM assemblage in chromitite from a mantle tectonite at Harold’s Grave (Shetland Ophiolite Complex, Scotland). Mineral. Petrol. 2013, 107, 963–970. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Griffin, W.L.; Gervilla, F.; Proenza, J.A.; O’Reilly, S.Y.; Pearson, N.J. Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos 2014, 189, 127–139. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Zhmodik, S.M.; Damdinov, B.B.; Agafonov, L.V.; Belyanin, D.K. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa-Kitoi and Khara-Nur areas, East Sayan). Russ. Geol. Geophys. 2014, 55, 259–272. [Google Scholar] [CrossRef]
- O’Driscoll, B.; González-Jiménez, J.M. Petrogenesis of the platinum-group minerals. Rev. Mineral. Geochem. 2016, 81, 489–578. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, O.; Zhmodik, S. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front. 2017, 8, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Massalski, T.B.; Murray, J.L.; Bennet, L.H.; Baker, H. Binary Alloy Phase Diagrams; American Society for Metals: Russel Township, OH, USA, 1993; 2224p. [Google Scholar]
- Amosse´, J.; Dable´, P.; Allibert, M. Thermochemical behaviour of Pt, Ir, Rh, and Ru vs fO2 and fS2 in a basaltic melt. Implications for the differentiation and precipitation of these elements. Miner. Pet. 2000, 68, 29–62. [Google Scholar]
- Andrews, D.R.A.; Brenan, J.M. Phase-equilibrium constraints on the magmatic origin of laurite + Ru-Os-Ir alloy. Can. Miner. 2002, 40, 1721–1735. [Google Scholar] [CrossRef]
- Brenan, J.M.; Andrews, D. High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas. Can. Mineral. 2001, 39, 341–360. [Google Scholar] [CrossRef]
- Fonseca, R.O.C.; Laurenz, V.; Mallmann, G.; Luguet, A.; Hoehne, N.; Jochum, K.P. New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim. Cosmochim. Acta 2012, 87, 227–242. [Google Scholar] [CrossRef]
- Fonseca, R.O.C.; Brückel, K.; Bragagni, A.; Leitzke, F.P.; Speelmanns, I.M.; Wainwright, A.N. Fractionation of rhenium from osmium during noble metal alloy formation in association with sulfides: Implications for the interpretation of model ages in alloy-bearing magmatic rocks. Geochim. Cosmochim. Acta 2017, 216, 184–200. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Zharkova, E.V.; Kadik, A.A.; Malitch, K.N.; Murzin, V.V. Results of experimental determination of the intrinsic oxygen fugacity of Ru-Os-Ir alloys from the Verkh-Neivinsky dunite-harzburgite massif, Middle Urals, Russia. Geochem. Int. 2015, 53, 658–663. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Gervilla, F.; Proenza, J.A.; Kerestedjian, T.; Augé, T.; Bailly, L. Zoning of laurite (RuS2)-erlichmanite (OsS2): Implications for the genesis of PGM in ophiolite chromitites. Eur. J. Mineral. 2009, 21, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Hattori, K.H.; Cabri, L.J.; Johanson, B.; Zientek, M.L. Origin of placer laurite from Borneo: Se and As contents, and S isotopic compositions. Mineral. Mag. 2004, 68, 353–368. [Google Scholar] [CrossRef]
- Hattori, K.; Hart, S.R. Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle. Earth Planet. Sci. Lett. 1991, 107, 499–514. [Google Scholar] [CrossRef]
- Hattori, K.; Cabri, L.J. Origin of platinum-group mineral nuggets inferred from an osmium-isotope study. Can. Mineral. 1992, 30, 289–301. [Google Scholar]
- Shi, R.; Alard, O.; Zhi, X.; O’Reilly, S.Y.; Pearson, N.J.; Griffin, W.L.; Zhang, M.; Chen, X. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth Planet. Sci. Lett. 2007, 261, 33–48. [Google Scholar] [CrossRef]
- Malitch, K.N.; Junk, S.A.; Thalhammer, O.A.R.; Melcher, F.; Knauf, V.V.; Pernicka, E.; Stumpfl, E.F. Laurite and ruarsite from podiform chromitites at Kraubath and Hochgrцssen, Austria: New insights from osmium isotopes. Can. Mineral. 2003, 41, 331–352. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.H.; Hanghøj, K.; Kelemen, P.B.; Hart, S.R.; Arai, S. Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: In-situ ion probe analysis of primary Os-rich PGM. Earth Planet. Sci. Lett. 2006, 245, 777–791. [Google Scholar] [CrossRef]
- Pearson, D.G.; Parman, S.W.; Nowell, G.M. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 2007, 449, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Nowell, G.M.; Pearson, D.G.; Parman, S.W.; Luguet, A.; Hanski, E. Precise and accurate 186Os/188Os and 187Os/188Os measurements by Multi-collector Plasma Ionisation Mass Spectrometry, part II: Laser ablation and its application to single-grain Pt–Os and Re–Os geochronology. Chem. Geol. 2008, 248, 394–426. [Google Scholar] [CrossRef]
- Marchesi, C.; González-Jiménez, J.M.; Gervilla, F.; Griffin, W.L.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J. In situ Re–Os isotopic analysis of platinum-group minerals from the Mayarí-Cristal ophiolitic massif (Mayarí-Baracoa Ophiolitic Belt, eastern Cuba): Implications for the origin of Os-isotope heterogeneities in podiform chromitites. Contrib. Mineral. Petrol. 2011, 161, 977–990. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Griffin, W.L.; Gervilla, F.; Kerestedjian, T.N.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Sergeeva, I. Metamorphism disturbs the Re-Os signatures of platinum-group minerals in ophiolite chromitites. Geology 2012, 40, 659–662. [Google Scholar] [CrossRef]
- González-Jimenéz, J.M.; Locmelis, M.; Belousova, E.; Griffin, W.; Gervilla, F.; Kerestedjian, T.N.; O’Reilly, S.Y.; Pearson, N.J.; Sergeeva, I. Genesis and tectonic implications of podiform chromitites in the metamorphosed ultramafic massif of Dobromirtsi (Bulgaria). Gondwana Res. 2015, 27, 555–574. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N.; Lord, R.A.; Belousova, E.A.; Meisel, T.C. Closed-system behaviour of the Re-Os isotope system recorded in primary and secondary PGM assemblages: Evidence from a mantle chromitite at Harold’s Grave (Shetland ophiolite Complex, Scotland). Ore Geol. Rev. 2016, 75, 174–185. [Google Scholar] [CrossRef] [Green Version]
- González-Jimenéz, J.M.; Mondal, S.K.; Ghosh, B.; Griffin, W.L.; O’Reilly, S.Y. Re-Os isotope systematics of sulfides in chromitites and host lherzolites of the Andaman ophiolite, India. Minerals 2020, 10, 686. [Google Scholar] [CrossRef]
- Kostoyanov, A.I. Model Re-Os ages of platinum-group minerals. Geol. Rudn. Mestorozhdenii 1998, 40, 545–550. (In Russian) [Google Scholar]
- Malitch, K.N.; Auge, T.; Badanina, I.Y.; Goncharov, M.M.; Junk, S.A.; Pernicka, E. Os-rich nuggets from Au-PGE placers of the Maimecha-Kotui Province, Russia: A multi-disciplinary study. Mineral. Petrol. 2002, 76, 121–148. [Google Scholar] [CrossRef]
- Kostoyanov, A.I.; Ivanov, D.Y.; Manoilov, V.V. Polycyclic formation of platinum-group minerals from placers of the Ural and Timan. Geochem. Int. 2003, 41, 534–544. [Google Scholar]
- Malitch, K.N.; Merkle, R.K.W. Ru-Os-Ir-Pt and Pt-Fe alloys from the Evander Goldfield (Witwatersrand Basin, South Africa): Detrital origin inferred from compositional and osmium isotope data. Can. Mineral. 2004, 42, 631–650. [Google Scholar] [CrossRef]
- Pašava, J.; Malec, J.; Griffin, W.L.; González-Jiménez, J.M. Re-Os isotopic constraints on the source of platinum-group minerals (PGMs) from the Vestřev pyrope-rich garnet placer deposit, Bohemian Massif. Ore Geol. Rev. 2015, 68, 117–126. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N.; Merkle, R.K.W.; Antonov, A.V.; Kapitonov, I.N.; Khiller, V.V. Chemical and isotopic composition of Os-rich alloys and sulfide from the Evander Goldfield of the Witwatersrand Basin (South Africa). Lithosphere 2016, 16, 129–144. (In Russian) [Google Scholar]
- Dijkstra, A.H.; Dale, C.W.; Oberthür, T.; Nowell, G.M.; Pearson, D.G. Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event. Earth Planet. Sci. Lett. 2016, 452, 115–122. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, J.M.; Griffin, W.L.; Proenza, J.A.; Gervilla, F.; O’Reilly, S.Y.; Akbulut, M.; Pearson, N.J.; Arai, S. Chromitites in ophiolites: How, where, when, why? Part II. The crystallisation of chromitites. Lithos 2014, 189, 140–158. [Google Scholar] [CrossRef]
- Murzin, V.V.; Sustavov, S.G.; Mamin, N.A. Gold and Platinum-Group Element Mineralization of Placer Deposits of the Verkh-Neivinskii Massif of Alpine Type Ultrabasites (Middle Urals); Ural State Mining University: Yekaterinburg, Russia, 1999; p. 93. (In Russian) [Google Scholar]
- Volchenko, Y.A.; Koroteev, V.A.; Neustroeva, I.I. Platinum-group elements in Alpine-type ultramafic rocks and related chromite ores of the Main Ophiolite Belt of the Urals. Geol. Ore Depos. 2009, 51, 162–178. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Malitch, K.N.; Murzin, V.V.; Khiller, V.V.; Glavatskikh, S.P. Mineralogical and geochemical particularities of PGE mineralization of the Verkh-Neivinsk dunite-harzburgite massif (Middle Urals, Russia). Proc. Inst. Geol. Geochem. UB RAS 2013, 160, 188–192. (In Russian) [Google Scholar]
- Murzin, V.V.; Sustavov, S.G. New data about minerals of laurite-erlichmanite series and their As-bearing varieties. Dokl. Akad. Nauk 2000, 370, 380–382. (In Russian) [Google Scholar]
- Badanina, I.Y.; Malitch, K.N.; Belousova, E.A.; Murzin, V.V.; Lord, R.A. Osmium isotope systematics of Ru–Os–Ir alloys and Ru–Os sulfides of the dunite–harzburgite massifs: A synthesis of new data. Proc. Inst. Geol. Geochem. UB RAS 2014, 161, 167–172. (In Russian) [Google Scholar]
- Malitch, K.N.; Badanina, I.Y.; Belousova, E.A.; Murzin, V.V. Chemical and Os-isotopic composition of Ru-Os sulfides from Verkh-Neivinsky dunite-harzburgite massif (Middle Urals, Russia). Dokl. Earth Sci. 2018, 483, 1437–1441. [Google Scholar] [CrossRef]
- Murzin, V.V.; Badanina, I.Y.; Malitch, K.N.; Ignatiev, A.V.; Velivetskaya, T.A. Sulfur isotope composition of Ru-Os sulfides from the Verkh-Neivinsky dunite-harzburgite massif (Middle Urals, Russia): New data. Dokl. Earth Sci. 2019, 488, 1097–1099. [Google Scholar] [CrossRef]
- Riesberg, L.; Lorand, J.P. Longevity of subcontinental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 1995, 376, 159–162. [Google Scholar] [CrossRef]
- Malitch, K.N. Platinum-Group Elements in Clinopyroxenite-Dunite Massifs of the Eastern Siberia (Geochemistry, Mineralogy, and Genesis); St. Petersburg Cartographic Factory VSEGEI Press: St. Petersburg, Russia, 1999; p. 296. (In Russian) [Google Scholar]
- Malitch, K.N.; Kostoyanov, A.I. Model Re-Os isotopic age of the PGE mineralization at the Gulinsk Massif (at the northern Siberian Platform, Russia). Geol. Ore Depos. 1999, 41, 126–135. [Google Scholar]
- Walker, R.J.; Prichard, H.M.; Ishiwatari, A.; Pimentel, M. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim. Cosmochim. Acta 2002, 66, 329–345. [Google Scholar] [CrossRef]
- Malitch, K.N. Osmium isotope constraints on contrasting sources and prolonged melting in the Proterozoic upper mantle: Evidence from ophiolitic Ru-Os sulfides and Ru-Os-Ir alloys. Chem. Geol. 2004, 208, 157–173. [Google Scholar] [CrossRef]
- Carlson, R.W. Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 2005, 82, 249–272. [Google Scholar] [CrossRef]
- Walker, R.J.; Brandon, A.D.; Bird, J.M.; Piccoli, P.M.; McDonough, W.F.; Ash, R.D. 187Os–186Os systematics of Os-Ir-Ry alloy grains from southwestern Oregon. Earth Planet. Sci. Lett. 2005, 230, 211–236. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Bourdon, B.; Gannoun, A.; Campas, F.; Birck, J.-L.; Allegre, C.J. Complex proterozoic to paleozoic history of the upper mantle recorded in the Urals lherzolite massifs by Re–Os and Sm–Nd systematics. Chem. Geol. 2007, 240, 61–84. [Google Scholar] [CrossRef]
- Coggon, J.A.; Nowell, G.M.; Pearson, D.G.; Parman, S.W. Application of the 190Pt–186Os isotope system to dating platinum mineralization and ophiolite formation: An example from the Meratus Mountains, Borneo. Econ. Geol. 2011, 106, 93–117. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Gervilla, F.; Griffin, W.L.; Proenza, J.A.; Augé, T.; O’Reilly, S.Y.; Pearson, N.J. Os-isotope variability within sulfides from podiform chromitites. Chem. Geol. 2012, 291, 224–235. [Google Scholar] [CrossRef]
- Tessalina, S.G.; Malitch, K.N.; Augé, T.; Puchkov, V.N.; Belousova, E.; McInnes, B. Origin of the Nizhny Tagil clinopyroxenite-dunite massif (Uralian Platinum Belt, Russia): Insights from PGE and Os isotope systematics. J. Petrol. 2005, 56, 2297–2318. [Google Scholar] [CrossRef] [Green Version]
- Malitch, K.N.; Anikina, E.V.; Badanina, I.Y.; Belousova, E.A.; Pushkarev, E.V.; Khiller, V.V. Chemical composition and osmium isotope systematics of primary and secondary platinum-group mineral assemblages from high-Mg chromitite of the Nurali lherzolite massif, South Urals, Russia. Geol. Ore Depos. 2016, 58, 1–19. [Google Scholar] [CrossRef]
- Malitch, K.N.; Belousova, E.A.; Griffin, W.L.; Badanina, I.Y.; Knauf, V.V.; O’Reilly, S.Y.; Pearson, N.J. Laurite and zircon from the Finero chromitites (Italy): New insights into evolution of the subcontinental mantle. Ore Geol. Rev. 2017, 90, 210–225. [Google Scholar] [CrossRef]
- Luguet, A.; Nowell, G.M.; Pushkarev, E.; Ballhaus, C.; Wirth, R.; Schreiber, A.; Gottman, I. 190Pt-186Os geochronometer reveals open system behaviour of 190Pt-4He isotope system. Geochem. Perspect. Lett. 2019, 11, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Malitch, K.N.; Puchtel, I.S.; Belousova, E.A.; Badanina, I.Y. Contrasting platinum-group mineral assemblages of the Kondyor massif (Russia): Implications for the sources of HSE in zoned-type ultramafic massifs. Lithos 2020, 376–377, 105800. [Google Scholar] [CrossRef]
- Pearson, N.J.; Alard, O.; Griffin, W.L.; Jackson, S.E.; O’Reilly, S.Y. In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: Analytical methods and preliminary results. Geochim. Cosmochim. Acta 2002, 66, 1037–1050. [Google Scholar] [CrossRef]
- Lorand, J.-P.; Alard, O. Platinum-group element abundances in the upper mantle: New constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim. Cosmochim. Acta 2001, 65, 2789–2806. [Google Scholar] [CrossRef]
- Malitch, K.N.; Lopatin, G.G. New data on the metallogeny of the unique Guli clinopyroxenite-dunite Massif, Northern Siberia, Russia. Geol. Ore Depos. 1997, 39, 209–218. [Google Scholar]
- Merkle, R.K.W.; Malitch, K.N.; Grasser, P.P.H.; Badanina, I.Y. Native osmium from the Guli Massif, Northern Siberia (Russia). Mineral. Petrol. 2012, 104, 115–127. [Google Scholar] [CrossRef]
- Shirey, S.B.; Walker, R.J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Planet. Sci. 1998, 26, 423–500. [Google Scholar] [CrossRef]
- Walker, R.J.; Carlson, R.W.; Shirey, S.B.; Boyd, F.R. Os, Sr, Nd, and Pb isotope systematics of Southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 1989, 53, 1583–1595. [Google Scholar] [CrossRef]
- Smoliar, M.I.; Walker, R.J.; Morgan, J.W. Re-Os ages of group IIA, IIIA, IVA, and IVB meteorites. Science 1996, 271, 1099–1102. [Google Scholar] [CrossRef]
- Walker, R.J.; Horan, M.F.; Morgan, J.W.; Becker, H.; Grossman, J.N.; Rubin, A.E. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes. Geochim. Cosmochim. Acta 2002, 66, 4187–4201. [Google Scholar] [CrossRef]
- Yin, Q.; Jagoutz, E.; Palme, H.; Wanke, H. NUR—A possible proxy for CHUR reference for Re-Os system derived from 187Os/188Os ratio of the Allende CAI. In Proceedings of the Lunar and Planetary Science Conference XXVII, Houston, TX, USA, 18–22 March 1996; pp. 1475–1476. [Google Scholar]
- Meisel, T.; Walker, R.J.; Irving, A.J.; Lorand, J.-P. Osmium isotopic composition of mantle xenoliths: A global perspective. Geochim. Cosmochim. Acta 2001, 65, 1311–1323. [Google Scholar] [CrossRef]
- Ignatiev, A.V.; Velivetskaya, T.A.; Budnitskiy, S.Y.; Yakovenko, V.V.; Vysotskiy, S.V.; Levitskii, V.I. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC-IRMS at high spatial resolution. Chem. Geol. 2018, 493, 316–326. [Google Scholar] [CrossRef]
- Velivetskaya, T.A.; Ignatiev, A.V.; Yakovenko, V.V.; Vysotskiy, S.V. An improved femtosecond laser-ablation fluorination method for measurements of sulfur isotopic anomalies (∆33S and ∆36S) in sulfides with high precision. Rapid Commun. Mass Spectrom. 2019, 33, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.C.; Cabri, L.J. Nomenclature of platinum-group-element alloys: Review and revision. Can. Mineral. 1991, 29, 231–237. [Google Scholar]
- Boyd, F.R.; Mertzman, S.A. Composition and structure of the Kaapvaal lithosphere, southern Africa. In Magmatic Processes: Physicochemical Principles; Mysen, B.O., Ed.; Geochemical Society: Washington, WA, USA, 1987; Volume 1, pp. 13–24. [Google Scholar]
- Gaul, O.F.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, D.G. Mapping olivine compositions in the lithospheric mantle. Earth Planet. Sci. Lett. 2000, 182, 223–235. [Google Scholar] [CrossRef]
- Pearson, D.G.; Canil, D.; Shirey, S.B. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 169–253. [Google Scholar]
- Badanina, I.Y.; Malitch, K.N.; Murzin, V.V.; Proskurnin, V.F. Geochemical particularities of PGE and gold in chromitites of dunite-harzburgite and clinopyroxenite-dunite massifs. Proc. Inst. Geol. Geochem. Ub Ras 2019, 166, 95–101. (In Russian) [Google Scholar]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Bird, J.M.; Bassett, W.A. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys. J. Geophys. Res. 1980, 85, 5461–5470. [Google Scholar] [CrossRef]
- Cabri, L.J.; Harris, D.C. Zoning in Os–Ir alloys and the relation of the geological and tectonic environment of the source rocks to the bulk Pt:Pt+Ir+Os ratio for placers. Can. Mineral. 1975, 13, 266–274. [Google Scholar]
- Peck, D.C.; Keays, R.R.; Ford, R.J. Direct crystallization of refractory platinum-group element alloys from boninitic magmas: Evidence from western Tasmania. Aust. J. Earth Sci. 1992, 39, 373–387. [Google Scholar] [CrossRef]
- Bird, J.M.; Meibom, A.; Frei, R.; Nagler, T.F. Osmium and lead isotopes of rare OsIrRu minerals: Derivation from the core-mantle boundary region? Earth Planet. Sci. Lett. 1999, 170, 83–92. [Google Scholar] [CrossRef]
- Thode, H.G.; Monster, J.; Dunford, H.B. Sulphur isotope geochemistry. Geochim. Cosmochim. Acta 1961, 25, 159–174. [Google Scholar] [CrossRef]
- Gao, X.; Thiemens, M.H. Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim. Cosmochim. Acta 1993, 57, 3159–3169. [Google Scholar] [CrossRef]
- Gao, X.; Thiemens, M.H. Variations in the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim. Cosmochim. Acta 1993, 57, 3171–3176. [Google Scholar] [CrossRef]
- Pushkarev, Y.D. Two types of interaction of crustal and mantle matter and a new approach to the problems of deep ore formation. Dokl. Russ. Acad. Sci. 1997, 335, 524–526. (In Russian) [Google Scholar]
- Ripley, E.M.; Li, C. Applications of stable and radiogenic isotopes to magmatic Cu-Ni-PGE deposits: Examples and cautions. Earth Sci. Front. 2007, 14, 124–132. [Google Scholar] [CrossRef]
- Meibom, A.; Frei, R.; Sleep, N.H. Osmium isotopic compositions of Os-rich platinum group element alloys from the Klamath and Siskiyou Mountains. J. Geophys. Res. 2004, 109, B02203. [Google Scholar] [CrossRef]
- Brandon, A.D.; Walker, R.J.; Puchtel, I.S. Platinum-osmium isotope evolution of the Earth’s mantle: Constraints from chondrites and Os-rich alloys. Geochim. Cosmochim. Acta 2006, 70, 2093–2103. [Google Scholar] [CrossRef]
- Lazarenkov, V.G.; Landa, E.A. Evidences for non-intrusive nature of the Kondyor massif and problems of the mantle diapirism. Proc. Russ. Acad. Sci. Geol. Ser. 1992, 6, 102–113. (In Russian) [Google Scholar]
- Burg, J.P.; Bodinier, J.-L.; Gerya, N.; Bedini, R.-M.; Boudier, F.; Dautria, J.-M.; Prikhodko, V.; Efimov, A.; Pupier, E.; Balanec, J.-L. Translithospheric mantle diapirism: Geological evidence and numerical modeling of the Kondyor zoned ultramafic complex (Russian Far-East). J. Petrol. 2009, 50, 289–321. [Google Scholar] [CrossRef]
- Edwards, R.; Wasserburg, G.J. The age and emplacement of obducted oceanic crust in the Urals from Sm–Nd and Rb–Sr systematics. Earth Planet. Sci. Lett. 1985, 72, 389–404. [Google Scholar] [CrossRef]
- Melcher, F.; Grum, W.; Thalhammer, T.V.; Thalhammer, O.A.R. The giant chromite deposits at Kempirsai, Urals: Constraints from trace element (PGE, REE) and isotope data. Miner. Depos. 1999, 34, 250–272. [Google Scholar] [CrossRef]
- Krasnobaev, A.A.; Valizer, P.M. Zircons and zircon geochronology of gabbro from the Nurali massif (Southern Urals). Lithosphere 2018, 18, 574–584. (In Russian) [Google Scholar] [CrossRef]
- Krasnobaev, A.A.; Rusin, A.I.; Busharina, S.V.; Rodionov, N.V. Zirconology of ultramafic rocks from the Vostochnotagilskii massif (Middle Urals). Dokl. Earth Sci. 2014, 455, 441–445. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Hawkesworth, C.J.; Cohen, A.S. Ancient mantle in a modern arc: Osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science 1998, 281, 2011–2013. [Google Scholar] [CrossRef]
- Snow, J.E.; Schmidt, G. Proterozoic melting in the northern peridotite massif, Zabargad island: Os isotopic evidence. Terra Nova 1999, 11, 45–50. [Google Scholar] [CrossRef]
- Spetsius, Z.V.; Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.J. Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: Implications for the dating of diamonds. Earth Planet. Sci. Lett. 2002, 199, 111–126. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Kirdyashkin, A.G. Deep-Level Geodynamics; Swets and Zeitlinger: Rotterdam, The Netherlands, 1998; 328p. [Google Scholar]
- Savelieva, G.N.; Suslov, P.V.; Larionov, A.N. Vendian tectono-magmatic events in mantle ophiolitic complexes of the Polar Urals: U-Pb dating of zircon from chromitite. Geotectonics 2007, 41, 105–113. [Google Scholar] [CrossRef]
- Fershtater, G.B. Paleozoic Intrusive Magmatism of the Middle and Southern Urals; Ural Branch of RAS: Ekaterinburg, Russia, 2013; 368p. (In Russian) [Google Scholar]
- Krasnobaev, A.A.; Anfilogov, V.N. Zircons: Implications for dunite genesis. Dokl. Earth Sci. 2014, 456, 535–538. [Google Scholar] [CrossRef]
- Krasnobaev, A.A.; Valizer, P.M.; Anfilogov, V.N.; Sergeev, S.A.; Rusin, A.I.; Busharina, S.V.; Medvedeva, E.V. Zirconology of ultrabasic rocks of the Karabash massif (Southern Urals). Dokl. Earth Sci. 2016, 469, 674–679. [Google Scholar] [CrossRef]
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Sample # | 153 | 153 | 153 | 156 | 156 | 156 | 159 | 162 | 166 |
Mineral | LR | LR | LR | LR | LR | LR | LR | ERL | ERL |
Figure | Figure 3a | Figure 3a | Figure 3a | Figure 3b | Figure 3b | Figure 3b | Figure 3c | Figure 3d | Figure 3e |
wt. % | |||||||||
Fe | b.d.l. | b.d.l. | 0.17 | 0.38 | 0.40 | 0.32 | b.d.l. | b.d.l. | b.d.l. |
Ni | b.d.l. | b.d.l. | b.d.l. | 0.23 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Ru | 37.24 | 36.52 | 37.10 | 39.20 | 38.08 | 38.89 | 31.69 | 12.74 | 21.48 |
Rh | 0.27 | 0.39 | 0.27 | 0.26 | 0.25 | 0.29 | 0.04 | 0.11 | 0.01 |
Os | 19.16 | 19.08 | 19.58 | 20.79 | 21.34 | 21.53 | 33.04 | 51.23 | 42.41 |
Ir | 10.38 | 10.71 | 9.48 | 5.96 | 6.10 | 5.52 | 3.32 | 7.81 | 5.88 |
S | 33.24 | 33.08 | 33.81 | 33.87 | 33.80 | 33.42 | 32.13 | 28.17 | 29.63 |
As | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Total | 100.29 | 99.78 | 100.41 | 100.69 | 99.97 | 99.97 | 100.22 | 100.06 | 99.40 |
at.% | |||||||||
Fe | 0.00 | 0.00 | 0.19 | 0.43 | 0.45 | 0.36 | 0.00 | 0.00 | 0.00 |
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 |
Ru | 23.57 | 23.27 | 23.24 | 24.27 | 23.78 | 24.39 | 20.80 | 9.58 | 15.29 |
Rh | 0.17 | 0.25 | 0.16 | 0.16 | 0.15 | 0.18 | 0.03 | 0.08 | 0.01 |
Os | 6.45 | 6.46 | 6.52 | 6.84 | 7.08 | 7.18 | 11.53 | 20.47 | 16.04 |
Ir | 3.46 | 3.59 | 3.12 | 1.94 | 2.00 | 1.82 | 1.15 | 3.09 | 2.21 |
S | 66.35 | 66.44 | 66.77 | 66.11 | 66.54 | 66.07 | 66.49 | 66.78 | 66.46 |
Ru # | 78 | 78 | 78 | 78 | 77 | 77 | 64 | 32 | 49 |
Analysis | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Sample # | 159 | 9 | 9 | 24 | 24 | 26 | 26 |
Mineral | (Os,Ir) | laurite | (Os,Ir) | laurite | (Os,Ir) | laurite | (Os,Ir) |
Figure | Figure 3e | Figure 6a | Figure 6a | Figure 6b | Figure 6b | Figure 6c | Figure 6c |
wt.% | |||||||
Fe | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.27 | 0.22 |
Ru | 1.26 | 26.98 | 1.34 | 49.56 | 11.44 | 22.81 | 0.95 |
Rh | b.d.l. | b.d.l. | b.d.l. | 0.25 | 0.15 | 0.12 | b.d.l. |
Os | 89.13 | 36.92 | 83.82 | 11.44 | 77.51 | 36.99 | 57.26 |
Ir | 9.38 | 4.54 | 14.66 | 1.83 | 10.49 | 8.28 | 41.55 |
S | b.d.l. | 31.34 | b.d.l. | 36.95 | b.d.l. | 31.30 | b.d.l. |
Total | 99.77 | 99.78 | 99.82 | 100.03 | 99.59 | 99.77 | 99.98 |
at.% | |||||||
Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.74 |
Ru | 2.35 | 18.26 | 2.50 | 28.59 | 19.62 | 15.61 | 1.77 |
Rh | 0.00 | 0.00 | 0.00 | 0.14 | 0.26 | 0.08 | 0.00 |
Os | 88.44 | 13.28 | 83.12 | 3.51 | 70.66 | 13.45 | 56.75 |
Ir | 9.21 | 1.62 | 14.38 | 0.56 | 9.46 | 2.98 | 40.74 |
S | 0.00 | 66.84 | 0.00 | 67.20 | 0.00 | 67.55 | 0.00 |
Ru # | 56 | 89 | 54 |
Analysis | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Sample # | 8 | 164 | 164 | 164 | 154 | 154 | 154 | 165 | 165 |
Figure | Figure 4a | Figure 4b | Figure 4b | Figure 4b | Figure 4c | Figure 4c | Figure 4c | Figure 4d | Figure 4d |
Host mineral | (Ir,Os) | LR | LR | LR | LR | LR | LR | LR | LR |
wt.% | |||||||||
SiO2 | 40.33 | 40.68 | 40.55 | 40.39 | 39.72 | 40.96 | 40.74 | 40.73 | 41.21 |
MgO | 50.42 | 50.69 | 50.61 | 50.61 | 51.92 | 51.83 | 51.66 | 52.23 | 52.37 |
FeO | 6.70 | 7.72 | 7.73 | 7.78 | 6.10 | 6.64 | 6.33 | 6.19 | 5.95 |
NiO | 0.40 | 0.33 | 0.34 | 0.35 | 0.42 | 0.41 | 0.42 | 0.14 | 0.17 |
MnO | 0.13 | 0.06 | 0.14 | 0.11 | 0.08 | 0.09 | 0.10 | 0.25 | 0.32 |
Total | 97.98 | 99.48 | 99.37 | 99.24 | 98.24 | 99.93 | 99.25 | 99.54 | 100.02 |
Apfu | Cations on the basis of 4 O atoms | ||||||||
Si | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 |
Mg | 1.86 | 1.85 | 1.85 | 1.85 | 1.91 | 1.87 | 1.88 | 1.89 | 1.88 |
Fe2+ | 0.14 | 0.16 | 0.16 | 0.16 | 0.13 | 0.14 | 0.13 | 0.13 | 0.12 |
Ni | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
Fo | 93 | 92 | 92 | 92 | 94 | 93 | 94 | 94 | 94 |
Sample Number, Figure | Mineral, Ru# | 187Os/188Os * | 1σ * | 187Re/188Os * | TRDECR* (Ga) | 1σ (Ga) | δ34S, ‰ |
---|---|---|---|---|---|---|---|
Ru-Os sulfides of type 1 and inclusions of iridian osmium | |||||||
153, Figure 8a | LR, 78 | 0.12135 | 0.00003 | 0.00002 | 0.955 | 0.004 | 2.5 |
154, Figure 8b | LR, 77 | 0.12381 | 0.00003 | 0.00009 | 0.609 | 0.004 | 2.0 |
156, Figure 3b | LR, 77 | 0.12386 | 0.00002 | 0.00003 | 0.602 | 0.003 | 2.2 |
157, Figure 8d | LR, 75 | 0.12201 | 0.00002 | 0.00005 | 0.863 | 0.002 | 2.2 |
159-1, Figure 3c and Figure 8e | LR, 64 | 0.11728 | 0.00002 | 0.00001 | 1.523 | 0.003 | 2.6 |
159-2, Figure 3f and Figure 8e | (Os,Ir) | 0.11720 | 0.00009 | 0.00023 | 1.535 | 0.012 | - |
163, Figure 8h | LR, 75 | 0.12503 | 0.00001 | 0.00003 | 0.436 | 0.002 | 1.9 |
164-1, Figure 8j | LR, 89 | 0.11946 | 0.00003 | 0.00004 | 1.219 | 0.004 | 0.5 |
164-2, Figure 8j | LR, 89 | 0.11943 | 0.00004 | 0.00002 | 1.223 | 0.005 | 0.6 |
165, Figure 8l | LR, 64 | 0.11889 | 0.00002 | 0.00006 | 1.298 | 0.002 | 0.3 |
155, Figure 8c | ERL, 32 | 0.12213 | 0.00002 | 0.00002 | 0.845 | 0.003 | 1.9 |
160, Figure 8f | ERL, 44 | 0.12788 | 0.00003 | 0.0006 | 0.029 | 0.005 | 1.7 |
161, Figure 8i | ERL, 12 | 0.13459 | 0.00002 | 0.00002 | - | - | 2.8 |
162, Figure 3d and Figure 8g | ERL, 32 | 0.12261 | 0.00002 | 0.00003 | 0.778 | 0.002 | 1.7 |
166, Figure 3e and Figure 8k | ERL, 49 | 0.12061 | 0.00001 | 0.00002 | 1.059 | 0.002 | 2.7 |
Ru-Os sulfides of type 2 and associated Os-rich alloys | |||||||
9, Figure 9a | LR, 56 | 0.12302 | 0.00003 | 0.00002 | 0.720 | 0.004 | n/d |
9, Figure 9a | (Os,Ir) | 0.12306 | 0.00002 | 0.00009 | 0.714 | 0.003 | - |
24, Figure 9b | LR, 89 | 0.11774 | 0.00004 | 0.00001 | 1.459 | 0.006 | 3.1 |
24, Figure 9b | (Os,Ru,Ir) | 0.11786 | 0.00002 | 0.00003 | 1.443 | 0.003 | - |
26, Figure 9c | LR, 54 | 0.12506 | 0.00002 | 0.00002 | 0.432 | 0.003 | 3.3 |
26, Figure 9c | (Os,Ir) | 0.12512 | 0.00001 | 0.00036 | 0.423 | 0.002 | - |
71 | LR, 89 | 0.12491 | 0.00003 | 0.00008 | 0.453 | 0.005 | 2.4 |
71 | (Os,Ir,Ru) | 0.12505 | 0.00002 | 0.00033 | 0.434 | 0.002 | - |
126 | LR, 100 | 0.12410 | 0.00013 | 0.00019 | 0.568 | 0.018 | 1.5 |
194 | LR, 100 | 0.11898 | 0.00009 | 0.00031 | 1.286 | 0.014 | n/d |
194 | (Ru,Os,Ir) | 0.11891 | 0.00003 | 0.00140 | 1.296 | 0.004 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malitch, K.N.; Badanina, I.Y.; Belousova, E.A.; Murzin, V.V.; Velivetskaya, T.A. Origin of Ru-Os Sulfides from the Verkh-Neivinsk Ophiolite Massif (Middle Urals, Russia): Compositional and S-Os Isotope Evidence. Minerals 2021, 11, 329. https://doi.org/10.3390/min11030329
Malitch KN, Badanina IY, Belousova EA, Murzin VV, Velivetskaya TA. Origin of Ru-Os Sulfides from the Verkh-Neivinsk Ophiolite Massif (Middle Urals, Russia): Compositional and S-Os Isotope Evidence. Minerals. 2021; 11(3):329. https://doi.org/10.3390/min11030329
Chicago/Turabian StyleMalitch, Kreshimir N., Inna Yu. Badanina, Elena A. Belousova, Valery V. Murzin, and Tatiana A. Velivetskaya. 2021. "Origin of Ru-Os Sulfides from the Verkh-Neivinsk Ophiolite Massif (Middle Urals, Russia): Compositional and S-Os Isotope Evidence" Minerals 11, no. 3: 329. https://doi.org/10.3390/min11030329
APA StyleMalitch, K. N., Badanina, I. Y., Belousova, E. A., Murzin, V. V., & Velivetskaya, T. A. (2021). Origin of Ru-Os Sulfides from the Verkh-Neivinsk Ophiolite Massif (Middle Urals, Russia): Compositional and S-Os Isotope Evidence. Minerals, 11(3), 329. https://doi.org/10.3390/min11030329