Supplementary Materials: Activation of Peroxymonosulfate by Chrysotile to Degrade Dyes in Water: Performance Enhancement and Activation Mechanism

Ying Dai, Qian Peng, Kun Liu *, Xuekun Tang, Muyang Zhou, Kun Jiang and Binnan Zhu ³

Figure S1. The XRD pattern of raw chrysotile from asbestos tailings.

Figure S2. The Zeta potentials and points of zero charge of 850CC and raw chrysotile.

Figure S3. The TG-DTA curves of chrysotile (**a**), FTIR spectra (**b**) and XRD patterns (**d**) of chrysotile with different calcination temperatures, and comparison of reusability between 850CC and raw chrysotile (**c**).

Figure S4. Nitrogen isotherm adsorption-desorption curves (a) and pore size distribution curves (b) of raw chrysotile and 850CC.

Figure S5. Effects of the radical scavengers on RhB degradation in 850CC/PMS system: TBA (**a**), MA (**b**), p-BZ (**c**) and LH (**d**).

Figure S6. The SEM images (a) and XRD patterns of forsterite (b).

Samples	Chrysotile (%)	850CC (%)	Natural Forsterite (%)
Si	28.17	31.51	19.08
Mg	27.18	29.90	28.90
Õ	38.14	32.33	44.68
Al	0.41	0.42	0.075
Fe	3.15	2.08	7.16
Ca	2.75	3.04	0.078
Ni	0.04	0.08	0.01
S	0.13	0.61	0.01
Ti	0.03	0.03	0.004

Table S1. The element composition of raw chrysotile, 850CC and natural forsterite.