Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals and Reagents
2.2. Micro-Flotation Experiments
2.3. Zeta Potential Experiments
2.4. XPS Measurements
2.5. UV-Visible Spectroscopy of Complex
3. Results and Discussion
3.1. Flotation Test
3.1.1. Effect of Diesel Dosage
3.1.2. Effect of the MATT Depressant Dosage
3.1.3. Effect of the Pulp pH
3.1.4. Artificially Mixed Minerals Flotation
3.2. Zeta Potential Measurement
3.3. UV-Visible Spectroscopy Analysis
3.4. XPS Analysis
3.5. The Suggested Adsorption Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zuo, R.; Qi, S. Surfactant-free solvothermal synthesis and optical characterization of Bi2Fe4O9 in mixed H2O/EtOH solvent. Powder Technol. 2014, 254, 30–35. [Google Scholar] [CrossRef]
- Kholmogorov, A.G.; Kononova, O.N. Processing mineral raw materials in Siberia: Ores of molybdenum, tungsten, lead and gold. Hydrometallurgy 2005, 76, 37–54. [Google Scholar] [CrossRef]
- Zeng, L.; Cheng, C.Y. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Hydrometallurgy 2009, 98, 1–9. [Google Scholar] [CrossRef]
- Yan, H.; Yang, B.; Zeng, M.; Huang, P.; Teng, A. Selective flotation of Cu-Mo sulfides using xanthan gum as a novel depressant. Miner. Eng. 2020, 156. [Google Scholar] [CrossRef]
- Fang, S.; Xu, L.; Wu, H.; Shu, K.; Xu, Y.; Zhang, Z.; Chi, R.; Sun, W. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol. 2019, 345, 35–42. [Google Scholar] [CrossRef]
- Xu, L.; Tian, J.; Wu, H.; Lu, Z.; Yang, Y.; Sun, W.; Hu, Y. Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector. Appl. Surf. Sci. 2017, 425, 796–802. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, W.; Hu, Y.; Liu, R.; Jiang, W.; Zhang, C.; Guan, Q.; Zhang, C. Synthesis of acetic acid-[(hydrazinylthioxomethyl)thio]-sodium and its application on the flotation separation of molybdenite from galena. J. Ind. Eng. Chem. 2017, 52, 82–88. [Google Scholar] [CrossRef]
- Choi, J.; Lee, E.; Choi, S.Q.; Lee, S.; Han, Y.; Kim, H. Arsenic removal from contaminated soils for recycling via oil agglomerate flotation. Chem. Eng. J. 2016, 285, 207–217. [Google Scholar] [CrossRef]
- Yang, B.; Yan, H.; Zeng, M.; Huang, P.; Jia, F.; Teng, A. A novel copper depressant for selective flotation of chalcopyrite and molybdenite. Miner. Eng. 2020, 151. [Google Scholar] [CrossRef]
- Cao, Z.; Yue, Y.; Zhong, H.; Qiu, P.; Chen, P.; Wen, X.; Wang, S.; Liu, G. A novel approach for flotation recovery of molybdenite, galena and pyrite from a complex molybdenum-lead ore. Metall. Res. Technol. 2017, 114. [Google Scholar] [CrossRef]
- Qin, W.; Wu, J.; Jiao, F.; Zeng, J. Mechanism study on flotation separation of molybdenite from chalcocite using thioglycollic acid as depressant. Int. J. Min. Sci. Technol. 2017, 27, 1043–1049. [Google Scholar] [CrossRef]
- Chen, W.; Chen, F.; Zhang, Z.; Tian, X.; Bu, X.; Feng, Q. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems. Miner. Eng. 2021, 160. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, M.; Liu, R.; Sun, W. A review on the electrochemistry of galena flotation. Miner. Eng. 2020, 150. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Goryachev, B.E. Thermodynamic and flotation analysis of influence exerted by chromate ions on separation of galena and chaclopyrite in alkaline media. J. Min. Sci. 2007, 43, 670–679. [Google Scholar] [CrossRef]
- Goryachev, B.E.; Nikolaev, A.A. Thermodynamics of the interaction between chromate ions and a mineral complex of polymetallic ores. Galena. Russ. J. Non Ferr. Met. 2011, 52, 337–343. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Goryachev, B.E. Thermodynamics of the interaction of chromate ions with the mineral complex of polymetallic ores. Chalcopyrite. Russ. J. Non Ferr. Met. 2013, 54, 417–424. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, L.; He, J.; Wu, H.; Fang, S.; Khoso, S.A.; Hu, Y.; Sun, W. Evaluation of l-cysteine as an eco-friendly depressant for the selective separation of MoS2 from PbS by flotation. J. Mol. Liq. 2019, 282, 177–186. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, L.; Zeng, H.; Hu, Z.; Zhu, Y.; Han, L. A macromolecular depressant for galena and its flotation behavior in the separation from molybdenite. Miner. Eng. 2020, 157. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.H.; Yu, S.; Ji, H.; Lai, Y.S.; Peng, S.X. Synthesis and biological evaluation of novel thalidomide analogues as potential anticancer drugs. Chin. Chem. Lett. 2008, 19, 928–930. [Google Scholar] [CrossRef]
- Qin, W.; Wang, X.; Ma, L.; Jiao, F.; Liu, R.; Yang, C.; Gao, K. Electrochemical characteristics and collectorless flotation behavior of galena: With and without the presence of pyrite. Miner. Eng. 2015, 74, 99–104. [Google Scholar] [CrossRef]
- Goryachev, B.E.; Nikolaev, A.A. Galena oxidation mechanism. J. Min. Sci. 2012, 48, 354–362. [Google Scholar] [CrossRef]
- Jia, K.; Feng, Q.; Zhang, G.; Shi, Q.; Chang, Z. Understanding the roles of Na 2 S and Pb(II)in the flotation of hemimorphite. Miner. Eng. 2017, 111, 167–173. [Google Scholar] [CrossRef]
- Pawel, N.; Kari, L.; Zhang, G. Oxidation og galena surface—An XPS study of the formation of sulfoxy species. Appl. Surf. Sci. 2000, 157, 101–111. [Google Scholar] [CrossRef]
- Jia, K.; Feng, Q.; Zhang, G.; Ji, W.; Zhang, W.; Yang, B. The role of S(II) and Pb(II) in xanthate flotation of smithsonite: Surface properties and mechanism. Appl. Surf. Sci. 2018, 442, 92–100. [Google Scholar] [CrossRef]
- Ikumapayi, F.; Makitalo, M.; Johansson, B.; Rao, K.H. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena. Miner. Eng. 2012, 39, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Dodero, G.; Michiel, D.; Cavallri, O.; Rao, K.H. L-Cysteine chemisorption on gold: A XPS and STM study. Coll. Surf. A Physicochem. Eng. Asp. 2000, 175, 121–128. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, G.; Liu, J.; Yang, X.; Zhang, Z. Thiadiazole-thione surfactants: Preparation, flotation performance and adsorption mechanism to malachite. J. Ind. Eng. Chem. 2018, 67, 99–108. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, J.; Liu, J.; Qu, X.; Liu, Q.; Zeng, H.; Yang, X.; Xie, L.; Zhong, H.; Liu, Q.; et al. In situ probing the self-assembly of 3-hexyl-4-amino-1,2,4-triazole-5-thione on chalcopyrite surfaces. Coll. Surf. A Physicochem. Eng. Asp. 2016, 511, 285–293. [Google Scholar] [CrossRef]
- Liu, S.; Liu, G.; Zhong, H.; Yang, X. The role of HABTC’s hydroxamate and dithiocarbamate groups in chalcopyrite flotation. J. Ind. Eng. Chem. 2017, 52, 359–368. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Y.; Qu, X.; Xiao, J.; Yang, X.; Xu, Z. Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1, 2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation. Coll. Surf. A Physicochem. Eng. Asp. 2016, 503, 34–42. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, X.; Huang, K.; Wang, S.; Cao, Z.; Zhong, H. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/sphalerite surfaces. J. Ind. Eng. Chem. 2019, 77, 416–425. [Google Scholar] [CrossRef]
- Wang, X.; Qin, W.; Jiao, F.; Liu, R.; Wang, D. Inhibition of galena flotation by humic acid: Identification of the adsorption site for humic acid on moderately oxidized galena surface. Miner. Eng. 2019, 137, 102–107. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Z.; Mulenga, H.; Sun, W.; Cao, J.; Gao, Z. Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite. Chem. Eng. Sci. 2020, 226. [Google Scholar] [CrossRef]
Samples | Atomic Concentration of Elements (Atomic %) | ||||
---|---|---|---|---|---|
C | O | S | Pb | N | |
MATT | 26.98 | 2.55 | 39.99 | 30.48 | |
Galena | 22.70 | 10.52 | 37.21 | 29.57 | |
Galena + MATT | 21.36 | 6.47 | 31.99 | 37.22 | 2.98 |
Δa | −1.34 | −4.05 | −5.22 | 7.65 | 2.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhao, Z.; Lu, L.; Zhu, H.; Xiong, W.; Zhu, Y.; Luo, S.; Zhang, X.; Yang, B. Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite. Minerals 2021, 11, 410. https://doi.org/10.3390/min11040410
Hu Y, Zhao Z, Lu L, Zhu H, Xiong W, Zhu Y, Luo S, Zhang X, Yang B. Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite. Minerals. 2021; 11(4):410. https://doi.org/10.3390/min11040410
Chicago/Turabian StyleHu, Yangjia, Zhiqiang Zhao, Liang Lu, Huanyu Zhu, Wei Xiong, Yangge Zhu, Sigang Luo, Xingrong Zhang, and Bingqiao Yang. 2021. "Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite" Minerals 11, no. 4: 410. https://doi.org/10.3390/min11040410
APA StyleHu, Y., Zhao, Z., Lu, L., Zhu, H., Xiong, W., Zhu, Y., Luo, S., Zhang, X., & Yang, B. (2021). Investigation on a Novel Galena Depressant in the Flotation Separation from Molybdenite. Minerals, 11(4), 410. https://doi.org/10.3390/min11040410