Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Sampling and Analytical Methods
2.3. Graphic and Spatial Analysis
3. Results and Discussion
3.1. Cu Distribution in Irrigation Canal Sediments
3.2. Pollution Characteristics Analysis
3.2.1. Irrigation Canal Sediment Pollution and Agricultural Land Pollution Site Patterns
3.2.2. Analysis of Sediment Pollution and Possible Pollution Sources in Taoyuan
3.2.3. Analysis of Sediment Pollution and Possible Pollution Sources in Changhua
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, Y.-P.; Chang, Y.-C.; Chen, K.-F.; Wang, C.-H. A field pilot-scale study on heavy metal-contaminated soil washing by using an environmentally friendly agent-poly-γ-glutamic acid (γ-PGA). Environ. Sci. Pollut. Res. Int. 2020, 27, 34760–34769. [Google Scholar] [CrossRef] [PubMed]
- Liaw, C.-H.; Chiang, Y.-C. Framework for Assessing the Rainwater Harvesting Potential of Residential Buildings at a National Level as an Alternative Water Resource for Domestic Water Supply in Taiwan. Water 2014, 6, 3224–3246. [Google Scholar] [CrossRef]
- Yen, C.-H.; Chen, K.-F.; Sheu, Y.-T.; Lin, C.-C.; Horng, J.-J. Pollution Source Investigation and Water Quality Management in the Carp Lake Watershed, Taiwan. Clean Soil Air Water 2012, 40, 24–33. [Google Scholar] [CrossRef]
- Council of Agriculture, Taiwan. Irrigation Management. Available online: https://www.ia.gov.tw/ (accessed on 6 November 2020).
- Environmental Protection Administration, Taiwan. Database of Soil and Groundwater Pollution Sites. Available online: https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx (accessed on 13 November 2020).
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-Ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. Int. 2015, 22, 8148–8162. [Google Scholar] [CrossRef] [PubMed]
- Mourato, M.; Martins, L.; Campos-Andrada, M. Physiological responses of Lupinus luteus to different copper concentrations. Biol. Plant. 2009, 53, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Van Zwieten, L.; Rust, J.; Kingston, T.; Merrington, G.; Morris, S. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci. Total Environ. 2004, 329, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-E.; Long, X.-X.; Ni, W.-Z.; Ye, Z.-Q.; He, Z.-L.; Stoffella, P.J.; Calvert, D.V. Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. J. Environ. Sci. Health B 2002, 37, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Islam, K.R.; Muhammad, S. Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak. J. Bot. 2007, 39, 451–462. [Google Scholar]
- Cao, Z.; Hu, Z. Copper contamination in paddy soils irrigated with wastewater. Chemosphere 2000, 41, 3–6. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Wang, Z.; Dong, G.; Huang, J.; Wang, Y. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 2006, 62, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Available online: http://faostat.fao.org/faostat (accessed on 2 March 2021).
- Lai, H.-Y.; Juang, K.-W.; Chen, B.-C. Copper concentrations in grapevines and vineyard soils in central Taiwan. Soil Sci. Plant Nutr. 2010, 56, 601–606. [Google Scholar] [CrossRef]
- García-Esparza, M.; Capri, E.; Pirzadeh, P.; Trevisan, M. Copper content of grape and wine from Italian farms. Food Addit. Contam. 2006, 23, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Roisenberg, A.; Chies, J. Copper-based fungicide contamination and metal distribution in Brazilian grape products. Bull. Environ. Contam. Toxicol. 2005, 75, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Council of Agriculture, Taiwan. Database of Agriculture. Available online: https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx (accessed on 24 February 2021).
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; Soderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.-Y.; Fang, W.-T.; Shyu, G.-S.; Chang, T.-K. Distribution of heavy metals in the sediments of agricultural fields adjacent to urban areas in Central Taiwan. Paddy Water Environ. 2013, 11, 343–351. [Google Scholar] [CrossRef]
- Chen, Z.-S. Relationship between Heavy Metal Concentrations in Soils of Taiwan and Uptake by Crops; Food and Fertilizer Technology Center: Taiwan, China, 2000. [Google Scholar]
- Lin, Y.-P.; Cheng, B.-Y.; Shyu, G.-S.; Chang, T.-K. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan. Environ. Pollut. 2010, 158, 235–244. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, L.A.; Schroeder, R.A. Transport and distribution of trace elements and other selected inorganic constituents by suspended particulates in the Salton Sea Basin, California, 2001. In The Salton Sea Centennial Symposium; Springer: Dordrecht, The Netherlands, 2008; pp. 123–135. [Google Scholar]
- Council of Agriculture, Taiwan. Protection Program of Agricultural Irrigation Water Quality. Available online: https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=GL000497 (accessed on 26 November 2020).
- Tukey, J.W. Exploratory Data Analysis. Addison-Wesley Publishing Company Incorporation: Boston, MA, USA, 1977. [Google Scholar]
- Environmental Protection Administration, Taiwan. Investigation of Contaminated Farmlands in Taoyuan. 2013. Available online: https://epq.epa.gov.tw/Default.aspx (accessed on 18 January 2021).
- Environmental Protection Administration, Taiwan. Control and Investigation Program for National Agricultural Land with High Potential of Heavy Metal Pollution (II). 2014. Available online: https://epq.epa.gov.tw/Default.aspx (accessed on 10 January 2021).
- Yadav, R.K.; Goyal, B.; Sharma, R.K.; Dubey, S.K.; Minhas, P.S. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—A case study. Environ. Int. 2002, 28, 481–486. [Google Scholar] [CrossRef]
- Northern Region Water Resources Office, Water Resources Agency, Ministry of Economic Affairs, Taiwan. Development of Diverse Water Resources—Investigation and Feasibility Assessment of Agricultural Return Flows in the Taoyuan and Hsinchu Areas. 2007. Available online: https://www.wranb.gov.tw/3452/24064/27197/ (accessed on 13 January 2021).
- Shihmen Management Office, Irrigation Agency, Council of Agriculture, Taiwan. Source of Irrigation Water. Available online: https://www.iasme.nat.gov.tw/view.php?theme=web_structure&id=109 (accessed on 13 January 2021).
- Environmental Protection Administration, Taiwan. Wastewater and Sewage of Enterprise and Sewage System Management System. Available online: https://wpmis.epa.gov.tw/WPMIS/Login.aspx (accessed on 13 May 2019).
- Ta-Wei, C.; Wei-Sheng, Y.; Cheng-Chang, H. Assessment of Dilution Water Quality for Polluted Irrigation Water-Chung-hwa Irrigation Area as an Example. J. Chin. Agric. Eng. 1999, 45. [Google Scholar]
- Environmental Protection Administration, Taiwan. Control and Investigation Project for National Agricultural Land with High Potential of Heavy Metal Pollution (IV). 2017. Available online: https://epq.epa.gov.tw/Default.aspx (accessed on 10 January 2021).
Sediment Quality Indicator | Upper Limit (mg/kg) | Lower Limit (mg/kg) |
---|---|---|
As | 33.0 | 11.0 |
Cd | 2.49 | 0.65 |
Cr | 233 | 76.0 |
Cu | 157 | 50.0 |
Hg | 0.870 | 0.230 |
Ni | 80.0 | 24.0 |
Pb | 161 | 48.0 |
Zn | 384 | 140 |
Pollutant (Cu Included) | Yilan | Pingtung | Miaoli | Tao-yuan | Kaohsiung | New Taipei | Hsinchu (City) | Chang-hua | Taichung | Taipei | Tainan | Total | Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As, Cr, Cu, Pb | 1 | 1 | 0.02% | ||||||||||
As, Cr, Cu, Ni, Zn | 1 | 1 | 0.02% | ||||||||||
As, Cu | 2 | 2 | 4 | 0.07% | |||||||||
As, Cu, Zn | 1 | 1 | 0.02% | ||||||||||
As, Cd, Cu, Ni, Pb | 1 | 1 | 0.02% | ||||||||||
Cr, Cu | 16 | 4 | 17 | 25 | 62 | 1.11% | |||||||
Cr, Cu, Pb, Zn | 2 | 1 | 3 | 0.05% | |||||||||
Cr, Cu, Zn | 4 | 10 | 3 | 2 | 19 | 0.34% | |||||||
Cr, Cu, Ni | 1 | 1 | 9 | 139 | 89 | 239 | 4.28% | ||||||
Cr, Cu, Ni, Zn | 1 | 1 | 595 | 5 | 602 | 10.8% | |||||||
Cu | 1 | 6 | 2400 | 1 | 8 | 5 | 850 | 61 | 2 | 7 | 3341 | 59.8% | |
Cu, Hg | 2 | 1 | 3 | 0.05% | |||||||||
Cu, Pb | 1 | 2 | 3 | 0.05% | |||||||||
Cu, Pb, Zn | 1 | 6 | 1 | 6 | 1 | 15 | 0.27% | ||||||
Cu, Zn | 1 | 154 | 6 | 266 | 1 | 14 | 442 | 7.91% | |||||
Cu, Ni | 1 | 3 | 1 | 285 | 12 | 3 | 305 | 5.46% | |||||
Cu, Ni, Pb | 1 | 1 | 0.02% | ||||||||||
Cu, Ni, Pb, Zn | 1 | 1 | 0.02% | ||||||||||
Cu, Ni, Zn | 3 | 246 | 5 | 254 | 4.54% | ||||||||
Cd, Cr, Cu, Pb, Zn | 2 | 2 | 0.04% | ||||||||||
Cd, Cr, Cu, Ni | 12 | 12 | 0.21% | ||||||||||
Cd, Cr, Cu, Ni, Pb, Zn | 154 | 154 | 2.76% | ||||||||||
Cd, Cr, Cu, Ni, Zn | 22 | 52 | 74 | 1.32% | |||||||||
Cd, Cu | 13 | 1 | 14 | 0.25% | |||||||||
Cd, Cu, Hg | 1 | 1 | 0.02% | ||||||||||
Cd, Cu, Hg, Ni, Pb, Zn | 1 | 1 | 0.02% | ||||||||||
Cd, Cu, Pb | 1 | 1 | 0.02% | ||||||||||
Cd, Cu, Pb, Zn | 6 | 6 | 0.11% | ||||||||||
Cd, Cu, Zn | 4 | 4 | 8 | 0.14% | |||||||||
Cd, Cu, Ni | 5 | 5 | 0.09% | ||||||||||
Cd, Cu, Ni, Pb | 3 | 3 | 0.05% | ||||||||||
Cd, Cu, Ni, Pb, Zn | 2 | 2 | 0.04% | ||||||||||
Cd, Cu, Ni, Zn | 8 | 8 | 0.14% | ||||||||||
Total | 2 | 1 | 10 | 2605 | 7 | 18 | 196 | 2501 | 201 | 4 | 44 | 5589 | 100% |
Ratio | 0.04% | 0.02% | 0.18% | 46.6% | 0.13% | 0.32% | 3.51% | 44.75% | 3.60% | 0.07% | 0.79% | 100% |
Water Source | Wu River | Wu River/Yangzicuo Drainage Trunk Line | Jiuzhuoshui River Drainage Trunk Line/Zhuoshui River | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sediment Pollution Sites Number | Sediment Pollution Sites Ratio | Agricultural Land Pollution Sites Number | Agricultural Land Pollution Sites Ratio | Sediment Pollution Sites Number | Sediment Pollution Sites Ratio | Agricultural Land Pollution Sites Number | Agricultural Land Pollution Sites Ratio | Agricultural land Pollution Sites Number | Agricultural Land Pollution Sites Ratio | |
Cu | 0 | 0% | 287 | 20% | 0 | 0% | 473 | 63% | 0 | 0% |
Cr, Cu, Ni, Zn | 1 | 50% | 538 | 38% | 4 | 80% | 22 | 3% | 0 | 0% |
Cu, Ni | 0 | 0% | 175 | 12% | 1 | 20% | 60 | 8% | 0 | 0% |
Cu, Zn | 0 | 0% | 68 | 5% | 0 | 0% | 129 | 17% | 1 | 50% |
Cu, Ni, Zn | 0 | 0% | 159 | 11% | 0 | 0% | 47 | 6% | 0 | 0% |
Cr, Cu, Ni | 1 | 50% | 118 | 8% | 0 | 0% | 1 | 0% | 0 | 0% |
Cd, Cr, Cu, Ni, Zn | 0 | 0% | 43 | 3% | 0 | 0% | 0 | 0% | 0 | 0% |
Cr, Cu, | 0 | 0% | 8 | 1% | 0 | 0% | 7 | 1% | 1 | 50% |
Cd, Cr, Cu, Ni | 0 | 0% | 11 | 1% | 0 | 0% | 0 | 0% | 0 | 0% |
Cr, Cu, Zn | 0 | 0% | 8 | 1% | 0 | 0% | 0 | 0% | 0 | 0% |
Cd, Cu, Ni, Zn | 0 | 0% | 7 | 0% | 0 | 0% | 1 | 0% | 0 | 0% |
Cu, Pb, Zn | 0 | 0% | 0 | 0% | 0 | 0% | 6 | 1% | 0 | 0% |
Cd, Cu, Ni | 0 | 0% | 4 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Cd, Cu, Ni, Pb | 0 | 0% | 1 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
As, Cu | 0 | 0% | 1 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
As, Cr, Cu, Ni, Zn | 0 | 0% | 1 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
As, Cu, Zn | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 0% | 0 | 0% |
As, Cd, Cu, Ni, Pb | 0 | 0% | 1 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Cu, Hg | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Cu, Ni, Pb | 0 | 0% | 1 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
Total | 0 | 100% | 1431 | 100% | 0 | 100% | 747 | 100% | 2 | 100% |
Mass of Release (kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|
River/Drainage Basin | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Total |
Yangzicuo Drainage | 3 | 1 | 928 | 3988 | 0 | 881 | 35 | 2421 | 8257 |
Others | 189 | 0 | 573 | 2964 | 4 | 8055 | 140 | 6287 | 18212 |
Erlin River Drainage | 0 | 0 | 146 | 397 | 0 | 762 | 0 | 504 | 1810 |
Wu River | 0 | 0 | 189 | 270 | 0 | 212 | 1 | 969 | 1640 |
Yuanlin Drainage | 1 | 1 | 721 | 190 | 0 | 129 | 5 | 238 | 1283 |
Wanxing Drainage | 0 | 0 | 12 | 21 | 0 | 13 | 0 | 84 | 131 |
Jiuzhuoshui River Drainage | 0 | 0 | 261 | 8 | 0 | 115 | 2 | 299 | 684 |
Qingshui River SubsidiaryDrainage | 0 | 0 | 1 | 7 | 0 | 3 | 0 | 38 | 49 |
Maoluo River | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 193 | 2 | 2832 | 7845 | 4 | 10,170 | 182 | 10,839 | 32,067 |
Ratio of Heavy Metal Released in Single Water Source (%) | |||||||||
River/Drainage Basin | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Total |
Yangzicuo Drainage | 0% | 0% | 11% | 48% | 0% | 11% | 0% | 29% | 100% |
Others | 1% | 0% | 3% | 16% | 0% | 44% | 1% | 35% | 100% |
Erlin River Drainage | 0% | 0% | 8% | 22% | 0% | 42% | 0% | 28% | 100% |
Wu River | 0% | 0% | 12% | 16% | 0% | 13% | 0% | 59% | 100% |
Yuanlin Drainage | 0% | 0% | 56% | 15% | 0% | 10% | 0% | 19% | 100% |
Wanxing Drainage | 0% | 0% | 9% | 16% | 0% | 10% | 0% | 64% | 100% |
Jiuzhuoshui River Drainage | 0% | 0% | 38% | 1% | 0% | 17% | 0% | 44% | 100% |
Qingshui River SubsidiaryDrainage | 0% | 0% | 3% | 14% | 0% | 6% | 0% | 77% | 100% |
Maoluo River | 0% | 0% | 0% | 63% | 0% | 0% | 0% | 38% | 100% |
Total | 1% | 0% | 9% | 24% | 0% | 32% | 1% | 34% | 100% |
Ratio of Single Heavy Metal Released among Water Bodies (%) | |||||||||
River/Drainage Basin | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | Total |
Yangzicuo Drainage | 2% | 41% | 33% | 51% | 0% | 9% | 19% | 22% | 26% |
Others | 98% | 9% | 20% | 38% | 100% | 79% | 77% | 58% | 57% |
Erlin River Drainage | 0% | 0% | 5% | 5% | 0% | 7% | 0% | 5% | 6% |
Wu River | 0% | 0% | 7% | 3% | 0% | 2% | 0% | 9% | 5% |
Yuanlin Drainage | 0% | 49% | 25% | 2% | 0% | 1% | 3% | 2% | 4% |
Wanxing Drainage | 0% | 1% | 0% | 0% | 0% | 0% | 0% | 1% | 0% |
Jiuzhuoshui River Drainage | 0% | 1% | 9% | 0% | 0% | 1% | 1% | 3% | 2% |
Qingshui River SubsidiaryDrainage | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Maoluo River | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Total | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-H.; Chang, T.-C.; Chien, H.-C.; Wang, Z.-S.; Chang, Y.-C.; Wang, Y.-L.; Hsi, H.-C. Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan. Minerals 2021, 11, 416. https://doi.org/10.3390/min11040416
Huang S-H, Chang T-C, Chien H-C, Wang Z-S, Chang Y-C, Wang Y-L, Hsi H-C. Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan. Minerals. 2021; 11(4):416. https://doi.org/10.3390/min11040416
Chicago/Turabian StyleHuang, Shih-Han, Tien-Chin Chang, Hui-Chen Chien, Zih-Sin Wang, Yen-Chen Chang, Ying-Lin Wang, and Hsing-Cheng Hsi. 2021. "Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan" Minerals 11, no. 4: 416. https://doi.org/10.3390/min11040416
APA StyleHuang, S. -H., Chang, T. -C., Chien, H. -C., Wang, Z. -S., Chang, Y. -C., Wang, Y. -L., & Hsi, H. -C. (2021). Comprehending the Causes of Presence of Copper and Common Heavy Metals in Sediments of Irrigation Canals in Taiwan. Minerals, 11(4), 416. https://doi.org/10.3390/min11040416