Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Experiment Methods
3. Results and Discussion
3.1. Reduction Behavior of Cohesive Zone
3.2. Reduction Behavior of Melting-Dripping Zone
3.3. Softening-Melting-Dripping Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.T.; Zhou, M.; Tang, W.D.; Jiang, T.; Xue, X.X.; Zhang, W.J. Influence of coke ratio on the sintering behavior of high-chromium vanadium–titanium magnetite. Minerals 2017, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.J.; Gao, Z.X.; Yang, H.; Xue, X.X. Effect of calcium oxide on the crushing strength, reduction, and smelting performance of high-chromium vanadium-titanium magnetite pellets. Metals 2017, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- He, Z.W.; Yue, H.R.; Xue, X.X. Study of the high temperature metallurgical properties of on-site samples with vanadium-titanium magnetite. Trans. Indian Inst. Met. 2018, 71, 2001–2013. [Google Scholar] [CrossRef]
- Kemppainen, A.; Ohno, K.; Iljana, M.; Mattila, O.; Paananen, T.; Heikkinen, E.; Maeda, T.; Kunitomo, K.; Fabritius, T. Softening behaviors of acid and olivine fluxed iron ore pellets in the cohesive zone of a blast furnace. ISIJ Int. 2015, 55, 2039–2046. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.D.; Yang, S.T.; Cheng, G.J.; Gao, Z.X.; Yang, H.; Xue, X.X. Effect of TiO2 on the sintering behavior of chromium-bearing vanadium-titanium magnetite. Minerals 2018, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Ostrovski, O. Effects of preoxidation of titania-ferrous ore on the ore structure and reduction behavior. ISIJ Int. 2004, 44, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.T.; Tang, W.D.; Zhou, M.; Jiang, T.; Xue, X.X.; Zhang, W.J. Effects of dolomite on mineral compositions and metallurgical properties of chromium-bearing vanadium–titanium magnetite sinter. Minerals 2017, 7, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.H.; Zeng, F.H. Reduction mechanisms of vanadium-titanomagnetite-non-coking coal mixed pellet. Ironmak. Steelmak. 2011, 38, 59–64. [Google Scholar] [CrossRef]
- Zhen, Y.L.; Zhang, G.H.; Chou, K.C.; Mills, K. Influence of TiN on viscosity of CaO-MgO-Al2O3-SiO2-(TiN) suspension system. Metall. Trans. B 2015, 54, 340–348. [Google Scholar] [CrossRef]
- Zhang, L.H.; Yang, S.T.; Tang, W.D.; Xue, X.X. Investigations of MgO on sintering performance and metallurgical property of high-chromium vanadium-titanium magnetite. Minerals 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Frohlichova, M.; Findorak, R.; Legemza, J. Structural analysis of sinter with titanium addition. Arch. Metall. Mater. 2013, 58, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.G.; Xie, H.E. Progress in technologies of vanadium-bearing titanomagnetite smelting in PanGang. Steel Res. Int. 2011, 82, 501–504. [Google Scholar] [CrossRef]
- Cheng, G.J.; Xue, X.X.; Jiang, T.; Duan, P.N. Effect of TiO2 on the Crushing Strength and Smelting Mechanism of High-Chromium Vanadium-Titanium Magnetite Pellets. Metall. Trans. B 2016, 47, 1713–1726. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, T.; Yang, S.T.; Xue, X.X. Sintering behaviors and consolidation mechanism of high-chromium vanadium and titanium magnetite fines. Int. J. Min. Met. Mater. 2015, 22, 917–925. [Google Scholar] [CrossRef]
- Yue, H.R.; He, Z.W.; Jiang, T.; Duan, P.N.; Xue, X.X. Rheological evolution of Ti-bearing slag with different volume fractions of TiN. Metall. Trans. B 2018, 49, 2118–2127. [Google Scholar] [CrossRef]
- Yue, H.R.; Jiang, T.; Zhang, Q.Y.; Duan, P.N.; Xue, X.X. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500A degrees C. Int. J. Min. Met. Mater. 2017, 24, 768–775. [Google Scholar] [CrossRef]
- Wei, W.; Yue, H.R.; Xue, X.X. Diffusion coefficient of Ti(4+)in calcium ferrite/calcium titanate diffusion couple. Int. J. Min. Met. Mater. 2020, 27, 1216–1225. [Google Scholar] [CrossRef]
- Ledzki, A.; Migas, P.; Stachura, R.; Klimczyk, A.; Bernasowski, M. Chemical and phase characteristics of titanium compounds produced in iron blast furnace dripping zone. Arch. Metall. Mater. 2009, 54, 129–135. [Google Scholar]
Items | TFe/wt% | V2O5/wt% | TiO2/wt% | Cr2O3/wt% | CaO/wt% | SiO2/wt% | Al2O3/wt% | MgO/wt% | CaO/SiO2 |
---|---|---|---|---|---|---|---|---|---|
HJ Sinter | 46.98 | 0.36 | 1.63 | 0.25 | 16.28 | 5.40 | 1.91 | 3.04 | 3.01 |
CJ Sinter | 56.58 | 0.37 | 1.92 | 0.22 | 11.03 | 5.62 | 1.53 | 3.70 | 1.96 |
PJ Sinter | 50.20 | 0.37 | 7.88 | 0.11 | 9.99 | 5.71 | 3.17 | 2.57 | 1.75 |
HJ Pellet | 60.83 | 0.64 | 2.68 | 0.64 | 0.58 | 6.37 | 2.48 | 2.06 | 0.09 |
CJ Pellet | 59.71 | 0.52 | 4.91 | 0.32 | 1.93 | 5.01 | 1.71 | 1.57 | 0.39 |
PJ Pellet | 53.41 | 0.52 | 9.90 | 0.22 | 1.91 | 6.11 | 3.55 | 2.50 | 0.31 |
HJ Burden | 53.21 | 0.49 | 2.10 | 0.43 | 9.22 | 5.84 | 2.17 | 2.60 | 1.58 |
CJ Burden | 57.49 | 0.41 | 2.79 | 0.25 | 8.39 | 5.44 | 1.58 | 3.08 | 1.54 |
PJ Burden | 50.60 | 0.39 | 8.13 | 0.12 | 8.97 | 5.76 | 3.22 | 2.56 | 1.56 |
Fixed Carbon /wt% | Volatile/wt% | SiO2/wt% | CaO/wt% | MgO/wt% | Al2O3/wt% | S/wt% | Others/wt% |
---|---|---|---|---|---|---|---|
84.58 | 0.50 | 7.50 | 0.48 | 0.15 | 2.72 | 0.492 | 3.578 |
Temperature (°C) | 0–500 | 500–900 | 900–1100 | 1100–End |
---|---|---|---|---|
Heating rate (°C/min) | 10 | 10 | 2 | 5 |
Heating time (min) | 50 | 40 | 100 | 100 |
Gas composition and flow rate (L·min–1) | 100% N2, 5 | 70% N2, 3.5; 30% CO, 1.5 |
Content | T4/°C | T40/°C | (T40 − T4)/°C | Ts/°C | Td/°C | (Td − Ts)/°C | ΔPm/Pa | S/(kPa·°C) |
---|---|---|---|---|---|---|---|---|
HJ Burden | 1082 | 1225 | 143 | 1272 | 1480 | 208 | 32766 | 2056.5 |
CJ Burden | 1121 | 1255 | 134 | 1269 | 1471 | 202 | 22288 | 2042.1 |
PJ Burden | 1130 | 1211 | 81 | 1226 | 1490 | 264 | 22685 | 2532.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Hu, X.; Lan, M.; Liu, J.; Cheng, G.; Xue, X.; Chou, K. Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace. Minerals 2021, 11, 418. https://doi.org/10.3390/min11040418
He Z, Hu X, Lan M, Liu J, Cheng G, Xue X, Chou K. Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace. Minerals. 2021; 11(4):418. https://doi.org/10.3390/min11040418
Chicago/Turabian StyleHe, Zhanwei, Xiaojun Hu, Mo Lan, Jianxing Liu, Gongjin Cheng, Xiangxin Xue, and Kouchih Chou. 2021. "Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace" Minerals 11, no. 4: 418. https://doi.org/10.3390/min11040418
APA StyleHe, Z., Hu, X., Lan, M., Liu, J., Cheng, G., Xue, X., & Chou, K. (2021). Empirical Study on Reduction Behavior and Metallurgical Properties of Vanadia–Titania Magnetite in Blast Furnace. Minerals, 11(4), 418. https://doi.org/10.3390/min11040418