Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Data Analysis with MGC
3. Results and Discussion
3.1. Ruby Single Crystal
3.2. Deformation of San Carlos Olivine
3.3. α → γ Phase Transition
Phase | Space Group | a (Å) | b (Å) | c (Å) | Volume (Å3) |
---|---|---|---|---|---|
α-olivine(ambient) * | Pbnm | 4.7532(4) | 10.2215(3) | 5.9916(4) | 291.10(2) |
α-olivine(ambient) [58] | Pbnm | 4.7631(14) | 10.2272(9) | 5.9944(10) | 292.01(10) |
α-olivine(0.1 GPa) * | Pbnm | 4.7413(4) | 10.2184(3) | 5.9887(4) | 290.09(3) |
α-olivine(0.65 GPa) * | Pbnm | 4.7413(4) | 10.2113(4) | 5.9713(5) | 289.09(2) |
α-olivine(0.75 GPa) * | Pbnm | 4.7413(5) | 10.2119(4) | 5.9874(5) | 289.94(2) |
Β-wadsleyite [59] | Imma | 5.6983(4) | 11.4380(7) | 8.2566(8) | 538.14 |
γ-ringwoodite (15 GPa) * | Fd3m | 7.9097(3) | - | - | 494.863(2) |
γ-ringwoodite [60] | Fd3m | 8.0649(1) | - | - | 524.522(2) |
ε-phase (15 GPa) * | Pmma | 5.7393(3) | 2.8112(3) | 8.3399(3) | 134.563(2) |
ε-phase (ambient) [54] | Pmma | 5.78(8) | 2.88(3) | 8.33(14) | 139(6) |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordier, P.; Demouchy, S.; Beausir, B.; Taupin, V.; Barou, F.; Fressengeas, C. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 2014, 507, 51–56. [Google Scholar] [CrossRef]
- Long, H.; Weidner, D.J.; Li, L.; Chen, J.; Wang, L. Deformation of olivine at subduction zone conditions determined from in situ measurements with synchrotron radiation. Phys. Earth Planet. Int. 2011, 186, 23–35. [Google Scholar] [CrossRef]
- Couvy, H.; Frost, D.J.; Heidelbach, F.; Nyilas, K.; Ungar, T.; Mackwell, S.; Cordier, P. Shear deformation experiments of forsterite at 11 GPa—1400 °C in the multianvil apparatus. Eur. J. Min. 2004, 16, 877–889. [Google Scholar] [CrossRef]
- Li, L.; Weidner, D.; Raterron, P.; Chen, J.; Vaughan, M. Stress measurements of deforming olivine at high pressure. Phys. Earth Planet. Int. 2004, 143–144, 357–367. [Google Scholar] [CrossRef]
- Durham, W.B.; Ricoult, D.L.; Kohlstedt, D.L. Interaction of slip systems in olivine. In Point Defects in Minerals; Schock, R.N., Ed.; American Geophysical Union Monograph 31; AGU: Washington, DC, USA, 1985; pp. 185–193. [Google Scholar]
- Hansen, L.N.; Zhao, Y.H.; Zimmerman, M.E.; Kohlstedt, D.L. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet. Sci. Lett. 2014, 387, 157–158. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Goetze, C. Low-stress high-temperature creep in olivine single crystals. J. Geophys. Res. 1974, 79, 2045–2051. [Google Scholar] [CrossRef]
- Mainprice, D.; Tommasi, A.; Couvy, H.; Cordier, P.; Frost, D.J. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature 2005, 433, 731–733. [Google Scholar] [CrossRef]
- Durinck, J.; Devincre, B.; Kubin, L.; Cordier, P. Modeling the plastic deformation of olivine by dislocation dynamics simulations. Am. Min. 2007, 92, 1346–1357. [Google Scholar] [CrossRef]
- Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing. Sci. Adv. 2016, 2, e1501671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, B.; Goetze, C. The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J. Geophys. Res. Solid Earth 1979, 84, 5505–5524. [Google Scholar] [CrossRef]
- Raterron, P.; Wu, Y.; Weidner, D.J.; Chen, J. Low-temperature olivine rheology at high pressure. Phys. Earth Planet. Int. 2004, 145, 149–159. [Google Scholar] [CrossRef]
- Proietti, A.; Bystricky, M.; Guignard, J.; Béjina, F.; Crichton, W. Effect of pressure on the strength of olivine at room temperature. Phys. Earth Planet. Int. 2016, 259, 34–44. [Google Scholar] [CrossRef]
- Meade, C.; Jeanloz, R. The strength of mantle silicates at high pressures and room temperature: Implications for the viscosity of the mantle. Nature 1990, 348, 533–535. [Google Scholar] [CrossRef]
- Ringwood, A.E. Phase Transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 1982, 90, 611–643. [Google Scholar] [CrossRef]
- Chai, M.; Brown, J.M.; Wang, Y. Yield strength, slip systems and deformation induced phase transition of San Carlos olivine up to the transition zone pressure at room temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature; Manghnani, M.H., Yagi, T., Eds.; American Geophysical Union Monograph 101; AGU: Washington, DC, USA, 1998; pp. 483–493. [Google Scholar]
- Fujino, K.; Irifune, T. TEM studies on the olivine to modified spinel transformation in Mg2SiO4. In High-Pressure Research: Application to Earth and Planetary Sciences; Manghani, M.H., Ed.; Manghani, M.H., Ed.; American Geophysical Union Monograph 67; AGU: Washington, DC, USA, 1992; pp. 237–243. [Google Scholar]
- Chien-Min, S.; Burns, R.G. Kinetics of high-pressure phase transformations: Implications to the evolution of the olivine → spinel transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics 1976, 31, 1–32. [Google Scholar] [CrossRef]
- Wang, Y.; Guyot, F.; Liebermann, R.C. Electron microscopy of (Mg, Fe)SiO3. Perovskite: Evidence for structural phase transitions and implications for the lower mantle. J. Geophys. Res. Solid Earth 1992, 97, 12327–12347. [Google Scholar] [CrossRef]
- Burnley, P.C.; Green, H.W. Stress dependence of the mechanism of the olivine–spinel transformation. Nature 1989, 338, 753–756. [Google Scholar] [CrossRef]
- Yamazaki, D.; Yoshino, T.; Nakakuki, T. Interconnection of ferro-periclase controls subducted slab morphology at the top of the lower mantle. Earth Planet. Sci. Lett. 2014, 403, 352–357. [Google Scholar] [CrossRef]
- Kasemer, M.; Zepeda-Alarcon, E.; Carson, R.; Dawson, P.; Wenk, H.-R. Deformation heterogeneity and intragrain lattice misorientations in high strength contrast dual-phase bridgmanite/periclase. Acta Mater. 2020, 121, 284–298. [Google Scholar] [CrossRef]
- Marquardt, H.; Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 2015, 8, 311–314. [Google Scholar] [CrossRef]
- Sørensen, H.O.; Schmidt, S.; Wright, J.P.; Vaughan, M.; Techert, S.; Garman, E.F.; Oddershede, J.; Davaasambuu, J.; Paithankar, K.S.; Gundlach, C.; et al. Multigrain crystallography. Z. Krist. 2012, 227, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.F.; Garbe, S.; Lorentzen, T.; Jensen, D.J.; Poulsen, F.W.; Andersen, N.H.; Frello, T.; Feidenhans’l, R.; Graafsma, H. Applications of high-energy synchrotron radiation for structural studies of polycrystalline materials. J. Synch. Radiat. 1997, 4, 147–154. [Google Scholar] [CrossRef]
- Chandler, B.; Bernier, J.; Diamond, M.; Kunz, M.; Wenk, H.-R. Exploring microstructures in lower mantle mineral assemblages with synchrotron X-rays. Sci. Adv. 2021, 7, eabd3614. [Google Scholar] [CrossRef]
- Rosa, A.D.; Hilairet, N.; Ghosh, S.; Perrillat, J.-P.; Garbarino, G.; Merkel, S. Evolution of grain sizes and orientations during phase transitions in hydrous Mg2SiO4. J. Geophys. Res. Solid Earth. 2016, 121, 7161–7176. [Google Scholar] [CrossRef]
- Rosa, A.D.; Hilairet, N.; Ghosh, S.; Garbarino, G.; Jacobs, J.; Perrillat, J.-P.; Vaughan, G.; Merkel, S. In situ monitoring of phase transformation mcrostructures at earth’s mantle pressure and temperature using multi-grain XRD. J. Appl. Cryst. 2015, 48, 1346–1354. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, L. In situ determination of crystal structure and chemistry of minerals at Earth’s deep lower mantle conditions. Mat. Radiat. 2017, 2, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Meng, Y.; Yang, W.; Wang, L.; Mao, W.L.; Zeng, Q.-S.; Jeong, J.S.; Wagner, A.J.; Mkhoyan, K.A.; Liu, W.; et al. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 2014, 344, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Popov, D.; Meng, Y.; Wang, J.; Ji, C.; Li, B.; Mao, H. In-situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary. Am. Mineral. 2016, 101, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Kantor, L.; Prakapenka, V.; Kantor, A.; Dera, P.; Kurnosov, A.; Sinogeikin, S.; Dubrovinskaia, N.; Dubrovinsky, L. BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Inst. 2012, 83, 125102. [Google Scholar] [CrossRef] [PubMed]
- Prescher, C.; Prakapenka, V. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Knittle, E.; Jeanloz, R. Synthesis and equation of state of (Mg,Fe) SiO3 perovskite to over 100 gigapascals. Science 1987, 235, 668–670. [Google Scholar] [CrossRef]
- Kunz, M.; Yan, J.; Cornell, E.; Domning, E.E.; Yen, C.E.; Doran, A.; Beavers, C.M.; Treger, A.; Williams, Q.; MacDowell, A.A. Implementation and application of the peak scaling method for temperature measurement in the laser heated diamond anvil cell. Rev. Sci. Inst. 2018, 89, 083903. [Google Scholar] [CrossRef] [Green Version]
- Fei, Y.; Orman, J.V.; Li, J.; Westrenen, W.; van Sanloup, C.; Minarik, W.; Hirose, K.; Komabayashi, T.; Walter, M.; Funakoshi, K. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Bernier, J.V.; Barton, N.R.; Lienert, U.; Miller, M.P. Far-field high-energy diffraction microscopy: A tool for intergranular orientation and strain analysis. J. Strain Anal. Eng. Des. 2011, 46, 527–547. [Google Scholar] [CrossRef]
- Bernier, J.V.; Suter, R.M.; Rollett, A.D.; Almer, J.D. High-energy X-ray diffraction microscopy in materials science. Annu. Rev. Mater. Res. 2020, 50, 395–436. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture analysis with MTEX—Free and open-source software toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Mainprice, D.; Hielscher, R.; Schaeben, H. Calculating anisotropic physical properties from texture data using the MTEX open-source package. Geo. Soc. Lond. Spec. Publ. 2011, 360, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Vinet, N.; Flemming, R.L.; Higgins, M.D. Crystal structure, mosaicity, and strain analysis of Hawaiian olivines using in situ X-ray diffraction. Am. Min. 2011, 96, 486–497. [Google Scholar] [CrossRef]
- Mussi, A.; Cordier, P.; Demouchy, S.; Vanmansart, C. Characterization of the glide planes of the [1] screw dislocations in olivine using electron tomography. Phys. Chem. Min. 2014, 41, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Wenk, H.-R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr. 2014, 29, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Abramson, E.H.; Brown, J.M.; Slutsky, L.J.; Zaug, J. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res. Solid Earth 1997, 102, 12253–12263. [Google Scholar] [CrossRef]
- Liu, A.F. Mechanics and Mechanisms of Fracture: An Introduction; ASM International: Geauga County, OH, USA, 2005. [Google Scholar]
- Weidner, D.J.; Wang, Y.; Chen, G.; Ando, J.; Vaughan, M.T. Rheology measurements at high pressure and temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature; Manghnani, M.H., Yagi, T., Eds.; American Geophysical Union Monograph 101; AGU: Washington, DC, USA, 1998; pp. 473–482. [Google Scholar]
- Kumamoto, K.M.; Thom, C.A.; Wallis, D.; Hansen, L.N.; Armstrong, D.E.J.; Warren, J.M.; Goldsby, D.L.; Wilkinson, A.J. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Sci. Adv. 2017, 3, e1701338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.-C.; Bassett, W.A. Measuring deviatoric stress in the diamond anvil cell using two X-ray diffraction geometries. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 1994; Volume 309, pp. 1625–1628. [Google Scholar] [CrossRef]
- Raterron, P.; Chen, J.; Weidner, D.J. A process for low-temperature olivine-spinel transition under quasi-hydrostatic stress. Geophys. Res. Lett. 2002, 29, 36-1–36-4. [Google Scholar] [CrossRef]
- Chen, J.; Inoue, T.; Weidner, D.J.; Wu, Y.; Vaughan, M.T. Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys. Res. Lett. 1998, 25, 575–578. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Ischia, G.; Nishiyama, N.; Wang, Y.; Uchida, T. Texture development and deformation mechanisms in ringwoodite. Phys. Earth Planet. Int. 2005, 152, 191–199. [Google Scholar] [CrossRef]
- Madon, M.; Poirier, J.P. Transmission electron microscope observation of α, β and γ (Mg,Fe)2SiO4 in shocked meteorites: Planar defects and polymorphic transitions. Phys. Earth Planet. Int. 1983, 33, 31–44. [Google Scholar] [CrossRef]
- Kerschhofer, L.; Sharp, T.G.; Rubie, D.C. Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science 1996, 274, 79–81. [Google Scholar] [CrossRef]
- Tomioka, N.; Okuchi, T. A new high-pressure form of Mg2SiO4 highlighting diffusionless phase transitions of olivine. Sci. Rep. 2017, 7, 17351. [Google Scholar] [CrossRef]
- Tomioka, N.; Okuchi, T.; Miyahara, M.; Iitaka, T.; Purevjav, N.; Tani, R.; Kodama, Y. Topotaxial Intergrowths of Epsilon-(Mg,Fe)2SiO4 in Wadsleyite and Ringwoodite in Shocked Chondrites. In Proceedings of the 82nd Annual Meeting of The Meteoritical Society, Sapporo, Japan, 7–12 July 2019; p. 6007, No. 2157. [Google Scholar]
- Spencer, L.J. The Tenham (Queensland) meteoritic shower of 1879 (With Plates XIV–XVII). Min. Mag. J. Min. Soc. 1937, 24, 437–452. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Min. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Zha, C.; Duffy, T.S.; Downs, R.T.; Mao, H.; Hemley, R.J. Brillouin scattering and X-ray diffraction of San Carlos olivine: Direct pressure determination to 32 GPa. Earth Planet. Sci. Lett. 1998, 159, 25–33. [Google Scholar] [CrossRef]
- Horiuchi, H.; Sawamoto, H. β-Mg2SiO4: Single-crystal X-ray diffraction study. Am. Mineral. 1981, 66, 568–575. [Google Scholar]
- Sasaki, S.; Prewitt, C.T.; Sato, Y.; Ito, E. Single-crystal x ray study of γ Mg2SiO4. J. Geophys. Res. Solid Earth 1982, 87, 7829–7832. [Google Scholar] [CrossRef]
- Tyrrell, H.J.V.; College, R. Thermal diffusion potentials and the Soret effect. Nature 1954, 173, 264–265. [Google Scholar] [CrossRef]
h | k | l | d-Spacing (Å) |
---|---|---|---|
1 | 0 | −3 | 2.497 |
0 | 0 | −4 | 1.958 |
−2 | 1 | −1 | 2.115 |
3 | −1 | −1 | 1.569 |
0 | 0 | −6 | 1.387 |
4 | 0 | −2 | 1.350 |
0 | 0 | 3 | 2.785 |
−1 | 0 | 3 | 2.486 |
1 | −1 | 2 | 2.153 |
−1 | −1 | 4 | 1.596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandler, B.; Devoe, M.; Kunz, M.; Wenk, H.-R. Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature. Minerals 2021, 11, 424. https://doi.org/10.3390/min11040424
Chandler B, Devoe M, Kunz M, Wenk H-R. Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature. Minerals. 2021; 11(4):424. https://doi.org/10.3390/min11040424
Chicago/Turabian StyleChandler, Brian, Michelle Devoe, Martin Kunz, and Hans-Rudolf Wenk. 2021. "Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature" Minerals 11, no. 4: 424. https://doi.org/10.3390/min11040424
APA StyleChandler, B., Devoe, M., Kunz, M., & Wenk, H. -R. (2021). Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature. Minerals, 11(4), 424. https://doi.org/10.3390/min11040424