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Abstract: Despite its effectiveness in determining breakage function parameters (BFPs) for quan-
tifying breakage characteristics in mineral grinding processes, the back-calculation method has
limitations owing to the uncertainty regarding the distribution of the error function. In this work,
using Korean uranium and molybdenum ores, we show that the limitation can be overcome by
searching over a wide range of initial values based on the conjugate gradient method. We also
visualized the distribution of the sum of squares of the error in the two-dimensional parameter
space. The results showed that the error function was strictly convex, and the main problem in the
back-calculation of the breakage functions was the flat surface of the objective function rather than
the occurrence of local minima. Based on our results, we inferred that the flat surface problem could
be significantly mitigated by searching over a wide range of initial values. Back-calculation using a
wide range of initial values yields BFPs similar to those obtained from single-sized-feed breakage
tests (SSFBTs) up to four-dimensional parameter spaces. Therefore, by searching over a wide range
of initial values, the feasibility of the back-calculation approach can be significantly improved with a
minimum number of SSFBTs.

Keywords: breakage parameters; back-calculation; error distribution; wide-range searching; popula-
tion balance model; conjugate gradient method

1. Introduction

Grinding, one of the most important unit operations in the field of mineral processing,
is a very energy-inefficient process. More than 50% of the total energy required for all the
mineral processing operations is used in the grinding stage, and only 10–20% of the input
energy is used for actual size reduction [1]. Therefore, owing to its inefficiency, grinding
has been an important research subject in the field of mineral processing.

Mathematical breakage modeling has been used as an efficient tool to characterize
the grinding process. In a breakage model, the material- and device-specific breakage
properties are characterized based on several parameters using the breakage function [2].
Classical breakage models only provide empirical size–energy relationships based on the
proportionality between the energy and surface area [3], size reduction ratio [4], or length
of new cracks [5]. In contrast, kinetic grinding (KG) models based on material balance
enable predicting the product size distribution from the given feed-size distribution and
time [6–9]. In recent years, mechanistic models such as the discrete element method have
been extensively used for microscopic analysis of the grinding process, equipment design,
and optimization of the operating conditions [10–16]. In this work, we focused on opti-
mization issues using the population balance model. There are two representative grinding
models that have been widely used in the field of mineral processing. KG models [6,7,9]
are based on mathematical modeling of the population balance using grinding kinetics.

Minerals 2021, 11, 425. https://doi.org/10.3390/min11040425 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-3198-1388
https://doi.org/10.3390/min11040425
https://doi.org/10.3390/min11040425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11040425
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min11040425?type=check_update&version=2


Minerals 2021, 11, 425 2 of 17

The Julius Kruttschnitt Mineral Research Centre (JKMRC) grinding model [17–23] uses
the relationship between the energy and product size distribution, usually obtained via
single-particle breakage tests using a drop weight or pendulum. The KG and JKMRC
models can be transformed into each other under special conditions.

This work is based on the KG model developed by Austin, Luckie [6,7], and Reid [9].
The basic concept of the models has been used in numerous studies to characterize the
grinding properties of various materials with various operating variables in ball mills, in
terms of the breakage rate and the breakage distribution [24–29].

In a KG model, the breakage process is considered a rate process and decoupled into
two basic functions: Breakage rate function and breakage distribution function. These
two functions mainly depend on the material properties, mill dimensions, and operating
conditions. They are generally determined via a set of laboratory-scale breakage tests with
single-sized feeds. For determining the breakage rate function, feed particles are separated
into
√

2 sieve fractions. To verify the breakage kinetics, a single size fraction is ground for
a specified amount of time. The fraction of unground particles is then measured. Grinding
and sieving are repeated with varying grinding times to obtain time-series data, and then
the breakage rate for the given size fraction is estimated from the time-series data. Then,
the process must be repeated for different size fractions to obtain a comprehensive set of
breakage rates as a function of size.

Determining the breakage function is an extremely tedious and long process as it
requires measuring breakage rates for a wide range of particles with single size fractions.
The breakage functions obtained from laboratory-scale experiments need to be corrected
for use in an industrial grinding circuit. To establish correlations between lab-scale and
industrial mills, empirical equations are used for determining the dependence of the
breakage parameters on ball/mill dimensions and operating variables. When scaling up
the model parameters from lab-scale to industrial mills, additional errors can occur [2].

To minimize the high costs associated with experimental work, back-calculation of
BFPs from the size distributions with various grinding times is proposed [30]. The approach
has advantages such as minimized experimental work and applicability for cases where
direct determination of the breakage rate and breakage distribution function is not possible.
Moreover, the method has been applied in designing various grinding processes [25,31–33].

In principle, back-calculation of breakage parameters is an optimization process from
a mathematical perspective, and several issues such as the locality of optimum have been
addressed. If the error function defined by the square sum of the difference between the
experimental and calculated values has multiple convex point sets depending on the initial
guess of parameters, then back-calculation may fail by ending up in the local minimum.
If the objective function surface is flat around the optimum, then convergence may fail
before approaching the optimum. Owing to the uncertainty regarding the shape of the
objective function during back-calculation, the use of this method has been limited to
that of an auxiliary tool to fine-tune the values obtained from single-sized-feed breakage
tests (SSFBTs). Instead, the information from grinding experiments is used to obtain the
best results. In such cases, the degree to which the experimental work can be reduced
is very limited, and the process of determining the breakage function again becomes
extremely tedious.

Earlier, when the back-calculation approach was first proposed for particle comminu-
tion in mineral processing, the distribution of the objective function in the back-calculation
of the parameters for determining the breakage function was not understood clearly owing
to computational limitations. If an optimal parameter search is conducted over a wide
range of possible parameter values (wide-range initial value search, WRIVS, hereinafter),
the computational load on a single processor increases by the order of Nd

Np , where Np
and Nd are the number of parameters and number of discrete points for each parameter,
respectively. For a breakage model, five to seven parameters are normally required [2];
hence, assuming 100 discrete points for each parameter increases the number of searching
points up to 1010–1014. Owing to the recent advances in parallel processing, multithread
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computing using several threads that correspond to the numbers mentioned above is
possible on a personal computer. Given that breakage parameter determination does not
have to be carried out in a short period of time, the magnitude of the computational load
required for global searching of the breakage function is in the acceptable range. The
WRIVS strategy therefore is currently accessible with sufficiently high resolution without
any major concern with regard to the computational cost.

In this work, the feasibility of the wide-range search approach for identifying the BFPs
with minimum or no SSFBTs was assessed. To this end, a parallel processing code that
optimizes the BFPs was developed based on the conjugate gradient method. The error
function distribution during back-calculation of the breakage parameters was analyzed.
The shape of the error function under the condition in which two parameters are variable
while the other parameters are fixed was visualized and analyzed. For convenience, the
real coordinate space with the coordinates of the BFPs will be referred to as the parameter
space hereafter. For example, the error function distribution when two parameters vary
while the others remain fixed will be referred to as the error function distribution in a
two-dimensional parameter space.

Next, a WRIVS in the parameter space extending up to five dimensions was conducted,
and the resultant parameters that minimized the error were compared with the parameters
obtained from the SSFBTs.

2. Materials and Methods
2.1. Methodology

While the essential details of the equations for the KG approach are described in detail
in the present paper, further information on these equations can be referred from Austin,
Klimpel and Luckie [2].

In the kinetic approach for modeling the grinding process, the breakage processes
are described using two basis functions, namely the specific rate of breakage and primary
breakage distribution. Experimental batch grinding results typically demonstrate that the
rate of breakage follows first-order kinetics, which can be written in the mathematical form
as follows:

dwi(t)
dt

= −Siwi(t), (1)

where Si is the specific rate of breakage of a material in size class i, and wi(t) is the weight
fraction at time t. The size dependence of the specific rate of breakage can be empirically
expressed using the following functional form:

Si = A
(

xi
xo

)α 1

1 +
(

xi
µ

)λ
, (2)

where xi is the representative size of size class i, and xo is the standard size that is typically
1 mm. A, α, µ, and λ are model parameters. A represents the overall rate at which particles
can be broken into smaller sizes, whereas α represents the size dependence of the specific
rate of breakage. The second part on the right-hand side that includes µ and λ is the
correction term that describes the decrease in the specific rate of breakage as the particle
size exceeds the normal range to be broken efficiently by the balls. If the ball size is
sufficiently large compared to the particle size, the second term becomes equal to one and
Equation (2) can be reduced to

Si = A
(

xi
xo

)α

, (3)

The breakage of a particle produces an entire range of progeny particles. Particle
breakage involves a combined mechanism including impact, compression, chipping, and
abrasion. The cumulative distribution of the daughter fragments that can be produced from
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the combined mechanism can be conveniently described using a parametric functional
form as follows:

Bij =

ϕ
(

xi−1
xj

)γ
+ (1− ϕ)

(
xi−1

xj

)β
, N ≥ i > j > 1

1 , i = j
, (4)

where Bij is the weight fraction that appears size under i from the primary breakage (with
no refracture) of a particle with size j, and N is the total number of size classes. ϕ, γ, and
β are model parameters. γ describes how progeny particles produced purely through
impact/compression breakage are distributed. ϕ and β indicate the major breakage mecha-
nisms. For example, if the breakage mechanism is fully dominated by impact/compression,
then ϕ converges to one or β converges to γ.

By combining functions S and B, we can describe the complete size–mass balance in a
batch grinding system. The transition rate of the weight fraction of particles with size i is
given as follows:

dwi(t)
dt

= −Siwi(t) +
i−1

∑
j=1

bijSjwj(t), (5)

The first term on the right-hand side describes the transition rate of the weight fraction
to smaller sizes through grinding, whereas the second term with the sigma notation
indicates the increase in size class i owing to the breakage of larger particles. The solution
of Equation (5) based on the mass balance can be written as follows [9]:

wi(t) =
i

∑
j=1

aij exp
(
−Sjt

)
aij =


wi(0)−∑i−1

k=1 aik, i = j

1
Si−Sj

∑i−1
k=j Skbikakj i > j

. (6)

For a known feed-size distribution, the seven breakage parameters in Equations
(2) and (4), i.e., X = (A, α, µ, λ, ϕ, γ, β) or five parameters in the reduced form, i.e.,
X = (A, α, ϕ, γ, β) fully determine the solution of Equation (6). These parameters depend
on the material properties, equipment, and operating conditions. The breakage functions
determined in the lab can be scaled up to the plant level by correlating the change in
the breakage functions through empirical relationships [2], and they can be extended to
describe continuous mill models by combining with additional sub-models such as the
residence time distribution [34] and classifier models [35].

The breakage parameters are determined via a set of SSFBTs. The process requires
repetitive grinding and classification to investigate the kinetics of breakage for a single-sized
feed, and this process must be repeated for several size classes of the feed to investigate the
size dependence of the breakage functions. Therefore, this process requires considerable
experimental costs and time.

A nonlinear optimization process using grinding data from various grinding processes
can be used to mitigate the experimental costs [30]. However, given that the relationship
between the grinding parameters and product size distribution is highly nonlinear, the
accuracy of back-calculation can be affected because of a poorly chosen initial guess,
and there are possibilities of obtaining similar results from different combinations of
breakage parameters. Many back-calculation processes involving a large number of vari-
ables have shown that the accuracy decreases as the number of variables to be optimized
increases [25,30–32]. While these researchers presumed that the accuracy decreased owing
to the change in the shape of the objective function with the increase in the number of
optimization variables, their presumption has not been validated by further studies. The
shape of the objective function in the back-calculation process has been poorly understood
owing to computational limitations.

Several nonlinear programming approaches are available for back-calculation. In this
work, the conjugate gradient method [36] was used, given that Equation (4) is differentiable
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with respect to any of the breakage parameters. Compared to a derivative-free optimization
method used in previous studies such as the simplex method, our approach can reduce the
computational costs required for the solution to converge.

E, the error function or optimization cost function, can be determined by the sum
of squares (SSQ) of the difference between the cumulative weight fraction of the grind-
ing product from the experimental result and model-predicted value. The optimization
function is mathematically expressed as follows:

minimize E = SSQ = ∑
r

∑
i

(
(Pi)pred − (Pi)exp

)2
, (7)

where Pi is the weight fraction of the grinding products smaller than size i, and r is the
number of pairs used. In this work, data pertaining to three single-sized feeds and six
grinding times were used, and therefore, the number of pairs used for optimizing the input
is r = 6C2 × 3 = 45, where nCk denotes the number of k-combinations from a given set of
n elements.

When credible data for some of the parameters are available, the accuracy of the
back-calculation method can be enhanced by reducing the number of parameters to be
back-calculated. For example, using three known parameters, namely ϕ, γ, and β, back-
calculation can be conducted only for four parameters, i.e., A, α, µ, and λ; moreover, in this
case, the credibility and efficiency of back-calculation can be enhanced compared to that
when searching seven parameters.

2.2. Experimental

The experimental conditions are listed in Table 1. Two ore samples were collected and
used for the experiments. The representative molybdenum ore sample was collected from
the Jecheon mine, and the uranium ore sample was collected from the Okcheon belt, Korea.
Large lumps of ores were crushed in a jaw crusher and separated into

√
2 fractions using a

Ro-Tap sieve shaker. Three size classes (1180 × 834 µm, 590 × 417 µm, and 295 × 209 µm)
were selected for the grinding tests. A lab-scale ball mill with an internal dimeter of 200 mm
and length of 165 mm was used for the grinding tests (Figure 1). Inside the mill chamber,
six half-cylinder-shaped lifters with a diameter of 25 mm are symmetrically located in
the horizontal direction. Stainless-steel ball bearings with a diameter of 25.4 mm and
density of 7840 kg/m3 are used as the grinding media. The chamber was filled with balls
corresponding to a chamber volume fraction of 0.2 and material corresponding to 50% of
the volume of the interstitial void space in the ball bed. During grinding, the chamber was
rotated on a roller table at a speed equal to 75% of the critical speed at which theoretical
centrifugation takes place. After the feed material was ground for a suitably short amount
of time, the mill was emptied, and 50 g of the powder was sampled using a riffle sampler.
The size distribution of the sample was then analyzed by wet screening down to 36 µm
using a series of

√
2 US standard sieves. The entire material including the sample was

returned to the mill, and then operated for an additional duration. The procedure was
repeated until Si in Equation (1) could be obtained from the linear-log plot of wi(t)/wi(0)
versus time t.

Table 1. Experimental conditions for grinding using ball mill.

Parameter Value Unit

Mill Diameter, D 200 mm
Mill Depth, H 165 mm
Ball Loading, J 0.2 -

Powder Loading, U 0.5 -
Feed Size 1180 × 834, 590 × 417, and 295 × 209 µm2

Grinding Time 0.5, 1.5, 3.5, 7.5, 15.5, and 31.5 min
Rotation speed 0.75 Φc
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Figure 1. Laboratory-scale ball mill used for SSFBTs.

All tests were conducted under both wet and dry conditions. In the wet grinding tests,
water was added to obtain 62 wt.% slurry.

2.3. Back-Calculation and Analysis

Data from the batch grinding tests were used for back-calculating breakage parameters.
Back-calculation starts with the initial guessing of variables, and the final solution obtained
from the optimization process can be significantly affected by the initial guess points. In
this work, we varied the points during initial guessing of the parameter values over a
wide range. The experiments and back-calculation process were conducted for normal size
ranges where the specific breakage rate did not decrease. Equation (3) was used instead of
Equation (2), and therefore, the number of parameters to be back-calculated was reduced
to five.

For convenience, the error value corresponding to the given values of the input
parameters and the final error at the point of convergence obtained from back-calculation
are referred to as SSQfix and SSQopt, respectively. The schematic explaining the concepts of
SSQfix and SSQopt is illustrated in Figure 2.
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First, we investigated the distribution of the error originating from the given parameter
values. During this stage, for visualization, we varied two parameters and kept the other
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three parameter values fixed. The parameters obtained from SSFBTs were used as the
fixed values. The local minima and surface shape of SSQfix were investigated over the
two-dimensional space of the variables.

Then, we investigated the distribution of SSQopt. The tendency of SSQopt in the two-
dimensional parameter space was compared with the distribution of SSQfix to investigate
the sensitivity and convergence characteristics of the back-calculation process. The back-
calculated parameter values that produced minimal SSQopt values over a wide range of the
initial guess were then compared to the values obtained from SSFBTs.

Finally, we increased the dimensions of back-calculation to between three and five
and conducted calculations over a wide range of initial guess values. Then, we com-
pared the back-calculated parameters producing minimal SSQopt values to those obtained
from SSFBTs.

Given the practical range of the breakage parameters, the value for each parameter
was searched with initial guess ranges of 0.2–1.5 for A, 0.5–1.5 for α, 0.1–0.8 for ϕ, 0.5–1.3
for γ, and 0–10 for β. The range of each variable was divided into 100 discrete points.
Consequently, 106, 108, and 1010 initial guess points were used for the WRIVS in three-,
four-, and five-dimensional parameter spaces, respectively.

3. Result and Discussion
3.1. Experimental (Breakage Parameters from SSFBTs)

If the specific rate of breakage, S, is time-independent, then, according to Equation (1),
a log-linear relationship exists between w(t)/w(0) and grinding time t, i.e., the grinding
is a first-order process. The first-order plots for the batch grinding tests are shown in
Figure 3. The experimental results show that the grinding of both ores through ball milling
is a first-order process. This indicates that temporarily evolving material properties and
multi-particle interactions are negligible during the grinding times employed. Parameters
A and α showing the best fit for each grinding case are listed in Table 2. A is higher for wet
grinding by factors of 1.74 and 1.52 for molybdenum and uranium, respectively. This is
owing to the higher dispersibility of particles and lower surface energy of minerals under
wet conditions.

Table 2. Parameters used for calculating S and B showing the best fit with the experimental data
obtained from batch grinding tests.

Parameters
Molybdenum Uranium

Dry Wet Dry Wet

A 0.5212 0.9064 0.5829 0.8856
α 0.9288 0.9767 1.1305 0.9504
ϕ 0.5155 0.4059 0.2599 0.4668
γ 0.7872 0.8490 0.7941 0.7827
β 8.0163 5.1306 1.8964 4.2609

The primary breakage distributions were obtained using the so-called BII method [2]
and are shown in Figure 4. For uranium, the differences in the primary breakage distri-
butions between dry and wet grinding were insignificant, as it is often presumed that B
values do not change with grinding conditions. However, for molybdenum, we observed
non-negligible differences in the breakage distributions between dry and wet conditions.
The breakage distribution of the wet grinding lies below that of the dry grinding, indicating
that the wet grinding produced less fine daughter particles on primary breakage. The best
fitting values of ϕ, γ, and β used in Equation (4) are listed in Table 2.
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The simulated size distributions of the grinding product with time obtained from
calculations using the values in Table 2 were compared with the experimental results, as
illustrated in Figure 5. The size distributions obtained from the simulations show good
agreement with the experimental results, indicating accurate estimation of the parame-
ter values.
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(f) molybdenum (wet), 1180 × 830 µm; (g) molybdenum (dry), 590 × 420 µm; (h) molybdenum (wet),
590 × 420 µm.

3.2. Back-Calculation: Error Function Distribution Analysis

For the parameter space with more than three dimensions, effective visualization
of the error function distribution is not possible. In this work, we first investigated the
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error function distribution in a two-dimensional parameter space, whereas the other
three parameters remained fixed. Some of the results are shown in Figure 6. For all the
pairs of parameters, the error function was strictly convex with a single minimum. This
means no local minima issue existed in the error function distribution of the BFPs in the
two-dimensional parameter space. While visualizing the convexity of the error function
distribution in higher dimensional spaces is not possible, based on the results and given
that the possibility of a local minima occurring decreases with the increase in the dimension
of the parameter space [37] we inferred that the existence of a local minima differing from
the global minima of the error function distribution in the breakage function parameter
space was unlikely.

For the (ϕ, β) pair in molybdenum grinding, we observed a flat regime of the error
function without a significant single minimum. This could occur because parameters ϕ
and β have complementary effects on function B. In general, α and γ are considered the
indicators of inherent breakage characteristics that can be rarely complemented by chang-
ing other parameter values. Moreover, A is a constant factor that reflects the characteristic
strength of the material under a given grinding environment, and it is rarely affected by
changing other parameter values. However, as ϕ and β are mutually interfering parame-
ters, similar primary breakage distribution functions can be obtained through combining
different values. For uranium, strict convexity was observed even for the (ϕ, β) pair. This
may have resulted from the inherent material-specific characteristics of the uranium ore.
Under given conditions, mutual interference between ϕ and β is relatively weak compared
to that observed in molybdenum.

Minerals 2021, 11, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 6. Cont.



Minerals 2021, 11, 425 11 of 17

Minerals 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 6. Distribution of SSQ௫ with various BFPs. The range of legend values for color representation is set to clearly depict the distribution near the minimum point.Figure 6. Distribution of SSQfix with various BFPs. The range of legend values for color representation is set to clearly
depict the distribution near the minimum point.

The distribution of SSQopt, the error at the point of convergence, was investigated. The
values for SSQfix were obtained from the fixed values of all the parameters, whereas SSQopt
was obtained through back-calculation where the coordinate parameters were optimized.
We conducted back-calculation in the two-dimensional parameter space with varying initial
guess values of two parameters, and some of the results are shown in Figure 7. Except
for the (ϕ, β) pair in molybdenum grinding, the error at the point of convergence was a
single value in all cases, irrespective of the initial guess values. The results for the (a, α)
pair in dry uranium grinding are depicted in Figure 7a as a representative case. These
results indicate that the back-calculation method successfully searched the optimal values
of parameters regardless of the initial guess values. The results for the exceptional cases,
i.e., the (ϕ, β) pair in wet and dry molybdenum grinding, are illustrated in Figure 7b,c.
Within a regime that includes the minimum value point (Regime A in Figure 7b,c), the
shape of the SSQopt distribution was convex and was identical to the distribution of SSQfix
under the given initial guess values. Further, all the curves in Figure 7 are enlarged at a
high magnification along the z-axis, and the surface of SSQopt is extremely flat. Outside the
regime, the error function distribution has a flat form. This indicates poor convergence of
the back-calculation process owing to the flat surface of the error function distribution in
the (ϕ, β) pair. In principle, although the shape of SSQopt in the parameter space is convex,
when the initial guess values are chosen inside regime A, back-calculation did not progress
further owing to the flat surface of the error function. When the initial guess values were
chosen outside the regime, the search process progressed until it reached the border of
regime A, and then convergence stopped at the borderline. Therefore, the borderline of
regime A can be regarded as the convergence limit of back-calculation.
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The BFPs of the grinding processes were back-calculated using the data in Figure 5.
Table 3 compares the values of the back-calculated BFPs with the results from SSFBTs. For
the case where convergence to a single value (Figure 7b,c) was not achieved, the parameters
that produced the minimum SSQopt values over a wide range were regarded as the final
back-calculated values. The back-calculated BFPs agreed well with the values obtained
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experimentally, showing differences of ±3% and indicating that back-calculation was
successfully conducted. For the (ϕ, β) pair in molybdenum grinding, although convergence
did not occur, the parameters at the point with the minimum SSQopt agreed well with
the SSFBT-derived parameters showing errors less than 3%. This indicates that we could
successfully derive the breakage parameters through WRIVS in the two-dimensional
parameter space, even when back-calculation failed to achieve convergence.

Table 3. Comparison between BFPs derived from SSFBTs and back-calculated values in the two-
dimensional parameter space. The variables in parentheses refer to the back-calculated parameters,
whereas other parameters remain fixed with the value from SSFBTs.

Molybdenum, Dry

SSFBT
2D back-calculation

(A,ϕ) (ϕ,β) (ϕ,γ) (A,α) (α,ϕ) (α,γ)

A 0.5212 0.5226 - - 0.5210 - -
α 0.9288 - - - 0.9220 0.9213 0.9227
ϕ 0.5155 0.5132 0.5160 0.5165 - 0.5142 -
γ 0.7872 - - 0.7807 - - 0.7899
β 8.0163 - 8.0773 - - - -

Molybdenum, Wet

SSFBT
2D back-calculation

(A,ϕ) (ϕ,β) (ϕ,γ) (A,α) (α,ϕ) (α,γ)

A 0.9064 0.9047 - - 0.8997 - -
α 0.9767 - - - 0.9746 0.9786 0.9733
ϕ 0.4059 0.4048 0.4045 0.4019 - 0.4093 -
γ 0.849 - - 0.8541 - - 0.8460
β 5.1306 - 5.1705 - - - -

Uranium, Dry

SSFBT
2D back-calculation

(A,ϕ) (ϕ,β) (ϕ,γ) (A,α) (α ,ϕ) (α ,γ)

A 0.5829 0.5643 - - 0.5751 - -
α 1.1305 - - - 1.1171 1.0936 1.1675
ϕ 0.2599 0.2539 0.2648 0.2527 - 0.2652 -
γ 0.7941 - - 0.7852 - - 0.7774
β 1.8964 - 1.9416 - - - -

Uranium, Wet

SSFBT
2D back-calculation

(A,ϕ) (ϕ,β ) (ϕ,γ ) (A,α ) (α ,ϕ) (α ,γ)

A 0.8856 0.9053 - - 0.8728 - -
α 0.9504 - - - 0.9775 0.9308 0.9339
ϕ 0.4668 0.4696 0.4685 0.4505 - 0.483 -
γ 0.7827 - - 0.8009 - - 0.8012
β 4.2609 - 4.2035 - - - -

We then extended the investigation to higher dimensional parameter spaces. The
results are presented in Table 4. For two cases, i.e., those involving five and four dimensions
with the parameter combination (A,α,ϕ,β), the resultant parameters differed considerably
from the SSFBT-derived values. For those cases, SSQopt was lower than that obtained
through SSFBTs. This indicated that wrong combinations of parameters could produce
similar SSQopt owing to the high mutual interference between parameters. Except for the
two cases mentioned above, the parameters obtained through WRIVS agreed well with
the SSFBT-derived values with an acceptable degree of accuracy, indicating that the BFPs
could be successfully derived through WRIVS.
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Table 4. Comparison between BFPs obtained from SSFBTs and back-calculated values in high-dimensional (=3D) parameter spaces (molybdenum, dry).

3D Back-Calculation 4D Back-Calculation 5D Back-
Calculation

SSFBT (A,α,ϕ) (A,α,γ) (A,α,β) (A,ϕ,γ) (A,ϕ,β) (A,γ,β) (α,ϕ,γ) (α,ϕ,β) (ϕ,γ,β) (A,α,ϕ,γ) (A,α,ϕ,β) (A,α,γ,β) (A,ϕ,γ,β) (α,ϕ,γ,β) (A,α,ϕ,γ,β)

A 0.5212 0.5294 0.5290 0.5285 0.5134 0.5299 0.5188 - - - 0.5209 0.5070 0.5162 0.5196 - 0.5072
α 0.9288 0.9155 0.9376 0.9314 - - - 0.9216 0.9227 - 0.9285 0.9337 0.9264 - 0.9287 0.9373
ϕ 0.5155 0.5200 - - 0.5156 0.5465 - 0.5057 0.5435 0.5215 0.5159 0.4404 - 0.5058 0.5227 0.4706
γ 0.7872 - 0.7740 - 0.7783 - 0.7736 0.7859 - 0.7809 0.7896 0.7757 0.7769 0.7983 0.7049
β 8.0163 - - 7.9771 - 6.9436 7.9390 - 7.6987 7.7599 - 4.1241 6.7057 7.0245 9.0140 3.8323

SSQopt 0.1398 0.1558 0.1491 0.1476 0.1371 0.1492 0.1517 0.1405 0.1376 0.154 0.1421 0.1429 0.1406 0.1508 0.1503 0.1297
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Several possible approaches are available to further enhance the utilizability of WRIVS.
For example, one can conduct a set of SSFBTs to obtain credible parameters of the breakage
distribution function, and then initiate the WRIVS-based back-calculation. Alternatively, it
is possible to obtain the initial A and α values only by conducting a set of SSFBTs within
the regime of sufficiently small particles in comparison with the ball size, in which case,
the second term in Equation (2) equals zero and Equation (2) reduces to Equation (3). In
both cases, the experimental number of necessary SSFBTs significantly decreases when
compared with the conventional back-calculation strategy with no WRIVS.

Furthermore, it may be possible to consecutively narrow down the initial value range
by conducting the WRVS-based back-calculation in multi-stages. In this case, careful choice
of the candidate regime from one stage may be necessary. This approach is not discussed
in detail in the present work, and needs to be investigated in depth in a future work.

4. Conclusions

In this work, we investigated the feasibility of increasing the accuracy of the back-
calculation method for determining BFPs through wide-range search. Using Korean molyb-
denum and uranium ores, we conducted SSFBTs and back-calculations, and visualized the
distribution of the error function according to the parameter values. The results of this
work can be summarized as follows:

(1) In the two-dimensional parameter space, the error function was strictly convex, and
no local minima differing from the global minima were observed. The main problem
during back-calculation of the breakage parameters was weak convergence owing
to the flat surface of the error function rather than occurrence of local minima. For
molybdenum grinding, the shape of the error function for the (ϕ, β) pair was flatter
compared to that for other parameter pairs. We attributed this to the strong mutual
interference between these two parameters.

(2) In the back-calculation involving the two-dimensional parameter space, for most
pairs of variables, the optimization process converged to a single point and the
results agreed well with those obtained through SSFBTs. However, for the parameter
space with the pair producing a flat error function distribution, the solution of the
back-calculation failed to converge.

(3) Through wide-range search, even when convergence failed, the parameter combina-
tion that produced the minimum error agreed well with the parameters obtained from
the SSFBTs. Thus, we could successfully determine the BFPs through wide-range
search, irrespective of the shape of the error function.

(4) Wide-range search proved feasible for searching in the three-dimensional parameter
space, irrespective of the choice of parameters. For four- or five-dimensional parame-
ter spaces, the accuracy of the back-calculation method decreased depending on the
parameters that had to be back-calculated.

(5) In conclusion, without proper initial values, searching seven breakage parameters
through back-calculation only is not recommended owing to accuracy problems.
When the number of parameters to be back-calculated is not greater than four, the
parameters could be accurately identified through wide-range search, indicating that
the number of SSFBTs required to determine the breakage function can be effectively
reduced using the wide-range search.
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