
minerals

Article

The Response of the Soil Microbiome to Contamination with
Cadmium, Cobalt and Nickel in Soil Sown with Brassica napus

Edyta Boros-Lajszner, Jadwiga Wyszkowska * , Agata Borowik and Jan Kucharski

����������
�������

Citation: Boros-Lajszner, E.;

Wyszkowska, J.; Borowik, A.;

Kucharski, J. The Response of the Soil

Microbiome to Contamination with

Cadmium, Cobalt and Nickel in Soil

Sown with Brassica napus. Minerals

2021, 11, 498. https://doi.org/

10.3390/min11050498

Academic Editors: Anna Karczewska

and Karolina Lewińska
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Abstract: Soil fertility is determined by biological diversity at all levels of life, from genes to entire
biocenoses. The aim of this study was to evaluate bacterial diversity in soil contaminated with Cd2+,
Co2+ and Ni2+ and sown with Brassica napus. This is an important consideration because soil-dwelling
microorganisms support phytoremediation and minimize the adverse effects of heavy metals on the
environment. Microbial counts, the influence (IFHM) of Cd2+, Co2+ and Ni2+ on microorganisms, the
colony development (CD) index, the ecophysiological diversity (EP) index and genetic diversity of
bacteria were determined under controlled conditions. Soil contamination with Cd2+, Co2+ and Ni2+

significantly influenced microbial diversity and increased the values of CD and EP indices. The tested
heavy metals decreased the genetic diversity of bacteria, in particular in the phyla Actinobacteria
and Proteobacteria. Bacteria of the genera Arthrobacter, Devosia, Kaistobacter, Paenibacillus, Phycicoccus,
Rhodoplanes and Thermomonas were identified in both contaminated and non-contaminated soil. These
bacteria are highly resistant to soil contamination with Cd2+, Co2+ and Ni2+.

Keywords: soil; heavy metals; ecophysiological diversity; genetic diversity

1. Introduction

Environmental stress caused by various pollutants, including heavy metals, has a
negative effect on the biological activity of soil. Any changes in environmental condi-
tions can modify the composition of soil-dwelling microorganisms and their activity [1].
Biological diversity should be preserved and changes that take place at all levels of life,
including microorganisms that occupy the lowest level of the trophic system, have to be
monitored to maintain ecosystem health [2]. Microorganisms constitute the largest group of
soil-dwelling organisms. They participate in the circulation of elements in nature, including
carbon, nitrogen, sulfur and phosphorus, the decomposition of organic matter, energy
flow and they influence the physical parameters of soil and soil structure [3–5]. Unlike
organic pollutants, heavy metals do not undergo microbial decomposition [6] and their
total concentrations in soil persist for a long time after deposition [7]. Heavy metals lead to
the biological and chemical degradation of soil [8]. They exert a negative effect on microbial
populations and the activity of soil enzymes. Heavy metals disrupt not only microbial
diversity, but also biochemical processes [9,10]. Natural and anthropogenic changes in the
environment elicit quick responses from microorganisms which, due to their sensitivity,
can rapidly adapt to new conditions. Microorganisms have developed defense mecha-
nisms that minimize the toxic effects of heavy metals [11]. These mechanisms involve
extracellular and intracellular binding of trace elements. The most widely encountered
extracellular mechanisms which eliminate heavy metals include ATP-binding cassettes
(ABC), inner membrane transporters of the resistance-nodulation-division (RND) family,
small multidrug resistance (SMR) proteins, major facilitator superfamily (MFS) proteins
and multidrug and toxic compound extrusion (MATE) proteins [12,13]. Intracellular bind-
ing mechanisms involve metallothionein proteins with high affinity for divalent cations
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such as Cu2+, Zn2+, Co2+ and Cd2+ [14]. Metallothioneins contain cysteine residues with
four Zn2+ or Cd2+ binding sites. Histidine residues containing nitrogen play a supporting
role in this process [15–18]. Other defense mechanisms include decreased permeability of
cell envelopes or membranes to trace mineral ions, metal transport outside cells, decreased
sensitivity of cell organelles to heavy metals and enzymatic detoxification of metals to less
toxic forms. Microorganisms harbor one or several of these mechanisms [13]. Microbial
resistance to heavy metals is encoded mainly by plasmids that harbor operons. Plasmids
can be located on chromosomes or transposons and they participate in the horizontal
transfer of genes that encode resistance to heavy metals [19]. This mechanism contributes
to the formation and spread of metal-resistant populations that can dominate nearly all
microorganisms in a given environment [20]. Extracellular and intracellular defense bonds
prevent metals from entering cells. The first type of bonds immobilizes metal ions and
prevents them from penetrating cells. Exopolysaccharides play a key role in this defense
mechanism because their chemical structure supports non-specific metal binding [13]. Mi-
croorganisms can also minimize the toxic effects of trace elements by inducing changes in
the structure of the cell wall or membrane, which prevents metals from entering the cell [21].
Cell envelopes can bind metals non-specifically until their binding sites are fully saturated.
This defense mechanism relies on peptidoglycan, the main cell wall component in Gram-
positive bacteria and lipopolysaccharide in Gram-negative bacteria. In fungi, metals can
be bioabsorbed by chitin and other polysaccharides such as mannans and glucans [21,22].
Toxic compounds are also removed from cells by the efflux pump mechanism which is
characterized by high specificity for the evacuated metals [12,23]. The extent to which
microorganisms adapt to new conditions can be evaluated by monitoring quantitative and
qualitative changes in microbial populations and their activity [24]. The changes observed
in microbial populations reflect the combined influence of physical, chemical and biological
factors on soil ecosystems [25].

Heavy metal pollution negatively affects the growth and development of plants.
Nickel compromises germination capacity [26], root growth and branching [27] and nu-
trient uptake [28]; it damages the photosynthetic apparatus [29] and causes oxidative
stress [30]. Cobalt causes early leaf drop; it inhibits the growth and development of the
assimilative apparatus and promotes leaf chlorosis [31]. Excess cadmium decreases nutri-
ent uptake by plants [32] and reduces enzyme activity [33]. Plants have also developed a
number of mechanisms that enable their survival under stress conditions, in environments
contaminated with heavy metals. Metallophytes, namely plants that tolerate high levels
of heavy metals, have evolved on mineral substrates (including substrates that contain
metals) [34,35]. Pseudometallophytes are plants that grow on both uncontaminated soils
and soils contaminated with heavy metals [36]. Specific transporters and systems for trans-
porting minerals required for plant growth (phosphorus, calcium) enable plants to take up
and accumulate metals [34]. These mechanisms reduce the concentrations of trace elements
in soil, but metals can be taken up only in a form that is available to plants. Therefore, the
extent to which heavy metals can be removed from plants is determined mainly by their
bioavailability [37].

This study involved Brassica napus, a crop plant that can be easily processed for
purposes other than food and feed production, including for energy generation. Brassica
napus is characterized by rapid growth and high biomass yield. This crop can be grown on
soils contaminated with heavy metals and it has numerous industrial uses, including in the
production of biodiesel. In view of the above, the aim of this study was to determine and
compare the effects of Ni2+, Co2+ and Cd2+ contamination on microbial diversity in soil
sown with Brassica napus. The research hypothesis postulating that soil contamination with
these heavy metals induces changes in the structure of microbial communities was tested.
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2. Materials and Methods
2.1. Soil

The experiment was performed on soil with pHKCl 7.00 and granulometric composi-
tion of sandy loam (size fraction <0.002 mm—2.88%, size fraction 0.020–0.050 mm—27.1%,
size fraction 0.050–2.000 mm—69.4%). Soil samples were collected in Tomaszkowo in
the Masurian Lakeland in north-eastern Poland (53.7196◦ N, 20.3969◦ E). The analyzed
sandy loam had the following physicochemical parameters: Corg—6.90 g kg−1, Ntotal—
0.11 g kg−1, HAC—7.00 mmol(+) kg−1, EBC—31.0 mmol(+) kg−1, CEC—38.5 mmol(+) kg−1,
BS—80.5%. The Masurian Lakeland has a diverse landform that was created by meltwater,
erosion, accumulation of rivers, lakes and weathering during the last glacial period. The
region is characterized by soils with moderate to low fertility, mostly podzols and brown
soils formed on sand and glacial till.

2.2. Experimental Design

A pot experiment was established in a greenhouse (Poland) with four replications. In
the first stage, soil samples of 3.5 kg each were passed through a sieve with 1 cm mesh
size. In the second stage, soil samples were contaminated with nickel, cobalt and cadmium
chlorides at Ni2+—400 mg kg−1, Co2+—80 mg kg−1 and Cd2+—8 mg kg−1. Each treatment
had 4 replicates (n = 16). Heavy metal doses were established based on the Regulation
of the Minister of the Environment [38] and soil contamination levels in Poland [39–42]
and other European Union countries and the world [43,44]. In Polish soils, the average
content of Ni2+ has been estimated at 20 mg kg−1 [39]. Soil contamination with Ni2+

does not occur frequently around the world, but in some areas, human activity has led
to excessive Ni2+ accumulation in soil. High levels of soil contamination with Ni2+ have
been reported near the Sudbury steel mill in Canada (1600–2150 mg kg−1) [45,46], in the
vicinity of the non-ferrous metal factory in Plovdiv, Bulgaria (303 mg kg−1) [47], Selebi
Phikwe copper-nickel mine in Botswana (267 mg kg−1) [48], the former sewage sludge
landfill in Denmark (212 mg kg−1) [49] and a defunct waste incineration plant in the Czech
Republic (122 mg kg−1) [50]. The geochemical background value of cobalt in soils has
been determined at 6.5 mg kg−1 DM in Poland and at 4.5–12 mg kg−1 DM around the
world [39]. Point-source pollution with cobalt has also been reported in Japan (23 mg kg−1

soil) [51], Egypt (26.8 mg kg−1) [52], Sweden (14 mg kg−1) [53], in the vicinity of non-
ferrous metal ore mines in southern Sardinia (30–495 kg−1 DM) [54] and non-ferrous metal
factories in the USA (>154 mg kg−1) [39]. Natural cadmium levels range from 0.06 to
1.1 mg kg−1 in Polish soils [39] and from 0.2 to 1.3 mg kg−1 in European soils [55]. In
locally contaminated soils in the USA (Arizona), cadmium deposition was determined
at 394 mg kg−1 to 1777 mg kg−1 [56]. In urban soils, cadmium concentrations were
determined at 6.7 mg kg−1 in Pakistan, 2.6 mg kg−1 in Iran and 1.2 mg kg−1 in Denmark.
In agricultural soils fertilized with sewage sludge, cadmium levels reached 19.3 mg kg−1 in
India, around 3.5 mg kg−1 in Pakistan, 2.5 mg kg−1 in Zimbabwe and around 2.0 mg kg−1

in Serbia, Egypt and Mexico [57]. Brassica napus plants were fertilized with the following
macronutrients: N—70 mg kg−1 soil DM, P—30 mg kg−1 soil DM, K—56 mg kg−1 soil DM
and Mg—10 mg kg−1 soil DM. Fertilizers were applied in the following form: nitrogen—
CO(NH2)2, phosphorus—KH2PO4, potassium—KCl and magnesium—MgSO4 · 7H2O.
CO(NH2)2 contained 46.6% N, KH2PO4—22.8% P; KCl—52.4% K, and MgSO4 · 7H2O—
9.9% Mg. Soil samples were combined with fertilizers, placed in polyethylene pots and
brought to capillary water capacity of 50%. Soil not contaminated with heavy metals but
fertilized with macronutrients was the control. The following soil treatments were analyzed:
(1) uncontaminated soil (control), (2) soil contaminated with Ni2+, (3) soil contaminated
with Co2+ and (4) soil contaminated with Cd2+. The average ambient temperature was
16.5 ◦C, air humidity was 77.5% and daytime length ranged from 14 h 4 min to 16 h 30 min.
The following soil treatments were analyzed: uncontaminated soil and soil contaminated
with cadmium, cobalt and nickel. The emerged seedlings were thinned and six Brassica
napus plants were left per pot. The plants were harvested during flowering (BBCH 60—
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Biologische Bundesanstalt Bundessortenamt und Chemical Scale). The experiment lasted
50 days. Soil samples for analyses of microbiological properties were collected in the
same period.

2.3. Method of Microbiological Analysis

The counts of organotrophic bacteria, actinobacteria and fungi were determined by
the serial dilution method. Soil samples (10 g) were placed in sterile isotonic saline solution
(90 cm3 0.85% NaCl) and shaken for 30 min (130 rpm). One cm3 of each serial solution
and 18 cm3 of a selective medium were placed in sterile Petri dishes and incubated in
a thermostat at a temperature of 28 ◦C for 10 days. Colony forming units (cfu) were
counted daily for 10 days. Microbiological analyses were carried out according to the
procedures described by Boros-Lajszner et al. [58]. The growth rate of various microbial
groups (organotrophic bacteria, actinobacteria and fungi) and the number of emerged
microbial colonies were determined to calculate the colony development (CD) index and
the ecophysiological diversity (EP) index in uncontaminated soil and in soil contaminated
with Ni2+, Co2+ and Cd2+. The microbial CD index was calculated based on the formula
developed by De Leija et al. [59] and the EP index, based on the formula proposed by
Sarathchandra et al. [60].

The microbial CD index was calculated with the use of the following formula:

CD = [
N1

1
+

N2

2
+

N3

3
. . . . . .

N10
10

] × 100 (1)

where N1, N2, N3 . . . N10 is total number of microbial colonies on experimental days 1, 2, 3
10 divided by the total number of colonies identified during the entire experimental period.

The microbial EP index was determined with the following formula:

EP = −Σ(pi · log pi) (2)

where pi is the number of microbial colonies on a given day divided by the total number of
colonies.

The influence of heavy metals (IFHm) on microbial counts and Brassica napus was
determined with the use of the following formula:

IFHM =
AHM

A0
− 1 (3)

where IFHm—heavy metal pollution index,

AHm—microbial counts/number of plants in soil contaminated with heavy metals,
A0—microbial counts/number of plants in uncontaminated soil.

DNA was isolated from the rhizosphere of Brassica napus with the Genomic Mini
AX Bacteria + kit. The polymerase chain reaction was carried out with the Q5 Hot Start
Hight-Fidelity 2X Master Mix according to the manufacturer’s instructions. A metagenomic
analysis of the 16S rRNA coding gene was performed based on the sequence of the V3-
V4 hypervariable region of 16S rRNA. The selected region was amplified and a library
was developed with the use of specific polymer sequences 341F and 785R. Data were
collected and standardized in the last stage of library development. The 16S rRNA gene
was sequenced in the MiSeq Reporter (MSR) v 2.6 program with 2 × 250 bp paired-end runs
in Illumina v 2. The reads were identified to the genus level in the QIIME program based
on the GreenGenes v 13.8 reference database. Sequencing was performed by Genomed SA
(Warsaw, Poland).

2.4. Statistical Analysis

Data were processed statistically in Statistica 13.1 (Palo Alto, CA, USA) [61]. The
results were compared in ANOVA and Tukey’s HSD test. Homogeneous groups were
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identified at a significance level of p = 0.05. The analyzed data had normal distribution
and similar variance. Metagenomic profiles were analyzed in STAMP 2.1.3. [62] and Circos
0.68 software [63]. The number of operational taxonomic units (OTUs) associated with
each class and order was directly proportional to each bandwidth combining bacterial taxa
with the corresponding soil samples. Each bacterial class and order were represented by a
unique color. The external ring represents the total percentage of 16S sequences and the
internal ring denotes the number of 16S amplicon sequences allocated to a given taxon.

3. Results

The microbiological properties of soil were modified under the influence of Ni2+, Co2+

and Cd2+ (Table S1). Heavy metals significantly decreased the abundance of organotrophic
bacteria and fungi, but their influence on actinobacteria was less pronounced. These
observations were confirmed by the values of the heavy metal pollution index (IFHM)
(Figure 1). Ni2+ followed by Co2+ and Cd2+ exerted the greatest negative effect on the soil
microbiome, in particular, organotrophic bacteria and fungi. Actinobacteria were least
sensitive to heavy metal contamination.
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Figure 1. The influence of heavy metals (IFHM) on microbial counts in soil. Org—organotrophic
bacteria; Act—actinobacteria; Fun—fungi. Cd—soil contaminated with cadmium; Co—soil contami-
nated with cobalt; Ni—soil contaminated with nickel. Identical letters (a–c) in columns denote the
same homogeneous groups.

In soil contaminated with nickel, the colony development (CD) index of organotrophic
bacteria (CD = 52.8) was higher and the CD index of actinobacteria (CD = 26.3) and fungi
(CD = 38.2) (Figure 2) was lower than in the control treatment. The ecophysiological
diversity (EP) index of organotrophic bacteria, actinobacteria and fungi was significantly
higher in soil contaminated with heavy metals (Figure 2). The EP index was highest in acti-
nobacteria, followed by organotrophic bacteria and it was lowest in fungi (EP = 0.42–0.47).
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Figure 2. Microbial colony development (CD) index (a) and ecophysiological diversity (EP) index (b) in soil. C—control soil;
Cd—soil contaminated with cadmium; Co—soil contaminated with cobalt; Ni—soil contaminated with nickel. Identical
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Bacterial phyla Actinobacteria and Proteobacteria were predominant in soil samples
contaminated with heavy metals (Figure 3). Actinobacteria was the dominant phylum
in all treatments and it accounted for 35.6% of the microorganisms in soil contaminated
with nickel, 57.3%—in soil contaminated with cadmium, 61.5%—in soil contaminated
with cobalt and 62.5%—in uncontaminated soil (Figure 3). Proteobacteria was the second
most abundant phylum, which was predominant in nickel-contaminated soil (49.1%). The
phylum Actinobacteria was characterized by the greatest variations in the number of OTUs.
The number of OTUs specific to Actinobacteria was 25.9% higher in soil contaminated with
cobalt than nickel and it was 21.7% higher in soil exposed to cadmium than nickel.
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Contamination with Cd2+, Co2+ and Ni2+ modified the soil microbiome also at the
class level (Figure S1). In uncontaminated soil and in soil contaminated with cadmium,
cobalt and nickel, the highest number of OTUs were associated with the classes Acti-
nobacteria (55.7%, 47.7%, 52.4%, 18.2%), Alphaproteobacteria (15.2%, 16.1%, 15.3%, 29.3%),
Betaproteobacteria (5.1%, 7.5%, 5.3%, 4.0%), Thermoleophilia (5.1%, 6.8%, 6.9%, 15.4%) and
Gammaproteobacteria (4.6%, 4.0%, 4.1%, 15.7%), respectively. At the level of microbial classes,
heavy metals (in particular, nickel relative to cadmium and cobalt) exerted the most varied
effects on Actinobacteria and Gammaproteobacteria, reflected in the differences in the number
of their OTUs.

In an analysis of microbial orders (Figure 4), the highest number of OTUs specific
to Actinomycetales (49.7%), Rhizobiales (8.1%), Sphingomonadales (5.5%), Gaiellales (6.5%),
Burkholderiales (4.7%), iii1-15 (4.3%) and Xanthomonadales (4.2%) was observed in treatments
contaminated with Cd2+; the highest number of OTUs specific to Actinomycetales (54.0%),
Gaiellales (6.0%), Sphingomonadales (5.1%) and Xanthomonadales (4.2%) was noted in soil con-
taminated with Co2+; and the highest number of OTUs specific to Actinomycetales (18.8%),
Xanthomonadales (16.2%), Rhizobiales (15.7%), Gaiellales (13.8%), Sphingomonadales (9.1%) was
determined in soil contaminated with Ni2+. Uncontaminated soil was characterized by a
predominance of orders Actinomycetales (57.0%), Rhizobiales (6.5%), Sphingomonadales (6.3%),
Xanthomonadales (4.7%), Gaiellales (4.4%) and Burkholderiales (3.9%).

Bacteria of the family Micrococcaceae (phylum Actinobacteria) were predominant in
control soil and in treatments contaminated with Cd2+ and Co2+ (Figure 5). Under ex-
posure to Ni2+, the number of Micrococcaceae OTUs decreased nearly 20-fold, whereas a
significant increase was observed in the abundance of bacterial families Gaiellaceae, No-
cardioidacea and Intrasporangiaceae of the phylum Actinobacteria, family Xanthomonadaceae
of the phylum Proteobacteria and families Sphingobacteriaceae and Hyphomicrobiaceae of the
phylum Bacteroidetes. The structure of bacterial communities was also modified in treat-
ments contaminated with Cd2+ and Co2+ relative to control, but these changes were not
as spectacular as those observed in Ni2+ treatments. The number of OTUs associated
with bacterial families Gaiellaceae and Hyphomicrobiaceae was significantly higher in soil
contaminated with Cd2+ and Co2+ than in uncontaminated soil. In turn, bacteria of the
family Nocardioidaceae were more abundant in soil contaminated with cobalt than in the
control treatment and in soil exposed to cadmium.
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The number of OTUs associated with specific bacterial genera exceeded 1% in eight
genera (Devosia, Kaistobacter, Rhodoplanes, Thermomonas, Mesorhizobium, Lysobacter, Rhodobac-
ter, Sphingomonas) of the phylum Proteobacteria, in two genera (Arthrobacter, Phycicoccus) of
the phylum Actinobacteria, in two genera (Bacillus, Paenibacillus) of the phylum Firmicutes
and in one genus (Deinococcus) of the phylum Thermi. Bacterial genera Arthrobacter, Devosia,
Kaistobacter, Paenibacillus, Phycicoccus, Rhodoplanes and Thermomonas were identified in
uncontaminated soil and in soil contaminated with cadmium, cobalt and nickel (Figure 6).
Bacillus and Mesorhizobium were dominant in soil contaminated with Cd2+, Co2+ and Ni2+.
Genera Lysobacter and Rhodobacter were most abundant in soil exposed to nickel. The
number of OTUs specific to Deinococcus was highest in control soil and in treatments con-
taminated with cadmium and cobalt, whereas the abundance of Sphingomonas was highest
in the control treatment and in soil contaminated with Ni2+. The correlation coefficients
presented in Table S2 confirmed the presence of significant correlations between the micro-
bial community and Brassica napus yields. Plant yields were positively correlated with the
counts of all microbial groups and the colony development (CD) index of actinobacteria
and fungi and they were negatively correlated with the CD index of organotrophic bacte-
ria, the ecophysiological diversity (EP) index of actinobacteria and the Shannon–Wiener
index describing the diversity of bacterial communities at the phylum, class, order and
family level.
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4. Discussion

Soil has a complex structure and it is a reservoir of various chemical compounds and
trace elements that can disrupt the homeostasis of the soil environment. Heavy metals,
including cadmium, cobalt and nickel, are toxic at high concentrations and can induce
changes in the microbiological properties of soil [64]. In the present study, the calculated
values of heavy metal pollution index (IFHM) confirmed that heavy metals compromised
the activity of the examined microbial groups, in particular, organotrophic bacteria and
fungi. Actinobacteria were least sensitive to the toxic effects of Cd+2, followed by Co+2 and
Ni+2. The survival of this microbial group can probably be attributed to the acquisition
of resistance to adverse environmental conditions. The physicochemical properties of
soil, including pH, sorption capacity and organic matter content, could also play a role in
microbial survival [65]. Microorganisms have evolved resistance to harsh environmental
conditions. Prolonged exposure to trace elements can induce changes in cell structure and
lead to microbial death [66–68]. According to Sang-Hwan et al. [69], pollutants affect the
rate of soil processes and can inhibit soil respiration. Microbial imbalances compromise the
diversity of the soil microbiome.

Soil-dwelling microorganisms are effective indicators of soil quality [70]. Exposure
to heavy metals induces changes in the proportion of r-/K-strategists in the bacterial
community. According to Sarathchandra et al. [60], an increase in the value of the CD
index implies that r-strategists (rapidly growing microorganisms) are more abundant than
K-strategists (slowly growing microorganisms). A decrease in the value of the EP index
suggests that sensitive microorganisms are replaced by microorganisms that are more
resistant to soil contamination with heavy metals [59]. In the current study, the CD index
for organotrophic bacteria was higher in treatments contaminated with Ni2+ and Co2+; the
CD index for actinobacteria was higher in soil exposed to Cd2+ and Co2+; and the CD index
for fungi was higher in treatments contaminated with Co2+ than in uncontaminated soil.
The value of the EP index was highest in Actinobacteria, followed by organotrophic bacteria
and fungi. In polluted regions, microbial activity also contributes to immobilization of
metals in the soil environment [71,72]. Microorganisms can neutralize pollutants through
their accumulation, binding and storage in the form of phosphates, oxalates and carbonates
in cell structures and organelles [73,74].

Heavy metal pollution changes microbial diversity in many terrestrial ecosystems [75,76].
In this study, soil contamination with Cd+2, Co+2 and Ni+2 also induced changes in micro-
bial diversity at all taxonomic levels. Bacterial phyla Actinobacteria and Proteobacteria were
predominant and similar observations were by Franke-Whittle et al. [77], Sun et al. [78]
and Greening et al. [79]. Proteobacteria occur not only in soils contaminated with heavy met-
als [80], but also in polluted waters [81] and sediments [75]. In a study by Epelde et al. [82],
the proportions of microbial taxa with high metabolic plasticity, including Chloroflexi and
Ktedonobacteria, increased in the bacterial community in the presence of metals. In contrast,
the proportions of Actinobacteria and Acidobacteria remained stable. In the present experi-
ment, in addition to Proteobacteria and Actinobacteria, bacterial genera of the phyla Firmicutes
and Thermi were also resistant to soil contamination with Cd2+, Co2+ and Ni2+. Similar
results were reported by Pradhan et al. [83] and Yang et al. [84] who analyzed bacterial
communities in soils exposed to heavy metals. According to Emenike et al. [85], native
microorganisms can effectively remove heavy metals from soil. Microorganisms develop
tolerance to heavy metals by binding these contaminants on the surface of cells [86,87].
Peptidoglycan carboxyl groups are the main cationic binding sites in Gram-positive bac-
teria and phosphate groups—in Gram-negative bacteria [21]. In the current study, both
Gram-positive and Gram-negative bacteria were identified in contaminated soil. The pre-
dominant Gram-positive bacteria were Arthrobacter, Phycicoccus, Bacillus, Paenibacillus and
Deinococcus, whereas the most abundant Gram-negative bacteria were Devosia, Kaistobacter,
Rhodoplanes, Thermomonas, Mesorhizobium, Lysobacter, Rhodobacter and Sphingomonas. These
bacteria can be used in the bioaugmentation of soils contaminated with Cd2+, Ni2+ and
Co2+ to restore soil homeostasis.
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Microbial tolerance to heavy metals is an individual trait. There is evidence to indi-
cate that microorganisms survive in contaminated environments by reducing metals to
a lower oxidation (less toxic) state or by binding metals with the involvement of specific
and non-specific compounds that are metabolic products of microorganisms [19,22,88,89].
Specific compounds include metallothioneins and non-specific compounds include low-
molecular-weight organic acids, alcohols and high-molecular-weight polysaccharides [22].
De Jaysankar et al. [90] identified bacteria tolerant to Hg, Cd and Pb. In other studies,
bacteria resistant to Cr, Zn, Cd, Pb, Cu, Ni and Co were isolated from various environments
contaminated with heavy metals [91,92]. However, microorganisms resistant to changing
environmental conditions can also disrupt soil homeostasis by eliminating sensitive mi-
croorganisms. Bacteria characteristic of heavy metal-contaminated soils were also isolated
in the present study. These were: Bacillus and Mesorhizobium which were predominant in
treatments contaminated with Cd2+, Co2+ and Ni2+, as well as Lysobacter and Rhodobac-
ter that were most abundant in soil exposed to Ni2+. The evolution of resistant bacteria
decreases biodiversity in a given environment [93].

5. Conclusions

Contamination with Ni2+, Co2+ and Cd2+ disrupts the microbiological balance of soil.
In the group of the analyzed heavy metals, Ni2+ induced the greatest and Cd+2 induced
the smallest changes in the soil microbiome. Heavy metals contributed to changes in
the values of the colony development (CD) index and the ecophysiological diversity (EP)
index. Exposure to heavy metals modified the proportions of r- and K-strategists in soil.
The microbial EP index was higher in treatments contaminated with heavy metals than
in uncontaminated soil. The metagenomic analysis revealed that Actinobacteria and Pro-
teobacteria were the dominant bacterial phyla. Bacteria of the genera Arthrobacter, Devosia,
Kaistobacter, Paenibacillus, Phycicoccus, Rhodoplanes and Thermomonas were identified in un-
contaminated soil as well as in treatments contaminated with heavy metals. These bacteria
are characterized by high resistance to soil contamination with Ni2+, Co2+ and Cd2+.
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10.3390/min11050498/s1, Table S1: Microbial counts in soil sown with Brassica napus, Table S2:
Coefficients of correlation between variables in soil sown with Brassica napus. Figure S1. The relative
abundance of the dominant bacterial classes in soil. C—control soil; Cd—soil contaminated with
cadmium; Co—soil contaminated with cobalt; Ni—soil contaminated with nickel.
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