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Abstract: Flotation in the mining industry is a very significant separation technique. It is known that
fine and ultra-fine particles are difficult to float, leading to losses of valuable minerals, mainly due
to their low collision efficiency with bubbles. Flotation of fine particles can be enhanced either by
increasing the apparent particle size or by decreasing the bubble size. Literature review reveals that
electroflotation resulted in higher recoveries of ultrafine particles as compared with dispersed-air
flotation, because electrolytic bubbles are smaller in size. To this end, the best practical approach is to
combine conventional air bubbles and micro-bubbles from water electrolysis. Therefore, the design,
fabrication, and operation of a bench-scale micro-bubble generator through water electrolysis is
proposed. Moreover, this electrolysis unit is adapted in a mechanical Denver-type flotation cell. The
resulting hybrid flotation device is capable of producing bubbles within a wide range of diameters.
The significance of this process is that micro-bubbles, attached tothe surface of fine particles, facilitate
the attachment of conventional-sized bubbles and subsequently increase the flotation recovery of
particles. Experimental flotation results so far on the hybrid device indicate the enhancement of fine
particle recovery by approximately 10% with the addition of micro-bubbles.

Keywords: fine particles; combined flotation; bubble size; water electrolysis; micro-bubble generator;
magnesite; sodium oleate

1. Introduction

The froth flotation technique can be considered one of the most effective methods
for the separation/beneficiation of minerals [1]. Researchers today are paying increasing
attention to the flotation of fine particles (45–100 µm) and ultrafine (−20 µm) mineral
particles. This is due to the availability of low-grade ores and the shortage of high-grade
ones because of their large-scale exploitation [2]. A recent literature review on fine mineral
particle flotation results in more than 1600 publications, revealing that is a topic of high
scientific interest. Ore flotation has to deal with losses up to 20–30% of fine and ultrafine
valuable mineral particles [2].

The main reason for the low flotation recovery of fine particles is their small size [3,4].
Their small mass is responsible for their low collision efficiency with the conventional
flotation bubbles (0.5–2 mm) of a larger size and velocity [3,5–9], as well as their tendency
to follow the streamlines around the coarse air bubbles rather than to collide with them [10].
Furthermore, their high surface energy and high surface area play a major role inthe
observed decreased selectivity [3,5–7,11].

There is a large body of experimental evidence showing that bubble–particle colli-
sion efficiency and fine particle flotation recovery increase with either the increase of the
apparent particle size or the decrease of bubble size [12–17]. Coagulation–flocculation
increases the apparent size of particles and thus enhances the bubble–particle attachment
efficiency. However, these methods are not characterized by high selectivity, since not only
the valuable particles are included in the formed aggregates. Selectivity can be achieved
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by controlling factors such as the surface charge or potential of the particles to be sepa-
rated [18]. In the framework of enlarging the apparent size of fine particles, Zhang et al. [19]
suggested the use of coarse polymeric particles (90–150 µm) to play the role of “carriers”
of fine mineral particles, enhancing their collision and attachment collisions. Decreasing
the bubbles’ size gains a lot of attention as an effective way to enhance fine particle recov-
eries [13,15,20–24] and flotation rate [20,25,26]. There are a lot of experimental findings
that support the fact that introducing micro-bubbles into the flotation pulp significantly
accelerates the flotation recovery of fine particles by conventional-sized bubbles (1–2 mm).
More specifically, micro-bubbles act as carriers attached to the fine particles’ surface, and
then coarse bubbles float these formed aggregates [8].

Among the physicochemical methods that generate micro-bubbles are electrolysis,
hydrodynamic cavitation, or gas supersaturation [20]. Electrolysis of water forms hydrogen
and oxygen bubbles of a small diameter (less than 100 µm) [27]. The size of the bubbles
is affected by many factors such as the pH of the pulp, electrode type and geometry,
current density, or presence of reagents (e.g., surfactants or background electrolytes) [28].
Electroflotation, among other applications, is a technique used for fine particle flotation
and when compared to dispersed air flotation results in higher mineral recoveries for fine
particles [16,29,30]. This is mainly attributed to the fact that micro-bubbles generated by
water electrolysis show lower buoyancy and thus longer residence time leading to increased
probability of collision with fine particles [31]. However, electroflotation requires high
electrical energy, raising the overall costs of the process [32] and rendering the technique
restrictive for industrial applications. Alternative forms of energy (e.g., solar power) would
lower the energy consumption costs.

Several technologies have been developed aiming to overcome the problem of low
recoveries of fine mineral particles and thus focusing on the enhancement of collision and
attachment between fine particles and bubbles. Most of them deal with the development of
the micro-bubble technology as flotation carriers in combination with conventional flotation
technologies leading to significant increasing fine particle recovery [33–36]. Moreover,
researchers turn their attention to inventing new technology/devices by employing a
two-stage reactor–separator technology [37–39]. Xiong et al. [40] used a hydrodynamic
cavitation venturi tube technique to design a flotation column equipped with a static mixer
and venture tube for pico-nano bubbles generation. Kohmuench et al. [41] developed a
flotation cell of reactor–separator type for fine particles by employing an aerated dense
fluidized bed of particles. Mankosa et al. [39] studied the impact of a new flotation
technology related to pre-aeration in a high-shear aeration chamber, improving the particle–
bubble collisions. Moreover, technologies employing injected micro-bubbles in a flotation
column contributed to fine particle flotation improvements (Jet flotation cells and Microcell
type) [39,42–46]. Rulyov et al. used a micro-dispersion generator to deliver micro-bubbles
to a flotation cell and assist fine particle recovery [47,48]. Hassanzadeh et al. [49] and
Fillipov et al. [50] studied the effect of ultrasound on rector-separator type flotation system
with distinct zones for air flow dispersion for increasing mineral particle recovery.

Froth flotation is considered one the most effective methods for the beneficiation of
carbonate salt-type minerals, such as magnesite (MgCO3). Given the fact that magnesite
is the major source of magnesium oxide (MgO), which is the most important raw mate-
rial utilized in refractory, agricultural, chemical, construction, environmental, and other
industrial applications [51,52], it is considered of high commercial importance [53]. In
the effort to obtain a qualified magnesite concentrate, the beneficiation/recovery of the
low-grade magnesite ore is of great necessity. Recovery of magnesite has been studied
extensively [54–58], particularly in relation to its separation from dolomite; however, the
problem of low fine particle recovery is still present.

The objective of the current research is to enhance the flotation of fine particle ores.
The methodology is the combination of micro-bubbles with conventional bubbles. The
innovation is the in-situ generation of micro-bubbles, by electrolysis of water, in a hy-
brid mechanical flotation cell (Denver type) for improvement of fine magnesite particles
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recovery. In the current study, magnesite was chosen for the flotation experiments, since
it is available in its pure form and its properties are well characterized. The effect of
conditioning time with electrolytic bubbles, pH, collector’s and electrolyte’s concentration,
and airflow rate with regards to the presence of micro-bubbles was examined. The presence
of electrolytic bubbles seems to enhance the recovery of fine particles due to the fact that
the attachment of a mineral “covered” by micro-bubbles with a coarse bubble is more
favorable thermodynamically when compared to the attachment of fine particles with the
conventional bubble [59–61].

2. Materials and Methods
2.1. Materials and Reagents

High-purity microcrystalline magnesite samples were provided by Grecian Magnesite
for the implementation of this study. Table 1 shows the chemical composition of the
samples. The chemical analysis of the mineral samples was conducted through X-RF
(Spectro X-lab 2000, Research and Development Center, Grecian Magnesite, Thessaloniki,
Greece)) analysis of raw microcrystalline magnesite ore. The particle size analysis was
conducted in wet sample dispersion (Malvern 2000). The analysis (Table 2) of the magnesite
sample employed for flotation experiments presented 85% particles below 25 µm.

Table 1. Chemical composition of magnesite particles.

Chemical Component Content

MgCO3 <95%
Al2O3 0.031%
SiO2 1.047%
SO3 <0.001%
CaO 1.462%
MnO 0.305%
Fe2O3 0.051%
NiO 0.760%

Table 2. Magnesite particle size distribution.

Size (µm) Volume %

0–5 49.53
6–10 12.69

11–15 9.38
17–20 5.84
22–25 6.67
28–31 6.60
35–39 5.21
45–63 4.08

The anionic collector used in this research was sodium oleate (NaOl, ≥82% fatty acids,
Riedel-de Haen). The pH was adjusted using 0.1M NaOH/HCl (Pancreac). Commercially
available pine oil was employed as a frother to improve the stability of the froth while
promoting the flotation process [62]. Sodium chloride (NaCl, VWR Chemicals) was used
as the background electrolyte. Tap water (~610 µS/cm) was used throughout the flotation
experiments.

2.2. Adsorption Experiments

In an effort to ensure consistency of the flotation procedure and prior to flotation ex-
periments, the amount of sodium oleate adsorption on the mineral surface was measured.
Adsorption isotherms were used to describe the adsorption process and furthermore to
estimate the distribution of oleate between the solid and liquid phase. Foremost, the effect
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of initial sorbate concentration (sodium oleate) was studied. Experiments were performed
in falcon plastic tubes. A volume of forty mL of sodium oleate solution of known concen-
trations (0–500 mg/L) was added, whereas pH was adjusted at 10. Treatment of magnesite
with sodium oleate at pH = 10 enhances minerals’ hydrophobicity [63]. Then, continuous
stirring followed for 24 h using a rotary shaker at ambient temperature. The suspension
was filtered with Millipore filter paper to remove the solids, and the residual sodium
oleate concentration was measured using a UV-Vis spectrophotometer (model U-2000,
Hitachi, Tokyo, Japan) at the wavelength of 204 nm [58,64,65]. The adsorbed amount of
sodium oleate (after 24 h agitation) onto the adsorbents, qe (mg/g), was calculated using
the following mass balance relationship:

qe=(C0 − Ce)V/W (1)

where C0 and Ce are the initial and equilibrium liquid-phase concentrations of sodium
oleate, respectively (mg/L), V is the volume of the solution (L), and W is the weight of the
magnesite used (g).

The measured equilibrium data (Ce, qe) were fitted to the Freundlich Equation (2) and
Langmuir/Freundlich Equation (3) isotherm models:

qe = KF × Ceˆ1/n (2)

qe = (qm × Ks × Ceˆns)/(1 + Ks × Ceˆns) (3)

where qe (mg/g) is the equilibrium collector’s concentration in the solid phase;
KF (mg1−1/n L1/n g) is the Freundlich constant representing the adsorption capacity;
qm (mg/g) is the maximum amount of adsorption; Ks is the Langmuir/Freundlich constant
(L/mg)ns; and ns (dimensionless) is the constants depicting the adsorption intensity.

Kinetic experiments were realized by mixing 0.4 g magnesite with forty ml of sodium
oleate in falcon tubes at pH = 10 and were shaken for 1–10 min at ambient temperature.
Samples were collected at fixed intervals and measured. The resulted experimental data
were fitted to pseudo-first-order Equation (4) and pseudo-second-order Equation (5):

qt = qe × (1 − eˆ(−k1t)) (4)

qt = (qe
2) × (k2 × t)/(1 + (k2 × qe × t)) (5)

where qt (mg/g) is the sorption loading vs. time, and k1 (min−1) and k2 (min−1(mg/g)−1)
are the rate constants for the pseudo-first- and pseudo-second-order equations, respectively.

2.3. Experimental Set Up—The Hybrid Flotation Device

The basic laboratory flotation machine used for mineral flotation is a Denver-type
commercial mechanical flotation machine (Birminhgam, England). The device is equipped
with an acrylic (Plexiglas) flotation tank (V = 3L) and carries an air flowmeter (0–10 L/min),
an impeller, and a diffuser. The impeller speed is controlled using a tachometer supported
on the device (0–3000 rpm). The device is converted to a hybrid flotation device by plac-
ing two boron-doped diamond electrolysis units on the inner walls of the flotation tank
(Figure 1b). The first step was the design and manufacture of a bench-scale micro-bubble
generator. For this, two single boron-doped diamond (BDD) electrolysis units were manu-
factured, which serve as micro-bubble generators. BDD electrodes have been chosen due
to the advantages and specific properties they provide, such as (i) a large electrochemical
potential window, making them stable materials (regarding oxidation or reduction) [66],
(ii) stability and resistance to degradation under harsh chemical, mechanical, and ther-
mal conditions [67,68], and (iii) good operation at high current densities, high response
reproducibility and long-term response stability, and good biocompatibility [69]. Taking
into account all these notable properties BBD electrodes provide, they are considered an
excellent choice for water electrolysis and formation of micro-bubbles and moreover for
their adaption in a flotation system. The two BDD electrodes, which serve as an anode and
a cathode, are supported on a polymeric support (Polyoxymethylene, POM, Figure 1b).
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The distance between the two electrodes is 2 cm. The electrodes were placed horizontally
and parallel and connected to an external power supply. The two electrolysis units were
placed 10 cm from the bottom of the tank, in the middle of the inner walls of the tank.
The position of the electrodes was selected so that the generated micro-bubbles are dis-
persed homogeneously in the flotation cell. The resulting flotation device is called the
BDD–Hybrid Denver device (BDDHD) (Figure 1b).
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2.4. Bubble Size Measurements

The bubbles of the flotation process were measured by the optical method. Dispersed
bubbles correspond to bubbles generated by the Denver flotation device, whereas elec-
trolytic bubbles correspond to those produced by the electrolysis of water. The size of
bubbles was determined by capturing bubble images using a high-resolution digital camera
(a 20MP Canon EOS 70D, equipped with macro lenses and extension tubes for efficient
image magnification) (Figure 1a). The high-definition images captured are imported into
an image analysis software (BubbleSEdit software, Laboratory of Chemical and Environ-
mental Technology, Thessaloniki, Greece) [70], which is used to automatically detect the
bubbles’ contour and measure their size and consequently obtain the corresponding bubble
size distributions. It is worth mentioning that in order to calculate the size of the bubbles
from the photos taken, it is necessary to convert the pixels to length (µm). The calibration
of the optical measurements is done by capturing a standard 56 µm thick wire with the
camera settings used per experimental condition.

Two series of experiments were carried out, each for the corresponding bubble size.
The bubble size distributions were determined in the absence of a solid phase (magnesite)
and in the presence of a collector (sodium oleate 120 mg/L), frother (pine oil), and elec-
trolyte (NaCl 0.1 M). It is worth mentioning that for each experimental run, more than
500 bubbles were measured in order to be statistically correct.

2.5. Flotation Experiments

For each flotation experiment, 30 g of the mineral was well dispersed in 3 L tap water
containing the collector and frother inside the flotation cell. The impeller speed wasset
at 1500 rpm, and conditioning took place for 5 min. In the experiments performed in the
presence of micro-bubbles, conditioning of fine magnesite particles with micro-bubbles
(20 min) was conducted after conditioning with the collector and prior to induction of
dispersed (coarse) bubbles. Upon particle conditioning, air (5 L/min) wasintroduced to the
flotation cell through a nozzle (nozzle diameter 7 mm). The modified hydrophobic particles
collided with the bubbles, and the valuable minerals gathered in the froth layer. At the
end of the flotation experiments, the floated/recovered mineral particles were collected,
filtered, dried, and weighted.

Froth weight, which contains the recovered mineral particles, is an important indicator
of the fine particle flotation enhancement. Calculating the recovered mineral recovery ratio
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is the experimental validation of the flotation enhancement. At the end of the flotation
experiments, the floated mineral particles were collected, dried, and weighed. The recovery
of the mineral particles in the froth product (R) was computed as:

R% = 100 C/F (6)

where, C: mass of concentrate, F: mass of feed.
Flotation experiments were performed in triplicate, and the values represent the

mean value of independent experiments. The obtained data were presented as average
and standard error mean (SEM) values of multiple sets of independent measurements.
Recovery percentages and SEMs were calculated for each individual group.

The effect of pH (2–12), collector’s (0–120 mg/L) and electrolyte’s concentration
(0–1 M), airflow rate (2–8 L/min), and conditioning time (0–20 min.) with regards to
bubble size were investigated. Some of the flotation products were analyzed concerning
their particle size distribution in an effort to define the contribution of the electrolytic
bubbles to the fine and ultrafine particles’ recovery.

3. Results and Discussion
3.1. Adsorption Results
3.1.1. Effect of Initial Sorbate Concentration—Equilibrium Model (Isotherms)

Figure 2a shows the adsorption isotherm of sodium oleate on magnesite at pH value 10.
The experimental data (Ce, qe) were fitted to the Freundlich and Langmuir/Freundlich
isotherm models, which are the most frequently used [71]. The Freundlich isotherm
presumes the surface heterogeneity and defines the exponential distribution of the ac-
tive sites on the adsorbate surface. The model indicates physisorption on the surface.
The Langmuir/Freundlich isotherm model is a combined form of the Langmuir and Fre-
undlich isotherm and describes adsorption on heterogeneous surfaces. With regards to
the adsorbate, low or high concentration, the model becomes the Freundlich model or
the Langmuir isotherm model, respectively [72]. In Figure 2a, the red line illustrates the
adsorption isotherm, whereas the adsorption parameters are collected in Table 3. The
Langmuir/Freundlich model fits successfully to the experimental data with the highest
value of the correlation coefficients (R2 = 0.999), whereas Freundlich’s model fitting was
not satisfactory.

Table 3. Langmuir/Freundlich isotherm parameters for sodium oleate adsorption on magnesite.

Model Isotherm Isotherm Parameters

Langmuir-Freundlich

Ks (L/mg)n 9.023 ± 2.712 × 10−6

qm (mg/g) 474.63 ± 281.45
ns 2.366 ± 0.416
R2 0.999

3.1.2. Effect of Contact Time—Kinetic Models

Kinetic adsorption experiments were conducted in order to determine the essential
time for the adsorption of the collector on the mineral’s surface to reach equilibrium.
Figure 2b illustrates the effect of contact time on residual concentration Ct of sodium oleate
and the adsorption capacity qt of magnesite at optimum pH = 10 [16,73]. Figure 2b shows
that the initial sodium oleate concentration 120 mg/L is reduced to 55 and 40 mg/L after
one and three minutes of mixing, respectively. Equilibrium was reached within three
minutes, and the sorption capacity was approximately 8 mg/g. The data of sorption
loading, qt, were fitted to the two kinetic models, and the kinetic parameters are presented
in Table 4. Based on the correlation coefficients (R2), the best fitting was obtained for the
pseudo-second-order equation (R2 > 0.999), while the pseudo-first-order model presented
lower coefficients. This means that adsorption takes place possibly through chemisorption.
The (solid) continuous curve represents the pseudo-second-order kinetic model. From the
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results obtained, it is concluded that conditioning of magnesite with sodium oleate in order
to render magnesite hydrophobic can be completed satisfactorily after 3 min.
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Figure 2. (a) Study of the adsorption equilibrium of sodium oleate on magnesite (pH = 10). The
results expressed as the adsorption isotherm—the solid line represents the Langmuir/Freundlich
isotherm. (b) Effect of contact time on residual concentration Ct of sodium oleate and the adsorption
capacity qt of magnesite, pH = 10, mMgCO3 = 10 g, CSO = 120 mg/L. The solid line of qt represents
the pseudo-second-order kinetic model.
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Table 4. Kinetic parameters for the adsorption of sodium oleate onto magnesite particles.

Kinetic Model Kinetic Parameters

Pseudo-first order
k1 (min−1) 0.01
qe (mg/g) 7.280 ± 0.783

R2 0.695

Pseudo-second order
k2 (min−1(mg/g)−1) 0.528 ± 0.086

qe (mg/g) 8.535 ± 0.074
R2 0.999

3.1.3. Adsorption Mechanism

The collector adsorption on the surface of minerals as a function of pH has been
studied in various research works [54,74]. Rao et al. extensively studied the mechanism
of oleate on salt-type minerals and more specifically on calcite (CaCO3) [73]. Given that
calcium and magnesium have the same outer electron structure, since they are both located
on the second column of the periodic table (alkaline earth metal group), they have similar
chemical properties and behavior. Cases et al. [75] considered that adsorption of surfactants
with more than eight methylene groups in their structure interact two-dimensionally with
the surface of the mineral. Moreover, results from various experimental data depict that the
basic interaction between oleate and calcium surface is chemisorption. Precipitated sodium
calcium forms, whichis later adsorbed on the chemisorbed oleate layer [76,77]. Based on
these observations, it is assumed that the same mechanism is followed by sodium oleate
adsorption on magnesite. Additionally, the suggested mechanism (chemisorption) is in
line with the present experimental results (pseudo-second-order kinetic model).

3.2. Bubble Size Measurements

Figure 3 shows the mean bubble size of dispersed bubbles generated in the hybrid
Denver in presence of the flotation reagents, which is 0.6 mm (0.17–0.8 mm). The usual
bubble size of dispersed-air bubbles in a mechanical Denver device is 0.5–2 mm [78]. The
presence of a strong anionic collector such as sodium oleate and electrolyte at the optimum
flotation conditions (120 mg/L and 0.1 M respectively) decreases the bubble size to the
computed one.
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Figure 3. (a) Photo of dispersed air bubbles in the BDDHD flotation device, (b) bubble size distribu-
tion of dispersed air bubbles in the BDDHD device: SO = 120 mg/L, NaCl = 0.1 M.

The mean size of the electrolytic bubbles in the hybrid cell is illustrated in Figure 4.
The bubble size distribution graph shows that mean bubble size is 76 µm (10–250 µm).
Typical electroflotation devices (usually flotation columns) generate bubbles with mean
size <100 µm [79]. Xu et al. studied the effects of an anionic surfactant and electrolyte
on bubble size and proposed that electrostatic repulsion between the anionic surfactant
molecules is reduced due to the fact that the electrolyte’s counter-ions attach to the anionic
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surfactant’s head groups. This results in a much closer formed monolayer film at the
interface; thus, smaller and more stable bubbles are formed [80].
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Figure 4. (a) Photo of electrolytic air bubbles in the BDDHD flotation device, (b) bubble size
distribution of electrolytic air bubbles in the BDDHD device: SO = 120 mg/L, NaCl = 0.1 M.

3.3. Flotation Results
3.3.1. Effect of Conditioning Time with Electrolytic Bubbles

Figure 5 illustrates the effect of the treating time of the hydrophobized mineral with
electrolytic micro-bubbles prior to inserting dispersed bubbles into the flotation cell. The
results clearly depict that conditioning magnesite with electrolytic bubbles enhances flota-
tion recovery, and the maximum recovery is achieved when treatment time reached 20 min.
In particular, fine mineral particle recovery in the absence of electrolytic bubbles was 55%
and when treating magnesite with the micro-bubbles for 20 min recovery reached 75%. The
results show the strong impact of the presence of electrolytic bubbles on fine particle recov-
ery. This is attributed to the formation of hetero-aggregates (of particles and bubbles) due
to electrostatic attraction between particles and micro-bubbles. It is assumed that flotation
effectiveness is achieved due to the fact that electrolytic bubbles act as selective flocculants,
promoting the formation of large aggregates, which are easier to float by dispersed-air
bubbles [81].
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3.3.2. Effect of pH on Magnesite Flotation

Figure 6 shows the effect of pH on the flotation recovery of magnesite, as well as
the dependence of recovery on the size of the bubbles, in the presence of sodium oleate
as the collector. The pH values were varied in the range 2–12. The graph shows that
recovery of magnesite is very poor in acidic conditions. Flotation recovery of magnesite
increases with the increase of the pulp pH value. At pH 7–10, the recovery of magnesite
increased from 52.5% to 71.1% and from 58.2% to 80.9% in the absence and presence of
electrolytic bubbles, respectively. The floatability of magnesite increases notably as the
pH value increases, reaching the maximum recovery value at pH 10. The results are in
good agreement with a previous study related to magnesite flotation [82]. Magnesite
as a salt-type mineral depicts solubility, and its dissolved species (Mg ions) take part in
reactions such as hydrolysis and adsorption, and as a result, these reactions affect the
interactions with the collector [82]. The solubility of magnesite in acidic pH values is rather
high [63]. Yang et al. [83] measured the zeta potential of magnesite as a function of pH. In
the whole pH range, magnesite’s potential has negative values, and moreover, at pH 10
shifts to an even lower value, indicating the strong adsorption of sodium oleate occurring
on magnesite. At pH values lower than 6, the magnesite surface is positively charged, and
the adsorption of anions would be expected [63]. However, the effect of the surface charge
is not significant in the anionic magnesite flotation, and as is indicated in Figure 6, the
adsorption of sodium oleate (anionic collector) does not occur effectively, so flotation is
not promoted at pH values lower than 6. This is probably due to the fact that adsorption
of the collector on magnesite surface occurs possibly by chemisorption [84]. Based on the
aforementioned observations, the pH value of 10 was selected for conducting the flotation
experiments.
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Moreover, Figure 6 indicates that the higher flotation efficiency for fine magnesite
particles was achieved in the presence of electrolytic bubbles. The results show that the
presence of micro-bubbles has an impact on the recovery of fine magnesite particles, leading
to a 10% recovery improvement. Single electrolytic bubbles are not able to float magnesite
particles. Based on the literature review, it is assumed that electrolytic bubbles act on
increasing the apparent size of fine particles and hence enhancing their floatability [85].
Rulyov et al. [48] introduced the hetero-aggregation of fine particles with micro-bubbles
in a non-uniform hydrodynamic field in a flotation cell. More specifically, micro-bubbles
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act as carriers. As a result, the capture efficiency of the formed particle-micro-bubble
hetero-aggregates exceeds the capture efficiency of particles by conventional-sized bubbles.
Moreover, the flotation rate of the formed hetero-aggregates by coarse bubbles is much
higher than that of separate particles.

3.3.3. Effect of Collector’s Concentration

Figure 7 shows the dependence of magnesite flotation recovery by the collector’s con-
centration in the presence and absence of electrolytic bubbles at pH = 10. Previous wetting
studies of the surface of magnesite showed that as a nonmetallic, hydrophilic mineral, it
has a small contact angle in water (10.4◦). After conditioning with the anionic collector
sodium oleate at pH 10.2, the value of the contact angle increases to 79◦, thus increasing
its hydrophobicity [54,63,86]. As sodium oleate’s concentration increases, the recovery
of magnesite raises. The recovery exceeded 83% when the dosage of the collector was
120 mg/L. Increasing sodium oleate’s dosage, magnesite’s recovery was stable; therefore,
the dosage of the collector 120 mg/L can be set as the best flotation collector dosage. In
addition, Figure 7 shows that recovery of fine magnesite particles can be enhanced by the
presence of micro-bubbles raising minerals recovery from 71.3% to 81.9%.
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3.3.4. Effect of Electrolyte’s Concentration on Combined Flotation of Magnesite

Electrolyte plays an important role during water electrolysis, increasing the conduc-
tivity in the solution and furthermore the efficiency of the process. More specifically, an
inorganic electrolyte reduces the surface hydration of mineral particles, thus increasing
their attachment to the bubbles [87]. Moreover, Marrucci et al. proposed that the presence
of an inorganic electrolyte leads to a decrease of bubbles’ coalescence (formation of fine
bubbles) and the formation of a stable froth zone [88]. The electrolyte used in the current
study was sodium chloride (NaCl,) and pH = 10, sodium oleate = 120 mg/L, and current
density = 0.1 A were kept constant throughout the experiments. The results (Figure 8)
depict that the addition of the electrolyte initially enhances the flotation recovery assisted
by electrolytic bubbles, but when NaCl concentration exceeded 0.1 M, recovery decreased.
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Moreover, the addition of an electrolyte in a solution leads to an increase in bubbles’
surface potential, which means repulsive forces between bubbles and particles are pro-
moted [89]. It is also worth mentioning that, in cases of excess concentration of inorganic
salts in flotation, pulp might have a depressing effect on the flotation of some particles [32].
However, high electrolyte concentration creates higher electrical conductivity, which results
in lower voltage under the same current density leading to lower power consumption [90].

3.3.5. Effect of Airflow Rate on Magnesite Flotation

Mechanical flotation performance is undoubtedly affected both by the airflow rate and
the impeller speed. Airflow rate plays an important role regarding the flotation kinetics.
The effect of the airflow rate is a topic investigated by several researchers [91–94]. The effect
of the variable air flow rate on fine magnesite recovery is shown in Figure 9 in the presence
and in absence of electrolytic bubbles. Recovery is decreased at low airflow rates, whereas
it increases as aeration rate increases to reach a maximum at 5 L/min, both in the presence
and absence of electrolytic bubbles. The experimental results indicate that at higher airflow
rates (8 L/min), the recovery of fine particles was stable. Abdo et al. suggested that low
airflow rates lead to lower recoveries due to the fact that the flow rate of water to the froth
is decreased [95]. Moreover, low aeration rates can cause froth overloading, resulting in
the drainage of particles located inthe froth back to the pulp. It should be also noted that
high aeration rates can cause high turbulent conditions and deposition of particles in the
flotation cell, thus lowering their recovery [95].

3.3.6. Particle Size Distribution after Flotation

Upon the complementation of the flotation experiments, the particle size analysis of the
froth products was conducted. The analysis was realized under the framework of defining
the particle size range of the mineral particles that floated with the experimental conditions
studied. The analysis was conducted on flotation products recovered in the presence and
absence of electrolytic bubbles in order to ascertain the contribution of micro-bubbles on
fine magnesite flotation and moreover to define which particle fraction influences the most.
Figure 10 depicts the particle size distribution of raw magnesite, magnesite that floated by
employing only dispersed-air bubbles, and magnesite recovered by combining electrolytic
and dispersed-air bubbles. When employing only dispersed-air bubbles, the froth product
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contained magnesite particles with size 20–35 µm. Moreover, the analysis shows that when
applying conditioning of fine magnesite particles with electrolytic bubbles, recovery of finer
mineral particles occurs (3–10 µm). The particle size analysis of the recovered mineral is an
important indicator depicting that combining micro-bubbles with dispersed-air bubbles
leads to more effective flotation performance of fine and ultrafine mineral particles.
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4. Conclusions

In the present research, the design and construction of a hybrid mechanical flotation
device capable of producing bubbles of different size by combining conventional-sized
bubbles (dispersed air) and micro-bubbles (electrolysis of water) is proposed. The gas phase
of the new device is characterized by optical measurements, and bubble size distributions
were extracted for both dispersed and electrolytic bubbles. The mean bubble diameter was
estimated to be 611 and 76 µm, respectively.

Adsorption experiments were performed in the framework of describing the adsorp-
tion of the collector upon the mineral. The experimental results indicate that adsorption
of sodium oleate is effective at pH 10, which is in good agreement with the optimum
pH value in the flotation process. Chemisorption of sodium oleate is more effective inbasic
conditions, rendering the mineral hydrophobic and thus promoting its floatability. The
kinetic results indicate that adsorption is completed in 3 min and that indicates the effective
time of conditioning the mineral with the collector.

During flotation experiments, the effect of conditioning time with electrolytic bubbles,
pH, collector’s and electrolyte’s concentration, and airflow rate with regards to bubble
size were examined. The fact that all curves of combined bubbles are always above the
curves employing dispersed-air bubbles indicates that the presence of electrolytic bubbles
enhances the flotation recovery of fine magnesite particles by approximately 10%. Particle
size analysis of the froth product showed that the presence of electrolytic bubbles enhances
the flotation recovery of finer particles more than when employing only dispersed-air
bubbles. Fine magnesite particles assisted by electrolytic bubbles appear to be a result of
the following phenomena:

• Adsorption of oleate’s molecules onto magnesite particles with the polar part on the
surface of the mineral renders magnesite particles hydrophobic.

• Aggregation (or more specific hetero-aggregation) of fine particles with electrolytic
bubbles.

• Attachment of the formed aggregates with the dispersed-air bubbles.

The results obtained from the particle size analysis of the froth product in the pres-
ence and absence of electrolytic bubbles is evidence indicating the auxiliary role of the
micro-bubbles. The employment of other analytical techniques (e.g., FBRM) would more
thoroughly support the results to validate that fine mineral particle flotation is assisted by
the presence of electrolytic bubbles.

As a future challenge, it is believed that employing electrolysis for micro-bubble
generation in support of fine particle flotation enhancement will be used economically on
anindustrial scale. Therefore, research must continue on alarger scale.
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