Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Combined AMD-Waste Effluent from Refractory Gold Processing
2.2. Synthesis of Fe-Al Bimetallic Particles
- and are the total Fe and Al content of the bimetal,
- and are applied Fe and Al content, and
- and are residual Fe and Al ions concentrations.
2.3. Analytical Techniques
2.4. Experimental Procedure
3. Results and Discussion
3.1. Characterization of the Fe-Al Bimetallic Particles
3.2. pH Monitoring
3.3. Metal Removal by the Fe-Al Bimetallic Material
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Wilkin, R.T.; McNeil, M.S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere 2003, 53, 715–725. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Chapter 16—Tailings Disposal. In Wills’ Mineral Processing Technology (Eighth Edition); Wills, B.A., Finch, J.A., Eds.; Butterworth-Heinemann: Boston, FL, USA, 2016; pp. 439–448. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Diao, Z.; Shi, T.; Wang, S.; Huang, X.; Zhang, T.; Tang, Y.; Zhang, X.; Qiu, R. Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res. 2013, 47, 4391–4402. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Dang, Z.; Zhang, Q.; Yi, X.; Lu, G.; Guo, C.; Yang, C. Passivation of metal-sulfide tailings by covalent coating. Miner. Eng. 2013, 42, 36–42. [Google Scholar] [CrossRef]
- Alakangas, L.; Andersson, E.; Mueller, S. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ. Sci. Pollut. Res. 2013, 20, 7907–7916. [Google Scholar] [CrossRef]
- Nason, P.; Johnson, R.H.; Neuschütz, C.; Alakangas, L.; Öhlander, B. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation. J. Hazard. Mater. 2014, 267, 245–254. [Google Scholar] [CrossRef]
- Jin, S.; Fallgren, P.H.; Morris, J.M.; Cooper, J.S. Source Treatment of Acid Mine Drainage at a Backfilled Coal Mine Using Remote Sensing and Biogeochemistry. Water Air Soil Pollut. 2008, 188, 205–212. [Google Scholar] [CrossRef]
- Li, X.; Hiroyoshi, N.; Tabelin, C.B.; Naruwa, K.; Harada, C.; Ito, M. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Chemosphere 2019, 214, 70–78. [Google Scholar] [CrossRef]
- Jones, S.N.; Cetin, B. Evaluation of waste materials for acid mine drainage remediation. Fuel 2017, 188, 294–309. [Google Scholar] [CrossRef]
- Bortnikova, S.; Gaskova, O.; Yurkevich, N.; Saeva, O.; Abrosimova, N. Chemical Treatment of Highly Toxic Acid Mine Drainage at A Gold Mining Site in Southwestern Siberia, Russia. Minerals 2020, 10, 867. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Loredo Portales, R.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Fytas, K. Use of permeable reactive barriers to treat acid mine effluents. Int. J. Min. Reclam. Environ. 2010, 24, 206–215. [Google Scholar] [CrossRef]
- Gibert, O.; Rötting, T.; Cortina, J.L.; de Pablo, J.; Ayora, C.; Carrera, J.; Bolzicco, J. In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcóllar (Sw Spain). J. Hazard. Mater. 2011, 191, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kaksonen, A.H.; Puhakka, J.A. Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals. Eng. Life Sci. 2007, 7, 541–564. [Google Scholar] [CrossRef]
- Gitari, M.W.; Petrik, L.F.; Etchebers, O.; Key, D.L.; Iwuoha, E.; Okujeni, C. Treatment of acid mine drainage with fly ash: Removal of major contaminants and trace elements. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2006, 41, 1729–1747. [Google Scholar] [CrossRef]
- Wu, Y.; Guan, C.-Y.; Griswold, N.; Hou, L.-Y.; Fang, X.; Hu, A.; Hu, Z.-Q.; Yu, C.-P. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. J. Clean. Prod. 2020, 277, 123478. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Grajales-Mesa, S.J.; Malina, G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Nidheesh, P.V.; Khatri, J.; Anantha Singh, T.S.; Gandhimathi, R.; Ramesh, S.T. Review of zero-valent aluminium based water and wastewater treatment methods. Chemosphere 2018, 200, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-H.; Huang, C.-C.; Lien, H.-L. Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 2008, 73, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Cheng, Z.; Dionysiou, D.D.; Tang, B. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism. J. Hazard. Mater. 2015, 298, 261–269. [Google Scholar] [CrossRef]
- Cheng, Z.; Fu, F.; Dionysiou, D.D.; Tang, B. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles. Water Res. 2016, 96, 22–31. [Google Scholar] [CrossRef]
- Xiang, S.; Cheng, W.; Nie, X.; Ding, C.; Yi, F.; Asiri, A.M.; Marwani, H.M. Zero-valent iron-aluminum for the fast and effective U(VI) removal. J. Taiwan Inst. Chem. Eng. 2018, 85, 186–192. [Google Scholar] [CrossRef]
- Han, W.; Fu, F.; Cheng, Z.; Tang, B.; Wu, S. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J. Hazard. Mater. 2016, 302, 437–446. [Google Scholar] [CrossRef]
- Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Wang, S.; Sillanpää, M. Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecol. Eng. 2015, 81, 30–40. [Google Scholar] [CrossRef]
- Marsden, J.O.; House, C.I. Chemistry of Gold Extraction, 2nd ed.; SME: Littleton, CO, USA, 2009. [Google Scholar]
- Deschenes, G.; Lastra, R.; Brown, J.R.; Jin, S.; May, O.; Ghali, E. Effect of lead nitrate on cyanidation of gold ores: Progress on the study of the mechanisms. Miner. Eng. 2000, 13, 1263–1279. [Google Scholar] [CrossRef]
- Deschênes, G.; McMullen, J.; Ellis, S.; Fulton, M.; Atkin, A. Investigation on the cyanide leaching optimization for the treatment of KCGM gold flotation concentrate—phase 1. Miner. Eng. 2005, 18, 832–838. [Google Scholar] [CrossRef]
- Ali, R.; Turner, J. A Study of the Suitability of Saline Surface Water for Recharging the Hypersaline Palaeochannel Aquifers of the Eastern Goldfields of Western Australia. Mine Water Environ. 2004, 23, 110–118. [Google Scholar] [CrossRef]
- Muir, D.M. Gold Processing with Saline Water; The Australasian Institute of Mining and Metallurgy: Carlton, Australia, 1994. [Google Scholar]
- Bethke, C.M.; Yeakel, S. The Geochemist’s Workbench—A User’s Guide to GSS, Rxn, Act2, Tact, Spec8, React, Gtplot, X1t, X2t, and Xtplot; Aqueous Solutions LLC: Urbana, IL, USA, 2011. [Google Scholar]
- Blanc, P.; Lassin, A.; Piantone, P.; Azaroual, M.; Jacquemet, N.; Fabbri, A.; Gaucher, E.C. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 2012, 27, 2107–2116. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Lien, H.-L.; Yu, C.-H.; Kamali, S.; Sahu, R.S. Bimetallic Fe/Al system: An all-in-one solid-phase Fenton reagent for generation of hydroxyl radicals under oxic conditions. Sci. Total Environ. 2019, 673, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yang, S.; Liu, S.; Zhang, Y.; Ren, T.; Zhang, Y. Enhanced reactivity of zero-valent aluminum with ball milling for phenol oxidative degradation. J. Colloid Interface Sci. 2020, 560, 260–272. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009, 43, 7130–7135. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, D.; Ren, T.; Zhang, Y.; Xin, J. Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: Performance and mechanism especially at near-neutral pH. Water Res. 2017, 123, 704–714. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 2013, 51, 104–122. [Google Scholar] [CrossRef]
- Vernon, J.D.; Bonzongo, J.-C.J. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: Implications for treatment of mercury contaminated water effluents. J. Hazard. Mater. 2014, 276, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Mao, Q.; Luo, L.; Zhang, J.; Wei, J.; Yang, Y.; Tan, M.; Peng, Q.; Tang, L.; Zhou, Y. Performance and mechanism of As(III) removal from water using Fe-Al bimetallic material. Sep. Purif. Technol. 2018, 191, 314–321. [Google Scholar] [CrossRef]
- Liu, F.; Yang, W.; Li, W.; Zhao, G.-C. Simultaneous Oxidation and Sequestration of Arsenic(III) from Aqueous Solution by Copper Aluminate with Peroxymonosulfate: A Fast and Efficient Heterogeneous Process. ACS Omega 2021, 6, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Igarashi, T.; Herrera, P.S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C.B. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. Sci. Total Environ. 2020, 715, 136877. [Google Scholar] [CrossRef]
- Rangsivek, R.; Jekel, M.R. Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res. 2005, 39, 4153–4163. [Google Scholar] [CrossRef]
- Beverskog, B.; Puigdomenech, I. Pourbaix Diagrams for the System Copper-Chlorine at 5–100 °C; Swedish Nuclear Power Inspectorate: Stockholm, Sweden, 1998; p. 56. [Google Scholar]
- He, D.; Zeng, L.; Zhang, G.; Guan, W.; Cao, Z.; Li, Q.; Wu, S. Extraction behavior and mechanism of nickel in chloride solution using a cleaner extractant. J. Clean. Prod. 2020, 242, 118517. [Google Scholar] [CrossRef]
- Stec, M.; Jagustyn, B.; Słowik, K.; Ściążko, M.; Iluk, T. Influence of High Chloride Concentration on pH Control in Hydroxide Precipitation of Heavy Metals. J. Sustain. Metall. 2020, 6, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Grassi, S.; Netti, R. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy). J. Hydrol. 2000, 237, 198–211. [Google Scholar] [CrossRef]
- Spyropoulou, A.; Lazarou, Y.G.; Laspidou, C. Mercury Speciation in the Water Distribution System of Skiathos Island, Greece. Proceedings 2018, 2, 668. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, J. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403. [Google Scholar] [CrossRef]
- Esfahani, A.R.; Datta, T. Nitrate removal from water using zero-valent aluminium. Water Environ. J. 2020, 34, 25–36. [Google Scholar] [CrossRef]
- Scheck, J.; Lemke, T.; Gebauer, D. The Role of Chloride Ions during the Formation of Akaganéite Revisited. Minerals 2015, 5, 778–787. [Google Scholar] [CrossRef]
- Rémazeilles, C.; Refait, P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 2007, 49, 844–857. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, W.; Chang, Q.; Li, W.; Lai, Y. Adsorptive characteristics of akaganeite and its environmental applications: A review. Environ. Technol. Rev. 2012, 1, 114–126. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Bakoyannakis, D.N.; Zouboulis, A.I.; Peleka, E. Removal of Arsenic and Cadmium by Akaganeite Fixed-Beds. Sep. Sci. Technol. 2003, 38, 3967–3981. [Google Scholar] [CrossRef]
Hg | Al | Ca | Mn | Na | Fe | As | Pb | SO42− | Ni | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
32.5 | 1.4 | 273.6 | 36.3 | 10,896.0 | 388.4 | 9.3 | 91.4 | 652.0 | 18.2 | 53.4 | 31.9 |
Aqueous Species | Reduction Half Reactions | E0 (V) |
---|---|---|
Aluminum (Al) | −1.68 | |
Manganese (Mn) | −1.18 | |
Zinc (Zn) | −0.76 | |
Iron (Fe(II)) | −0.44 | |
Nickel (Ni) | −0.28 | |
Lead (Pb) | −0.13 | |
Copper (Cu(I)) | +0.15 | |
Arsenic (As(III)) | +0.24 | |
Copper (Cu(II)) | +0.34 | |
Arsenic (As(V)) | +0.56 | |
Iron (Fe(III)) | +0.77 | |
Mercury (Hg) | +0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghaei, E.; Wang, Z.; Tadesse, B.; Tabelin, C.B.; Quadir, Z.; Alorro, R.D. Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing. Minerals 2021, 11, 590. https://doi.org/10.3390/min11060590
Aghaei E, Wang Z, Tadesse B, Tabelin CB, Quadir Z, Alorro RD. Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing. Minerals. 2021; 11(6):590. https://doi.org/10.3390/min11060590
Chicago/Turabian StyleAghaei, Elham, Zexiang Wang, Bogale Tadesse, Carlito Baltazar Tabelin, Zakaria Quadir, and Richard Diaz Alorro. 2021. "Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing" Minerals 11, no. 6: 590. https://doi.org/10.3390/min11060590
APA StyleAghaei, E., Wang, Z., Tadesse, B., Tabelin, C. B., Quadir, Z., & Alorro, R. D. (2021). Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing. Minerals, 11(6), 590. https://doi.org/10.3390/min11060590