Instrumental Photon Activation Analysis with Short-Time Irradiation for Geochemical Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Calibration Standards
2.2. Irradiation at MT-25 and Gamma-Spectrometric Measurement
3. Results and Discussion
3.1. Reaction Rates
3.2. Determination of Si, Fe, K, Ba, and Zr
3.3. Determination of Al and Mg
3.4. Complete Combined IPAA Procedure for Geochemical Major Element Analysis
4. Potential of Short-Lived Photoexcitation Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, L.L.; Brown, F.W. Major and minor elements requiring individual determination, classical whole rock analysis, and rapid rock analysis. In Methods for Geochemical Analysis (U.S. Geological Survey Bulletin 1770); Baedecker, P.A., Ed.; United States Government Printing Office: Denver, CO, USA, 1987; pp. G1–G23. [Google Scholar] [CrossRef] [Green Version]
- Gill, R. (Ed.) Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environmental and Materials Scientists; Longman Geochemistry Series; Routledge: New York, NY, USA, 1997; 34p, ISBN 978-0582099449. [Google Scholar]
- The Elemental Analysis of Geological Materials: Elegant Solutions from SPECTRO Analytical Instruments (Rev.1). Available online: https://extranet.spectro.com/-/media/ametekspectroextranet/files/repeated/2013/the_elemental_analysis_of_geological_materials_r1_sep2013_web0.pdf?dmc=1&la=en (accessed on 2 April 2021).
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Řanda, Z.; Kučera, J.; Mizera, J.; Frána, J. Comparison of the role of photon and neutron activation analyses for elemental characterization of geological, biological and environmental materials. J. Radioanal. Nucl. Chem. 2007, 271, 589–596. [Google Scholar] [CrossRef]
- Baker, C.A. Gamma-activation analysis. Analyst 1967, 92, 601–610. [Google Scholar] [CrossRef]
- Lutz, G.J. Photon activation analysis—A review. Anal. Chem. 1971, 43, 93–103. [Google Scholar] [CrossRef]
- Segebade, C.; Berger, A. Photon Activation Analysis. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Segebade, C.; Starovoitova, V.N.; Borgwardt, T.; Wells, D. Principles, methodologies, and applications of photon activation analysis: A review. J. Radioanal. Nucl. Chem. 2017, 312, 443–459. [Google Scholar] [CrossRef]
- Lindstrom, R.M. Prompt-gamma activation analysis. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.L.; Firestone, R.B.; Molnár, G.L.; Révay, Z.; Kasztovszky, Z.; Gatti, R.C.; Wilde, P. Neutron-induced prompt gamma activation analysis (PGAA) of metals and nonmetals in ocean floor geothermal vent-generated samples. J. Anal. At. Spect. 2002, 17, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Görner, W.; Haase, O.; Ostermann, M.; Segebade, C. Instrumental analysis of phosphorus in organic material using high energy beta-counting after photoactivation (IPAA). J. Radioanal. Nucl. Chem. 2008, 276, 251–255. [Google Scholar] [CrossRef]
- Řanda, Z.; Kreisinger, F. Tables of nuclear constants for gamma-activation analysis. J. Radioanal. Chem. 1983, 77, 279–495. [Google Scholar] [CrossRef]
- IAEA. Handbook on Photonuclear Data for Applications. Cross Sections and Spectra (IAEA-TECDOC 1178); International Atomic Energy Agency (IAEA): Vienna, Austria, 2000. [Google Scholar]
- Řanda, Z.; Špaček, B.; Kuncíř, J.; Benada, J. Nondestructive Gamma Activation Analysis of Mineral Materials; Nuclear Information Centre: Prague, Czech Republic, 1981. [Google Scholar]
- Krausová, I. Short-Lived Products of Photonuclear Reactions with a Microtron and Their Application to Photon Activation Analysis. Ph.D. Thesis, Czech Technical University, Prague, Czech Republic, 2015. [Google Scholar]
- Krist, P.; Horák, Z.; Mizera, J.; Chvátil, D.; Vognar, M.; Řanda, Z. Innovations at the MT 25 microtron aimed at applications in photon activation analysis. J. Radioanal. Nucl. Chem. 2015, 304, 183–188. [Google Scholar] [CrossRef]
- Řanda, Z.; Špaček, B.; Mizera, J. Express determination of gold in large mass samples of gold ores by photoexcitation reaction with 10 MeV bremsstrahlung. J. Radioanal. Nucl. Chem. 2007, 271, 603–606. [Google Scholar] [CrossRef]
- Overwater, R.M.W.; Bode, P.; de Goeij, J.J.M. Gamma-ray spectroscopy of voluminous sources. Corrections for source geometry and self-attenuation. Nucl. Instrum. Methods Phys. Res. A 1993, A324, 209–218. [Google Scholar] [CrossRef]
- Eke, C.; Boztosun, I.; Segebade, C. Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator. Radiochim. Acta 2019, 107, 149–156. [Google Scholar] [CrossRef]
- Tserenpil, S.; Segebade, C.P.; Dapo, H.; Boztosun, I.; Vostokin, G.K.; Maslov, O.D.; Belov, A.G. Feasibility of using “Off-The-Shelf” clinical linac for soil multi-elemental instrumental photon activation analysis. J. Radioanal. Nucl. Chem. 2019, 322, 337–346. [Google Scholar] [CrossRef]
Element | Photonuclear Reaction | Half-Life | Analytical Photopeak Eγ (keV) | Ethr (MeV) a | Epeak (MeV) b | σmax (mb) c | Target Natural Abundance (%) |
---|---|---|---|---|---|---|---|
C | 12C(γ, n) 11C | 20.4 min | 511 | 18.7 | 23.4 | 8.7 | 98.9 |
N | 14N (γ, n) 13N | 9.97 min | 511 | 10.6 | 23.3 | 14.7 | 99.6 |
O | 16O(γ, n) 15O | 2.04 min | 511 | 15.7 | 17.2 | 2.9 | 99.8 |
Mg | 24Mg(γ, n) 23Mg | 11.3 s | 439; 511 | 16.5 | 19.2 | 9.9 | 78.6 |
Mg | 26Mg(γ, p) 25Na | 59.6 s | 974.2 | 14.1 | 17.8 | 5.1 | 11.0 |
Al | 27Al (γ, n) 26mAl | 6.35 s | 511 | 13.3 | 21.2 | 15.8 | 100 |
Si | 29Si(γ, p) 28Al | 2.24 min | 1778.8 | 12.3 | ~21 | ~20 | 4.7 |
Si | 30Si(γ, p) 29Al | 6.56 min | 1273.4 | 13.5 | n.a. d | n.a. d | 3.1 |
P | 31P(γ, n) 30P | 2.5 min | 511 | 12.3 | 19.5 | 19 | 100 |
K | 39K (γ, n) 38K | 7.61 min | 2167.7 | 13.1 | 20 | 16 | 93.2 |
Ca | 48Ca (γ, p) 47K | 17.5 s | 2013 | 15.2 | 19.2 | 9.5 | 0.19 |
Fe | 54Fe (γ, n) 53Fe | 8.51 min | 377.9; 511 | 13.6 | 17.9 | 67 | 5.8 |
Zr | 90Zr(γ, n) 89mZr | 4.16 min | 587.7; 511 | 12.6 | 16.4 | 159 | 51.5 |
Ba | 138Ba (γ, n) 137mBa | 2.55 min | 661.7 | 9.2 | 15.3 | 354 | 71.7 |
Beam Energy | 53Fe a | 38K a | Si(29Al) a | 137mBa a | 89mZr a | 23Mg b | 26mAl c |
---|---|---|---|---|---|---|---|
17 MeV | 1.4 × 103 | 1.3 × 104 | n.d. d | 2.5 × 105 | 2.7 × 105 | n.d. d | n.d. d |
18 MeV | 9.7 × 103 | 6.9 × 104 | 1 × 103 | 6.7 × 105 | 1.1 × 106 | - | - |
19 MeV | 1.1 × 104 | 8.7 × 104 | 3 × 103 | 2.7 × 105 | 7.9 × 105 | 2.1 × 104 | 1.5 × 105 |
21 MeV | 1.3 × 104 | 1.1 × 105 | 2 × 103 | 4.7 × 105 | 9.3 × 105 | 1.2 × 105 | 1.4 × 105 |
17 MeV | 18 MeV | 19 MeV | 21 MeV | Certified Value b | ||
---|---|---|---|---|---|---|
SiO2 | CNRS UB-N | Not activated | 40.4 ± 1.50 | 41.30 ± 1.79 | 37.96 ± 0.97 | 39.43 ± 0.15 |
CNRS GS-N | Not activated | 68.08 ± 2.44 | 65.96 ± 2.64 | 65.50 ± 1.62 | 65.80 ± 0.19 | |
CNRS BE-N | Not activated | 43.72 ± 1.75 | 39.12 ± 1.62 | 35.02 ± 1.05 | 38.20 ± 0.12 | |
USGS QLO-1 | Not activated | 70.09 ± 2.62 | 66.30 ± 2.83 | 54.61 ± 1.37 | 65.6 ± 0.47 | |
USGS AGV-2 | Not activated | 65.84 ± 1.23 | 58.46 ± 3.02 | Not analyzed | 59.3 ± 0.70 | |
Fe2O3 | CNRS UB-N | 9.88 ± 0.55 | 8.21 ± 0.20 | 8.60 ± 0.25 | 8.01 ± 0.20 | 8.34 ± 0.1 |
CNRS GS-N | 4.35 ± 0.59 | 3.71 ± 0.12 | 3.86 ± 0.14 | 3.54 ± 0.15 | 3.75 ± 0.04 | |
CNRS BE-N | 15.84 ± 0.88 | 14.53 ± 0.33 | 13.07 ± 0.31 | 10.55 ± 0.15 | 12.84 ± 0.06 | |
USGS QLO-1 | 4.60 ± 0.41 | 4.65 ± 0.13 | 4.61 ± 0.15 | 3.70 ± 0.13 | 4.35 ± 0.14 | |
USGS AGV-2 | 7.27 ± 0.49 | 7.10 ± 0.17 | 6.36 ± 0.15 | Not analyzed | 6.69 ± 0.13 | |
K2O | CNRS UB-N | <0.03 | <0.01 | 0.015 ± 0.001 | 0.019 ± 0.002 | 0.02 ± 0.001 |
CNRS GS-N | 5.23 ± 0.18 | 4.65 ± 0.10 | 4.68 ± 0.10 | 4.70 ± 0.10 | 4.53 ± 0.06 | |
CNRS BE-N | 1.62 ± 0.07 | 1.50 ± 0.02 | 1.40 ± 0. 07 | 1.36 ± 0.03 | 1.39 ± 0.02 | |
USGS QLO-1 | 3.86 ± 0.12 | 3.57 ± 0.03 | 3.69 ± 0.08 | 3.58 ± 0.07 | 3.60 ± 0.12 | |
USGS AGV-2 | 3.11 ± 0.10 | 2.87 ± 0.06 | 2.98 ± 0.06 | Not analyzed | 2.88 ± 0.11 | |
Ba | CNRS UB-N | <19.8 | 21.2 ± 4.2 | <18.9 | <26.1 | 27 ± 3 |
CNRS GS-N | 1655.1 ± 33.1 | 1432.9 ± 28.7 | 1460.5 ± 29.2 | 1552.8 ± 31.1 | 1400 ± 44 | |
CNRS BE-N | 1303.5 ± 26.1 | 1270.6 ± 25.4 | 1082.9 ± 21.6 | 1117.6 ± 22.4 | 1025 ± 30 | |
USGS QLO-1 | 1338.8 ± 26.8 | 1424.2 ± 28.5 | 1517.9 ± 30.4 | 1366.8 ± 27.4 | 1370 ± 80 | |
USGS AGV-2 | 1208.6 ± 24.2 | 1162.4 ±23.2 | 1268.3 ± 25.3 | Not analyzed | 1140 ± 32 | |
Zr | CNRS UB-N | <8.6 | <3.8 | <5.8 | <9.1 | 4 ± 1 |
CNRS GS-N | 297 ± 15 | 249 ± 12 | 262 ± 7 | 261 ± 8 | 235 ± 8 | |
CNRS BE-N | 312 ± 11 | 315 ± 14 | 306 ± 8 | 222 ± 7 | 260 ± 5 | |
USGS QLO-1 | 170 ± 9 | 183 ± 10 | 204 ± 6 | 176 ± 6 | 185 ± 8 | |
USGS AGV-2 | 272 ± 9 | 239 ± 5 | 252 ± 7 | Not analyzed | 230 ± 2 |
Sample | SiO2 | Fe2O3 | K2O | Ba | Zr |
---|---|---|---|---|---|
NBPH3 b | 56.55 ± 2.47 (not analyzed) | 2.61 ± 0.12 (2.39 ± 0.1) | 4.72 ± 0.10 (4.45 ± 0.65) | <24.7 (126 ± 56) | 2860 ± 56 (2910 ± 58) |
MM 56 b | 84.78 ± 4.40 (85.6) | 1.92 ± 0.16 (FeO) (1.71) | 3.78 ± 0.08 (3.57) | 897 ± 43 (797) | 242 ± 9 (275) |
SBM 184 b | 80.45 ± 4.15 (79.0) | 1.48 ± 0.12 (FeO) (1.29) | 3.24 ± 0.07 (3.02) | 819 ± 41 (687) | 266 ± 7 (238) |
CNRS ISH-G c | 64.14 ± 2.58 (58) | 4.94 ± 0.16 (4.9) | 6.73 ± 0.15 (6.49) | 725 ± 42 (660) | 418 ± 10 (370) |
19 MeV | 21 MeV | Certified Value b | ||
---|---|---|---|---|
Al2O3 | CNRS GS-N | 14.83 ± 0.35 | 14.80 ± 0.35 | 14.67 ± 0.09 |
USGS QLO-1 | 17.10 ± 0.53 | 18.70 ± 0.44 | 16.2 ± 0.19 | |
USGS AGV-2 | 17.18 ± 0.40 | 22.53 ± 0.53 | 16.91 ± 0.21 | |
MgO | CNRS UB-N | 31.0 ± 3.2 | 37.4 ± 2.7 | 35.21 ± 0.14 |
CNRS GS-N | <2.83 | <1.53 | 2.20 ± 0.05 | |
CNRS BE-N | 15.13 ± 1.87 | 10.89 ± 1.08 | 13.15 ± 0.08 | |
USGS QLO-1 | <0.45 | <2.07 | 1.0 ± 0.07 |
Stage | Elements (Photoactivation Products; Half-Life) | ti-td-tc | Beam Energy |
---|---|---|---|
1 (short-time) | Al (26mAl; 6.4 s) a | 10-6-10 s 40-6-40 s b | 18–19 MeV 19–21 MeV |
Mg (23Mg; 11.3 s) a,b | |||
Mg (25Na; 59.6 s) b | |||
Ca (47K;17.5 s) b | |||
Ti (46mSc; 18.7 s) b | |||
2 (medium-time) | Si (29Al; 6.6 min) | 600-180-600 s | 19–21 MeV |
Si (28Al; 2.24 min) | |||
Fe (53Fe; 8.5 min) | |||
K (38K; 7.6 min) | |||
Ba (137mBa; 2.55 min) | |||
Zr (89mZr; 4.16 min) | |||
P (30P; 2.2 min) c | 300-60-200 s | 17 MeV | |
3 (long-time) | Ca (43K; 22.3 h) | ti ≈ 5–6 h td ≈ 1–20 d d tc ≈ min to h d | 22 MeV |
Mg (24Na; 14.7 h) | |||
Mn (54Mn; 312.2 d) | |||
Ti (47Sc; 3.3 d), Ti (48Sc; 1.8 d) | |||
Na (22Na; 2.6 y) |
Element | Isomer | Half-Life | Analytical Photopeak Eγ (keV) | Ethr (MeV) a | Target Natural Abundance (%) |
---|---|---|---|---|---|
Se | 77mSe | 17.4 s | 161.9 | 0.17 | 7.6 |
Br | 79mBr | 4.9 s | 207.2 | 0.21 | 50.7 |
Sr | 87mSr | 2.80 h | 388.4 | 0.39 | 7.0 |
Y | 89mY | 16.1 s | 909.1 | 0.91 | 100 |
Rh | 103mRh | 56.1 min | 39.75 | 0.04 | 100 |
Ag | 107mAg | 44.3 s | 93.1 | 0.095 | 51.5 |
Ag | 109mAg | 39.8 s | 88.0 | 0.09 | 48.7 |
Cd | 111mCd | 48.6 min | 150.6; 245.4 | 0.40 | 12.8 |
In | 113mIn | 99.5 min | 391.7 | 0.39 | 4.2 |
Ba | 137mBa | 2.55 min | 660.6 | 0.662 | 11.3 |
Er | 167mEr | 2.28 s | 207.8 | 0.21 | 22.9 |
Yb | 176mYb | 11.8 s | 292.9; 389.7 | 1.05 | 12.7 |
Lu | 176mLu | 3.68 h | 88.4 | 0.30 | 2.6 |
Hf | 179mHf | 18.7 s | 160.7; 215.5 | 0.38 | 13.8 |
W | 183mW | 5.3 s | 107.93; 160.5 | 0.31 | 14.4 |
Ir | 191mIr | 4.9 s | 129.4 | 0.17 | 37.3 |
Au | 197mAu | 7.8 s | 278.5 | 0.41 | 100 |
Hg | 199mHg | 42.6 min | 158.4; 374.1 | 0.53 | 16.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krausová, I.; Mizera, J.; Řanda, Z.; Chvátil, D.; Krist, P. Instrumental Photon Activation Analysis with Short-Time Irradiation for Geochemical Research. Minerals 2021, 11, 617. https://doi.org/10.3390/min11060617
Krausová I, Mizera J, Řanda Z, Chvátil D, Krist P. Instrumental Photon Activation Analysis with Short-Time Irradiation for Geochemical Research. Minerals. 2021; 11(6):617. https://doi.org/10.3390/min11060617
Chicago/Turabian StyleKrausová, Ivana, Jiří Mizera, Zdeněk Řanda, David Chvátil, and Pavel Krist. 2021. "Instrumental Photon Activation Analysis with Short-Time Irradiation for Geochemical Research" Minerals 11, no. 6: 617. https://doi.org/10.3390/min11060617
APA StyleKrausová, I., Mizera, J., Řanda, Z., Chvátil, D., & Krist, P. (2021). Instrumental Photon Activation Analysis with Short-Time Irradiation for Geochemical Research. Minerals, 11(6), 617. https://doi.org/10.3390/min11060617