57Fe Mössbauer Analysis of Meteorites and Tektites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
- Campo del Cielo and Find 1 unregistered iron meteorites: acquired in a mineral show.
- NWA 1990 stony meteorite: kindly provided by Mr. Miguel Gonçalves, NEO Skytale, Castelo Branco, Portugal.
- Bediasites, rizalites, australite, and moldavite: kindly provided by Mr. Aubrey Whymark, Senior Wellsite Geologist and Geosteering Specialist, Qatar Petroleum.
- Thailandites: collected by one of us (EIA) in the field in NE Thailand, Khon Kaen district and Khorat Plateau.
- Muong Nong (Laos): acquired from Mr. Sivadol Rodrubboon, in NE Thailand, Khon Kaen district, near the Laotian border.
- Muong Nong (China): acquired from Mr. Gao Fu, in Hong Kong.
- Tibetanite: acquired from Mr. Mike Petrov, Canada, who claims he got it from the original collector.
- Vietnamite: acquired from Mr. Long Nguyen, Yen Bai, Vietnam.
- Cambodiaite: acquired from Mr. James Fowler, Siem Reap, Cambodia.
- The analyses performed on the samples were:
- Iron meteorites: optical, microprobe and scanning electron microscopies, X-ray diffraction and Mössbauer spectroscopy in the two geometries described in Section 2.4.
- Stony meteorite: optical, microprobe and scanning electron microscopies, X-ray diffraction and Mössbauer spectroscopy in transmission geometry.
- Tektites: optical microscopy, X-ray fluorescence, X-ray diffraction and Mössbauer spectroscopy in both the geometries described in Section 2.4.
2.2. Optical and Microprobe/Scanning Electron Microscopies
2.3. X-ray Diffraction
2.4. X-ray Fluorescence
2.5. 57Fe Mössbauer Spectroscopy
3. Results
3.1. Iron Meteorites
3.2. Stony Meteorite
3.3. Tektites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burke, J.G. Cosmic Debris: Meteorites in History; University of California Press: Berkeley, CA, USA, 1986. [Google Scholar]
- Dennison, J.E.; Lingner, D.W.; Lipschutz, M.E. Antarctic and non-Antarctic meteorites form different populations. Nature 1986, 319, 390–393. [Google Scholar] [CrossRef]
- Varela, M.E.; Kurat, G. Glasses in meteorites and the primary liquid condensation model. Mitt. der Osterreichischen Mineral. Ges. 2009, 155, 279–320. [Google Scholar]
- Cannon, K.M.; Mustard, J.F. Preserved glass-rich impactites on Mars. Geology 2015, 43, 635–638. [Google Scholar] [CrossRef] [Green Version]
- French, B.M. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures; Lunar and Planetary Institute: Houston, TX, USA, 1998. [Google Scholar]
- Koeberl, C. Tektite origin by hypervelocity asteroidal or cometary impact. Large Meteor. Impacts Planet. Evol. 1994, 293, 133. [Google Scholar]
- O’Keefe, J.A. Tektites and Their Origin; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Howard, K.T. Physical distribution trends in Darwin glass. Meteorit. Sci. 2009, 44, 115–129. [Google Scholar] [CrossRef]
- Chapman, D.R.; Keil, K.; Annell, C. Comparison of Macedon and Darwin glass. Geochim. Cosmochim. Acta 1967, 31, 1595–1603. [Google Scholar] [CrossRef]
- Dunlap, R.A. An investigation of Fe oxidation states and site distributions in a Tibetan tektite. Hyperfine Interact. 1997, 110, 217. [Google Scholar] [CrossRef]
- Devouard, B.; Rochette, P.; Gattaccec, J.; Barrat, J.-A.; Moustard, F.; Valenzuela, E.M.; Alard, O.; Balestrieri, M.L.; Bigazzi, G.; Dos Santos, E.; et al. A new tektite strewnfield in Atacama, Chile. LPI 2014, 77, 5394. [Google Scholar]
- Rochette, P.; Bezaeva, N.S.; Kosterov, A.; Gattacceca, J.; Masaitis, V.L.; Badyukov, D.D.; Giuli, G.; Lepore, G.O.; Beck, P. Magnetic properties and redox state of impact glasses: A review and new case studies from Siberia. Geosciences 2019, 9, 225–249. [Google Scholar] [CrossRef] [Green Version]
- Povenmire, H.; Cornec, J.H. The 2014 Report on the Belize tektite strewn field. LPI 2015, 1832, 1132. [Google Scholar]
- McCall, G.J.M. Tektites in the Geological Record: Showers of Glass from the Sky; The Geological Society: London, UK, 2001. [Google Scholar]
- Koeber, C. Geochemistry and origin of Muong Nong-type tektites. Geochim. Cosmochim. Acta 1992, 56, 1033–1064. [Google Scholar] [CrossRef]
- Thorpe, A.N.; Senftl, F.E.; May, L.; Barkatt, A.; Adel-Hadadi, M.A.; Marbury, G.S.; Izett, G.A.; Maurrasse, F.R. Comparison of the magnetic properties and Mössbauer analysis of glass from the Cretaceous-Tertiary boundary, Beloc, Haiti, with tektites. J. Geophys. Res. Planets 1994, 99, 10881–10886. [Google Scholar] [CrossRef]
- Oskarsson, N.; Helgason, O.; Sigurdsson, H. Oxidation state of iron in tektite glasses from the Cretaceous/Tertiary boundary. In New Developments Regarding the KT Event and Other Catastrophes in Earth History; Ryder, G., Fastovsky, D., Gartner, S., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 1996; Volume 307, pp. 445–452. [Google Scholar]
- Howar, K.T. Volatile enhancement dispersal of high velocity impact melts and the origin of tektites. Proc. Geol. Ass. 2011, 122, 363–382. [Google Scholar] [CrossRef]
- Son, T.H.; Koeberl, C. Chemical variation within fragments of Australasian tektites. Met. Planet. Sci. 2005, 46, 805–815. [Google Scholar] [CrossRef]
- Cabanillas, E.D.; Palacios, T.A. An hexahedrite meteorite from Campo del Cielo Fall. Planet. Space Sci. 2006, 54, 303–309. [Google Scholar] [CrossRef]
- Villar, L.M. La dispersion meteorica en la Argentina y Chile. In Ciencia e Investigacion Organo de informacion del CONICET.; CONKICET: Buenos Aires, Argentina, 1968; pp. 302–314. [Google Scholar]
- Ferreira, L.M.G.; Alves, E.I.; Gonçalves, M.; Costa, B.F.O. North West Africa stony meteorite: A case study. Hyperfine Interact. 2020, 241, 1–6. [Google Scholar] [CrossRef]
- Costa, B.F.O.; Klingelhöfer, G.; Alves, E.I. 57Fe Mössbauer spectroscopy studies of tektites from Khon Kaen, NE Thailand. Hyperfine Interact. 2014, 224, 51–56. [Google Scholar] [CrossRef]
- Costa, B.F.O.; Klingelhöfer, G.; Panthöfer, M.; Alves, E.I. Backscattering Mössbauer MIMOS II and XRF studies on tektites from different strewn fields. Hyperfine Interac. 2014, 226, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.I.; Scott, E.R.D.; Chabot, N.L. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Geochemistry 2009, 69, 293–325. [Google Scholar] [CrossRef]
- Klingelhöfer, G.; Morris, R.; Bernhardt, B.; Rodionov, D.; Souza, P.D.; Squyres, S.; Foh, J.; Kankeleit, E.; Bonnes, U.; Gellert, R. Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. 2003, 108, 8067. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Danon, J.; Galvão da Silva, E. Solid state transformations in Fe-Ni alloys from meteorites in powder form. Hyperfine Interact. 1986, 28, 979–983. [Google Scholar] [CrossRef]
- Hammant, O.M.; Forder, S.D.; Bingham, P.A.; Hand, R.J. Structural studies of iron in vitrified toxic wastes. Hyperfine Interact. 2009, 192, 37–42. [Google Scholar] [CrossRef]
- Forder, S.D.; Hammant, O.M.; Bingham, P.A.; Hand, R.J. Concerning the use of standards for identifying coordination environments in glasses. J. Phys. Conf. Ser. 2010, 217, 012072. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.C.; Guerra, M.; Marques, R.; Prudencio, M.I.; Ramalho, A.; Khomchenko, V.A.; Klingelhoefer, G.; Alves, E.I.; Batista, A.C.; Costa, B.F.O. Characterization of an iron meteorite using 57Fe Mössbauer spectroscopy and elemental analysis. In Proceedings of the XXXIX Colloquium Spectroscopicum Internationale, Figueira da Foz, Portugal, 30 August–3 September 2015; p. 240. [Google Scholar]
- Costa, B.F.O.; Silva, P.C.; Klingelhoefer, G.; Alves, E.I. Characterization of two different iron meteorites. In Proceedings of the International Conference on the Applications of the Mössbauer Effect 2015, Hamburg, Germany, 13–18 September 2015; p. 297. [Google Scholar]
- Silva, P.C. An Iron-Nickel Meteorite Characterization Using Different Experimental Techniques. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Dos Santos, E.; Gattacceca, J.; Rochette PScorzelli, R.B.; Fillion, G. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Phys. Earth Plan Inter. 2015, 2–12, 30–64. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Abramova, N.V.; Semionkin, V.A.; Milde, O.B. Iron-nickel alloy from iron meteorite Chinga studied by Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2009, 190, 135–142. [Google Scholar] [CrossRef]
- Goryunov, M.V.; Yakovlev, G.A.; Chukin, A.V.; Grokhovsky, V.I.; Semionkin, V.A.; Oshtrakh, M.I. Iron meteorites and their weathering products: High velocity resolution Mössbauer spectroscopy of the iron-bearing minerals. Eur. J. Miner. 2016, 28, 601–610. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Dos Santos, E. Meteoritic Fe-Ni alloys: A review of 57Fe Mössbauer spectroscopy studies. Geochemistry. 2019, 79, 125547. [Google Scholar] [CrossRef]
- Yang, J.; Goldstein, J.I.; Scott, E.R.D.; Michael, J.R.; Kotula, P.G.; Pham, T.; McCoy, T.J. Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids. Meteorit. Planet. Sci. 2011, 46, 1227–1252. [Google Scholar] [CrossRef]
- Fleischer, I.; Schroeder, C.; Klingelhoefer, G.; Zipfel, J.; Morris, R.V.; Ashley, J.W.; Gellert, R.; Wehrheim, S.; Ebert, S. New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars. Meteor. Plan. Sci. 2011, 46, 21–34. [Google Scholar] [CrossRef]
- Scot, E.R.; Wasso, J.T. Classification and properties of iron meteorites. Rev. Geophys. 1975, 13, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Larionov MYu Grokhovsky, V.I.; Semionkin, V.A. Study of iron meteorite Sikhote-Alin and extracted iron-nickel phosphides using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2008, 186, 53–59. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov MYu Grokhovsky, V.I.; Semionkin, V.A. An analysis of Fe and Ni distribution in M1, M2 and M3 sites of iron-nickel phosphides extracted from Sikhote-Alin meteorite using Mössbauer spectroscopy with a high velocity resolution. J. Mol. Struct. 2011, 993, 38–42. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov MYu Grokhovsky, V.I.; Semionkin, V.A. Study of rhabdite (iron nickel phosphide) microcrystals extracted from Sikhote-Alin iron meteorite by magnetization measurements and Mössbauer spectroscopy. Mat. Chem. Phys. 2011, 130, 373–380. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov MYu Grokhovsky, V.I.; Semionkin, V.A. Temperature dependent high velocity resolution Mössbauer spectroscopic study of iron nickel phosphide microcrystals (rhabdites) extracted from Sikhole-Alin iron meteorite. J. Alloys Comp. 2011, 509, 1781–1784. [Google Scholar] [CrossRef]
- de Bakker, P.M.A.; de Grave, E.; Vandenberghe, R.E.; Bowen, L.H. Mössbauer study of small-particle maghemite. Hyperfine Interact. 1990, 54, 493–498. [Google Scholar] [CrossRef]
- Cuda, J.; Kohout, T.; Tucek, J.; Filip, J.; Medrik, I.; Mashlan, M.; Zboril, R. Mössbauer study and magnetic measurement of troilite extract from Natan iron meteorite. AIP Conf. Proc. 2012, 1489, 145–154. [Google Scholar]
- Munayco, P.; Munayco, J.; Valenzuela, M.; Rochette, P.; Gattacceca, J.; Scorzelli, R.B. 57Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes. Hyperfine Interact. 2014, 224, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Bland, P.A.; Sexton, A.S.; Jull, A.J.T.; Bevan, A.W.R.; Berry, F.J.; Thornley, D.M.; Astin, T.R.; Britt, D.T.; Pillinger, C.T. Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochim. Cosmochim. Acta 1998, 62, 3169–3184. [Google Scholar] [CrossRef]
- Bogusz, P.; Galazka-Friedman, J.; Brzozka, K.; Jakubowska, M.; Wozniak, M.; Karwowski, L.; Duda, P. Mössbauer spectroscopy as a useful method for distinguishing between real and false meteorites. Hyperfine Interact. 2019, 240, 126. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W. Geochemical and petrographic studies of oldhamite, diopside and roedderite in enstatite meteorites. Meteorit. Planet. Sci. 1998, 33, 291–301. [Google Scholar] [CrossRef]
- Keil, K. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodie. Chemie Erde 2010, 70, 295–317. [Google Scholar] [CrossRef]
- Mineralogy of Aubrite meteorite. Available online: https://www.mindat.org/min-49873.html (accessed on 10 June 2021).
- Dunlap, R.A. A Mössbauer Effect investigation of the enstatite chondrite from Abee, Canada. Hyperfine Interact. 1997, 110, 209–215. [Google Scholar] [CrossRef]
- Maliszewski, A.; Szlachta, K.; Galazka-Friedman, J.; Bakun-Czubarow, N. Mössbauer studies of Polish enstatite meteorite-Zaklodzie. Hyperfine Interact. 2008, 186, 121–125. [Google Scholar] [CrossRef]
- Dunlap, R.A.; Sibley, A.D.E. A Mössbauer effect study of Fe-site occupancy in Australasian tektites. J. Non Cryst. Solids 2004, 227, 36–41. [Google Scholar] [CrossRef]
- Ceron Loayza, M.L.; Bravo Cabrejo, J.A. Characterization of magnetic iron phases in impactites by Mössbauer spectroscopy. Hyperfine Interact. 2019, 240. [Google Scholar] [CrossRef]
- Verma, H.C.; Misra, S.; Shyam Prasad, M.; Bijlani, N.; Tripathi, A.; Newsom, H. Mössbauer studies on impactites from Lonar impact crater. Hyperfine Interact. 2008, 186, 15–22. [Google Scholar] [CrossRef]
- Bustamante, A.; Espinoza, S.; Morales, G.; Scorzelli, R.B. Mössbauer studies of impactites from Huamalies province in Huanuco Regio. Hyperfine Interact. 2005, 166, 14. [Google Scholar]
- Rossano, S.; Balan, E.; Morin, G.; Bauer, J.-P.; Calas, G.; Brouder, C. Fe-57 Mössbauer spectroscopy of tektites. Phys. Chem. Miner. 1999, 26, 530–538. [Google Scholar] [CrossRef]
- Dunlap, R.A.; Eelman, D.A.; MacKay, G.R. A Mössbauer effect investigation of correlated hyperfine parameters in natural glasses (tektites). J. Non Cryst. Solids 1998, 223, 141–146. [Google Scholar] [CrossRef]
- Dunlap, R.A.; McGraw, J.D. A Mössbauer effect study of Fe environments in impact glasses. J. Non Cryst. Solids 2007, 353, 2201–2205. [Google Scholar] [CrossRef]
- Fudali, R.F.; Dyar, M.D.; Griscom, D.L. Schreiber. The oxidation state of iron in tektite glass. Geochim. Cosmochim. Acta 1987, 51, 2749–2756. [Google Scholar] [CrossRef]
- Lukanin, O.A.; Kadik, A.A. Decompression mechanism of ferric iron reduction in tektite melts during their formation in the impact processes. Geochem. Int. 2007, 45, 857–881. [Google Scholar]
Meteorite | Mineral | Fe (wt.%) | Ni (wt.%) | P (wt.%) | Other |
---|---|---|---|---|---|
Find 1 | Kamacite (matrix) | 93.4 ± 0.4 | 5.71 ± 0.02 | 0.090 ± 0.007 | Na, K, Cr, Co |
Schreibersite | 52.5 ± 0.8 | 34.6 ± 0.50 | 11.93 ± 0.08 | Na, K, Al, Mg | |
Campo del Cielo | Kamacite (matrix) | 95.4 ± 0.7 | 6.20 ± 0.02 | 0.062 ± 0.01 | Na, Co, Al, Cr |
Schreibersite | 50.8 ± 0.8 | 35.3 ± 0.04 | 12.42 ± 0.07 | Mn, Al, Ti |
Meteorite | Geometry | IS (mm/s) | 2ε (mm/s) | B (T) | Γ (mm/s) | % | Subspectra |
---|---|---|---|---|---|---|---|
Find 1 | Transmission | 0.008(1) | −0.015(1) | 34.0(1) | 0.32(1) | 100 | Sext |
Backscattering | 0.006(1) | −0.015(1) | 34.7(1) | 0.30(1) | 37.5 | Sext 1 | |
0.004(1) | 0.009(1) | 33.4(1) | 0.32(1) | 62.5 | Sext 2 | ||
Campo del Cielo | Transmission | 0.090(1) | −0.019(1) | 34.3(1) | 0.30(1) | 43.3 | Sext 1 |
0.080(1) | 0.020(1) | 33.3(1) | 0.32(1) | 56.7 | Sext 2 | ||
Backscattering | 0.010(1) | −0.016(1) | 34.7(1) | 0.30(1) | 52.0 | Sext 1 | |
0.012(1) | 0.010(1) | 33.4(1) | 0.33(1) | 35.8 | Sext 2 | ||
0.029(1) | 0.014(1) | 31.5(1) | 0.60(1) | 12.2 | Sext 3 |
Geometry | IS (mm/s) | 2ε/QS (mm/s) | B (T) | Γ (mm/s) | % | Subspectra | |
---|---|---|---|---|---|---|---|
Find 1 | Transmission | 0.29 (1) | 0.01 (1) | 49.7 (1) | 0.45 (1) | 11.7 | Sext 1 |
0.01 (1) | 0.014 (1) | 34.0 (1) | 0.35 (1) | 70.7 | Sext 2 | ||
0.45 (1) | 0.85 (1) | − | 0.61 (1) | 17.6 | Doubl | ||
Backscattering | 0.32 (1) | 0.06 (1) | 49.5 (1) | 0.75 (1) | 22.5 | Sext 1 | |
0.01 (1) | −0.01 (1) | 34.0 (1) | 0.50 (1) | 56.5 | Sext 2 | ||
0.40 (1) | 0.72 (1) | − | 0.59 (1) | 21.0 | Doubl | ||
Campo del Cielo | Transmission | 0.39 (1) | 0.03 (1) | 49.0 (1) | 0.41 (1) | 13.6 | Sext 1 |
0.40 (1) | −0.10 (1) | 45.6 (1) | 0.70 (1) | 5.2 | Sext 2 | ||
0.03 (1) | −0.005 (1) | 33.6 (1) | 0.45 (1) | 42.5 | Sext 3 | ||
−0.14 (1) | −0.09 (1) | 21.8 (1) | 1.29 (1) | 15.7 | Sext 4 | ||
0.47 (1) | 0.74 (1) | − | 0.60 (1) | 23.0 | Doubl | ||
Backscattering | 0.32 (1) | −0.002 (1) | 49.8 (1) | 0.67 (1) | 26.2 | Sext 1 | |
0.60 (1) | −0.09 (1) | 46.0 (1) | 0.68 (1) | 7.8 | Sext 2 | ||
0.02 (1) | −0.05 (1) | 32.9 (1) | 0.90 (1) | 18.5 | Sext 3 | ||
−0.32 (1) | 0.08 (1) | 21.5 (1) | 1.37 (1) | 14.6 | Sext 4 | ||
0.31 (1) | 0.70 (1) | − | 0.50 (1) | 27.5 | Doubl 1 | ||
0.27 (1) | 1.44 (1) | − | 0.95 (1) | 5.4 | Doubl 2 |
Element | Mean Concentration (wt. %) |
---|---|
Fe | 39.4 |
Si | 30.1 |
Mg | 21.2 |
Al | 3.5 |
Ni | 1.9 |
Co | 1.2 |
Ca | 1.2 |
Cr | 0.4 |
Na | 0.4 |
P | 0.3 |
Ti | 0.3 |
K | 0.1 |
Mn | 0.1 |
Temp. | IS (mm/s) | 2ε/QS (mm/s) | B (T) | Γ (mm/s) | % | Subspectra |
---|---|---|---|---|---|---|
RT | <0.35> | 0 | <29.1> | 0.33 (1) | 76.5 | Dist B |
0.40 (1) | 0.82 (1) | 0.85 (1) | 23.5 | Doubl | ||
4.2 K | 0.48 (1) | −0.24 (1) | 50.1 (1) | 0.43 (1) | 84.2 | Magh 1 |
0.48 (1) | −0.03 (1) | 51.4 (1) | 0.54 (1) | 14.7 | Magh 2 | |
0.93 (1) | −0.14 (1) | 32.8 (1) | 0.40 (1) | 1.1 | Troilite |
SiO2 | Al2O3 | Na2O | Fe2O3 | MgO | CaCO3 | K2O | TiO2 | |
---|---|---|---|---|---|---|---|---|
Muong Nong (Laos) | 70.12 | 18.45 | 2.79 | 2.52 | 2.94 | 1.42 | 1.25 | 0.40 |
Thailandite | 70.53 | 17.17 | 3.02 | 2.74 | 2.90 | 1.62 | 1.62 | 0.31 |
Rizalite | 71.09 | 15.67 | 2.74 | 2.34 | 2.34 | 3.63 | 1.55 | 0.32 |
Chinite | 70.94 | 15.61 | 2.81 | 3.32 | 2.51 | 2.34 | 1.56 | 0.79 |
Australite | 72.20 | 13.40 | 1.57 | 2.81 | 3.07 | 3.95 | 1.84 | 0.80 |
Bediasite | 73.54 | 17.46 | 3.35 | 2.58 | 1.13 | 0.63 | 0.91 | 0.20 |
Moldavite | 80.10 | 9.56 | 0.52 | 1.23 | 2.21 | 1.60 | 2.95 | 0.31 |
Darwin Glass | 82.16 | 8.46 | 0.04 | 3.58 | 0.69 | 0.03 | 2.13 | 0.61 |
Si | Al | Fe | Ca | K | Ti | |
---|---|---|---|---|---|---|
Muong Nong (Laos-2) | 77.62 | 12.01 | 2.54 | 2.43 | 2.31 | 0.52 |
Muong Nong (China) | 76.81 | 12.02 | 3.02 | 3.80 | 2.43 | 0.61 |
Tibet | 70.21 | 9.24 | 1.65 | 1.35 | 1.42 | 0.35 |
Vietnam | 73.42 | 9.61 | 1.84 | 1.83 | 1.54 | 0.32 |
Cambodia | 78.12 | 11.31 | 3.15 | 2.35 | 2.25 | 0.51 |
Tektite | IS (mm/s) | QS (mm/s) | WID (mm/s) | % | χ2 | Fe2+tetr/ Fe2+oct | Fe3+/Fe2+ |
---|---|---|---|---|---|---|---|
Muong Nong (Laos)—MN1 | 1.90 | 0.038 (7) | 0.149 (7) | ||||
Fe2+ Oct | 1.06 (1) | 2.09 (1) | 0.60 (1) | 83.8 (6) | |||
Fe2+ Tetr | 0.59 (1) | 1.60 (1) | 0.60 (1) | 3.2 (6) | |||
Fe3+ | 0.22 (1) | 0.02 (1) | 0.60 (1) | 13.0 (6) | |||
Thailandite | 1.80 | 0.048 (7) | 0.071 (6) | ||||
Fe2+ Oct | 1.14 (1) | 1.96 (1) | 0.65 (1) | 89.0 (6) | |||
Fe2+ Tetr | 0.89 (1) | 1.33 (1) | 0.65 (1) | 4.3 (6) | |||
Fe3+ | 0.16 (1) | 0.02 (1) | 0.65 (1) | 6.7 (6) | |||
Rizalite | 1.92 | 0.027 (7) | 0.059 (6) | ||||
Fe2+ Oct | 1.05 (1) | 1.93 (1) | 0.60 (1) | 91.9 (6) | |||
Fe2+ Tetr | 0.61 (1) | 1.20 (1) | 0.60 (1) | 2.5 (6) | |||
Fe3+ | 0.20 (1) | 0.01 (1) | 0.60 (1) | 5.6 (6) | |||
Chinite | 1.63 | 0.080 (7) | 0.025 (6) | ||||
Fe2+ Oct | 1.07 (1) | 1.93 (1) | 0.60 (1) | 90.4 (6) | |||
Fe2+ Tetr | 0.68 (1) | 1.14 (1) | 0.50 (1) | 7.2 (6) | |||
Fe3+ | 0.11 (1) | 0.02 (1) | 0.50 (1) | 2.4 (6) | |||
Australite | 1.81 | 0.119 (8) | 0.104 (7) | ||||
Fe2+ Oct | 1.07 (1) | 1.93 (1) | 0.60 (1) | 81.0 (6) | |||
Fe2+ Tetr | 0.56 (1) | 1.40 (1) | 0.60 (1) | 9.6 (6) | |||
Fe3+ | 0.12 (1) | 0.02 (1) | 0.60 (1) | 9.4 (6) | |||
Bediasite | 1.73 | 0.110 (7) | 0.035 (6) | ||||
Fe2+ Oct | 1.09 (1) | 2.12 (1) | 0.60 (1) | 87.0 (6) | |||
Fe2+ Tetr | 0.61 (1) | 1.21 (1) | 0.60 (1) | 9.6 (6) | |||
Fe3+ | 0.32 (1) | 0.02 (1) | 0.60 (1) | 3.4 (6) | |||
Moldavite | 1.40 | 0.022 (7) | 0.093 (7) | ||||
Fe2+ Oct | 1.02 (1) | 1.83 (1) | 0.60 (1) | 89.5 (6) | |||
Fe2+ Tetr | 0.61 (1) | 1.20 (1) | 0.60 (1) | 2.0 (6) | |||
Fe3+ | 0.25 (1) | 0.04 (1) | 0.60 (1) | 8.5 (6) | |||
Darwin Glass | 1.61 | ||||||
Fe2+ Oct | 1.13 (1) | 2.02 (19 | 0.60 (1) | 75.3 (6) | 0.292 (8) | 0.028 (6) | |
Fe2+ Tetr | 0.65 (1) | 1.60 (1) | 0.85 (2) | 22.0 (6) | |||
Fe3+ | 0.13 (1) | 0.02 (1) | 0.60 (1) | 2.7 (6) |
IS (mm/s) | QS (mm/s) | WID (mm/s) | % | χ2 | Fe2+tetr/ Fe2+oct | Fe3+/Fe2+ | |
---|---|---|---|---|---|---|---|
Vietnam | 1.13 | 0.099 (7) | 0.086 (7) | ||||
Fe2+ Oct | 1.08 (1) | 1.98 (1) | 0.72 (1) | 83.8 (6) | |||
Fe2+ Tetr | 0.66 (1) | 1.74 (1) | 0.65 (1) | 8.3 (6) | |||
Fe3+ | 0.32 (1) | 0.02 (1) | 0.60 (1) | 7.9 (6) | |||
Tibet | 1.41 | 0.053 (7) | 0.074 (6) | ||||
Fe2+ Oct | 1.09 (1) | 1.99 (1) | 0.76 (1) | 88.4 (6) | |||
Fe2+ Tetr | 0.66 (1) | 1.30 (1) | 0.60 (1) | 4.7 (6) | |||
Fe3+ | 0.21 (1) | 0.001 (1) | 0.60 (1) | 6.9 (6) | |||
Cambodia | 1.14 | 0.242 (8) | 0.087 (7) | ||||
Fe2+ Oct | 1.00 (1) | 2.01 (1) | 0.67 (1) | 74.0 (6) | |||
Fe2+ Tetr | 0.66 (1) | 1.75 (1) | 0.60 (1) | 18.0 (6) | |||
Fe3+ | 0.21 (1) | 0.02 (1) | 0.60 (1) | 8.0 (6) | |||
Muong Nong (Laos-2) | 1.55 | 0.068 (8) | 0.172 (7) | ||||
Fe2+ Oct | 1.02 (1) | 2.00 (1) | 0.60 (1) | 79.9 (6) | |||
Fe2+ Tetr | 0.60 (1) | 1.00 (1) | 0.60 (1) | 5.4 (6) | |||
Fe3+ | 0.37 (1) | 0.02 (1) | 060 (1) | 14.7 (6) | |||
Muong Nong (China) | 1.73 | 0.094 (8) | 0.198 (8) | ||||
Fe2+ Oct | 0.99 (1) | 2.07 (1) | 0.80 (1) | 76.3 (6) | |||
Fe2+ Tetr | 0.75 (1) | 1.20 (1) | 0.70 (1) | 7.2 (6) | |||
Fe3+ | 0.28 (1) | 0.02 (1) | 0.65 (1) | 16.5 (6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, B.F.O.; Alves, E.I.; Silva, P.A.O.C.; Batista, A.C. 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals 2021, 11, 628. https://doi.org/10.3390/min11060628
Costa BFO, Alves EI, Silva PAOC, Batista AC. 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals. 2021; 11(6):628. https://doi.org/10.3390/min11060628
Chicago/Turabian StyleCosta, Benilde F. O., Eduardo Ivo Alves, Pedro A. O. C. Silva, and António C. Batista. 2021. "57Fe Mössbauer Analysis of Meteorites and Tektites" Minerals 11, no. 6: 628. https://doi.org/10.3390/min11060628
APA StyleCosta, B. F. O., Alves, E. I., Silva, P. A. O. C., & Batista, A. C. (2021). 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals, 11(6), 628. https://doi.org/10.3390/min11060628