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Abstract: Froth image analysis has been considered widely in the identification of operational regimes
in flotation circuits, the characterisation of froths in terms of bubble size distributions, froth stability
and local froth velocity patterns, or as a basis for the development of inferential online sensors for
chemical species in the froth. Relatively few studies have considered flotation froth image analysis in
unsupervised process monitoring applications. In this study, it is shown that froth image analysis
can be combined with traditional multivariate statistical process monitoring methods for reliable
monitoring of industrial platinum metal group flotation plants. This can be accomplished with well-
established methods of multivariate image analysis, such as the Haralick feature set derived from
grey level co-occurrence matrices and local binary patterns that were considered in this investigation.

Keywords: froth image analysis; flotation; mineral processing; principal component analysis; computer
vision; local binary patterns; grey level co-occurrence matrices; multivariate statistical process monitoring

1. Introduction

It is well documented that in froth flotation systems, the properties of the froth phase,
such as froth stability, froth mobility, and froth rheology, have a significant influence
on the performance of flotation [1–3]. Operational variables, such as flow rates, ore
mineralogy, and pulp chemistry, affect flotation performance through their effect on the
froth phase [4–8]. The successful transport of mineral-rich bubbles from the pulp-froth
zone to the concentrate launder is expedited by a transient froth. Ideally, the mineralised
froth should collapse as soon as it reaches the concentrate launder. Doing so earlier may
lead to loss of valuable mineral from the froth to the pulp phase and, following that, to the
tailings of the flotation cell. Persistent or excessively stable froths may cause problems in
pumping, and may have an adversely effect on mineral separation on downstream process
operations [9].

Despite their importance, froth phase models are not well-established yet, at least not
as far as the control of flotation processes is concerned. This is a critical barrier to better
operation, as advanced control is recognized as one of the most efficient ways to improve
flotation performance [10].

Fortunately, image analysis can compensate for the lack of adequate froth phase
models in the context of process control. Froth image analysis has advanced considerably,
since computer vision systems became industrially established in the 1990s. This includes
the measurement of bubble size distributions as a means to characterize froths [11–13], the
measurement of froth colour, froth stability, and froth velocity patterns that are used on
the control of flotation plants. These methods do not require information additional to the
images and are well-supported by commercial software.

Other approaches, such as wavelets [14–16], co-occurrence matrices [17–20], Gabor
filters [21], and local binary patterns [22–24], have all been shown to be useful methods to
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represent the characteristics of froth systems in terms of sets of multivariate features. This
opens the way for direct monitoring of the performance of flotation circuits with computer
vision systems.

Unlike problems focused on the recognition of predefined operational regimes, which
are typically treated as classification problems [25,26], or the use of computer vision systems
as soft sensors that are typically casted as regression problems [27,28], monitoring in general
is conducted in an unsupervised learning framework. These approaches are based on
data representative of normal operating conditions (NOCs) against which new data can be
compared to determine whether a deviation from NOCs has occurred.

Froth images representative of NOCs can be used directly in these multivariate process
control frameworks, with the advantage of capturing significant process variation that
may not be measurable otherwise [29]. Despite these benefits, relatively few papers have
considered this approach.

For example, Liu and MacGregor [30,31] proposed control of the appearance of froth
structures in flotation plants based on the use of 2-D continuous wavelet transforms to cap-
ture spatial and textural information at different resolutions in these images. Multivariate
image analysis was further used to extract other features from the froth, such as black holes
and clear windows on top of the bubbles.

More recently, Zhang et al. [32] proposed the use of a long short term memory (LSTM)
neural network to monitoring flotation operations based on videographic sequences of
froth images. This system was designed to monitor froth grades and requires additional
information on the froth grades.

In this paper, it is shown that established approaches in multivariate image analysis
can be used in a traditional multivariate statistical process control framework as an effective
means for monitoring the performance of flotation cells.

Section 2 of the paper discusses the analytical methodology, while Sections 3 and 4
illustrate the approach based on two case studies with data from the platinum industry.
Further discussion and conclusions are covered in Section 5.

2. Analytical Methodology

The monitoring strategy considered in this investigation is based on a traditional
multivariate statistical process monitoring framework, with a principal component model.
The principal component model is constructed from features extracted from images that
represent normal process operation, as schematically illustrated in Figure 1.
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Figure 1. Multivariate process monitoring based on flotation froth image analysis.

In essence, features extracted from the froth images are used to construct a principal
component model that can generate monitoring diagnostics with which the in-control or
out-of-control state of the process can be determined statistically.

Any of a number of different approaches can be followed to extract features from these
images, and in this study, grey level co-occurrence matrices and local binary patterns are
considered, as described in more detail in the following sections, followed by a discussion
of the principal component model.
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2.1. Feature Extraction with Grey Level Co-Occurrence Matrices

The grey level co-occurrence matrix is represented by AI(D,G) of an image I with
parameters D and G, where D is the distance between each pair of pixels in the image and
G is the number of grey levels considered in the image, as indicated in Figure 2. Each entry,
aij, in the ×G matrix denotes the number of times that a grey level is associated with a pair
of pixels at displacement D in the image.
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pairs, separated by a certain distance and direction, as specified by Cartesian coordinates (u,v).

The Haralick [33] set of image descriptors extracted from GLCM images are often
used in image analysis. In this investigation, the following four features were used:

ENE = ∑
ij

ǎ2
ij (1)

CON = ∑
ij
|i− j|2 ǎij (2)

COR = ∑
ij

(i−mi)
(

j−mj
)
ǎij

sisj
(3)

HOM = ∑
ij

ǎij

1 + |i− j| (4)

In Equations (1)–(4), ǎij is the (i,j)th element of the normalised GLCM and mk and sk
are the mean and standard deviation of the matrix rows and columns. The energy (ENE) is
a measure of the local uniformity of grey levels and large ENE values are associated with
pixels that are very similar. The contrast (CON) is a measure of the intensity of grey level
variations between neighbouring pixels, i.e., large CON values reflect large differences.
The correlation (COR) represents the linear dependency between grey values in the co-
occurrence matrix, while the homogeneity (HOM) shows the closeness of the distribution
of elements in the co-occurrence matrix to its diagonal, i.e., HOM would approach unity
when there are only a few dominant grey tones present. Homogeneity and contrast are
typically inversely correlated.

GLCM methods were some of the very first to be used in froth image analysis [17–19]
and have since been considered extensively in a range of applications in froth image analysis.

2.2. Feature Extraction with Local Binary Patterns

Applied on a pixel-by-pixel basis in images, local binary pattern operators compare
the intensity of each pixel to the intensities of the other pixels in its neighbourhood [34].
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The difference in the intensity between each neighbouring pixel gp and the centre pixel gc
under consideration is thresholded by applying a binary thresholding function s:

s
(

gp − gc
)
= 0

s
(

gp − gc
)
= 1

}
, if

gc < gp
gc ≥ gp

, for all p = 1, 2, . . . P (5)

The local binary pattern (LBP) is subsequently computed as:

LBP =
P

∑
p=1

2ps
(

gp − gc
)
, for all p = 1, 2, . . . P (6)

By applying the LBP operator to each pixel in an image with G grey levels, as indicated
in Figure 3, the image is represented by LBPs ranging from 0 to G and these images are
referred to as LBP images.
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val-ues are multiplied to give the decimal LBP value shown in place of the centre pixel (right).

LBP feature extraction has only relatively recently been considered in mineral process-
ing [22,23,35].

2.3. Construction of Principal Component Models

Principal component analysis underpins traditional multivariate statistical process
control. Essentially, the centred and scaled data matrix (X) that represents normal operating
conditions (NOCs), consisting of N samples of M variables, X ∈ RN×M is expressed as the
product of a score matrix (TK ∈ RN×M) and the transpose of a loading matrix (PK ∈ RM×K):

X = TKPK
′ + EK (7)

The subscript K denotes the number of principal components retained in the model,
typically with K � M. EK ∈ RN×M is a residual matrix resulting from the approximation
of the data matrix with K principal components. Specification of the hyperparameter K can
be based on a number of statistical and heuristic methods. These include a value where the
variance explained by the retained principal components would exceed a certain threshold
(typically 80–90%), scree test, the Kaiser–Guttman test, partial correlation procedures,
etc. [36,37]. In this investigation, crossvalidation was used to determine K.

The loading matrix P is obtained by solving an eigenvalue problem, as represented by
Equation (8): (

C− λjI
)
pj = 0 (8)

In Equation (8), C ∈ RM×M is the covariance or correlation matrix of the variables,
which are typically scaled to zero mean and unit variance, i.e.,

C =
X
′
X

N − 1
(9)
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Moreover, λj is the j’th eigenvalue associated with the j’th principal component (j = 1,
2, . . . M) or loading vector (pj ∈ RM×1).

In the traditional multivariate process control framework, the Hotelling T2 and Q-
statistics can be used to monitor operations. In the special case, where K ≤ 3, monitoring
can be based on 2-D or 3-D score plots:

T2
i,K =

K

∑
j=1

t2
ij

λj
(10)

Hotelling’s T2 statistic is calculated in accordance with Equation (10), where tij is
the score of the i’th sample on the j’th principal component (j = 1, 2, . . . K), and λj is
the eigenvalue associated with the j’th principal component. The Q-statistic is calculated
according to Equation (11), where eij is the residual of the i’th observation of the j’th feature
when reconstructed with the first K principal components:

Qi,K =
K

∑
j=1

e2
ij (11)

The 95% and 99% confidence limits on these charts are based on the 95th and 99th
percentiles of the NOC data. New measurements above these control limits are considered
out of control and would normally flag further diagnostic and corrective steps.

Application of the methodology is considered in the following two case studies.

3. Case Study 1: Monitoring of PGM Froths

The first case study is based on froth images obtained from a platinum metals group
plant in South Africa. No other data regarding process conditions that are associated with
the images have been recorded or are available, but even so, the data can serve as a basis
for comparison of the different approaches.

Three random examples of images representative of NOCs are shown in Figure 4 (top),
while new images are shown in Figure 4 (bottom).
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The NOC image set contained 300 images, while the new data set contained 295 images,
and these will be referred to as NEW images. As can be seen from Figure 4, it is difficult to
visually discriminate between the NOCs and NEW images, as the bubble size distributions
appear to be the same and colour cannot be used as a basis for discrimination either. This is
a typical problem encountered by plant operators responsible for monitoring the flotation
process and even if the plant is not monitored by means of a principal component model,
as is considered in this investigation, visualization of the features extracted from the froths
could provide very useful decision support for operators.

3.1. Monitoring Based on GLCM Features

Gray scale co-occurrence matrices were constructed based on the frequency with
which a pixel with intensity value i occurred horizontally immediately adjacent to a pixel
with intensity value j, i.e., [0 1] in Cartesian coordinates. After optimization over the range
G = [2 64], eight grey levels were used, as these gave the best results. Even so, across the
range, these G levels did not have a particularly strong effect on the overall performance of
the monitoring methodology.

The eigenspectrum of the principal component model based on the four GLCM
features is shown in Figure 5. As can be seen from this figure, the first two principal com-
ponents essentially captured all the variation in the features and hence K = 2 components
were retained, which was also indicated by a cross-validation approach.

Minerals 2021, 11, x FOR PEER REVIEW 6 of 14 
 

 

Figure 4. Images associated with NOCs (top, left to right) and test images (bottom, left to right). 

The NOC image set contained 300 images, while the new data set contained 295 im-

ages, and these will be referred to as NEW images. As can be seen from Figure 4, it is 

difficult to visually discriminate between the NOCs and NEW images, as the bubble size 

distributions appear to be the same and colour cannot be used as a basis for discrimination 

either. This is a typical problem encountered by plant operators responsible for monitor-

ing the flotation process and even if the plant is not monitored by means of a principal 

component model, as is considered in this investigation, visualization of the features ex-

tracted from the froths could provide very useful decision support for operators. 

3.1. Monitoring Based on GLCM Features 

Gray scale co-occurrence matrices were constructed based on the frequency with 

which a pixel with intensity value i occurred horizontally immediately adjacent to a pixel 

with intensity value j, i.e., [0 1] in Cartesian coordinates. After optimization over the range 

G = [2 64], eight grey levels were used, as these gave the best results. Even so, across the 

range, these G levels did not have a particularly strong effect on the overall performance 

of the monitoring methodology. 

The eigenspectrum of the principal component model based on the four GLCM fea-

tures is shown in Figure 5. As can be seen from this figure, the first two principal compo-

nents essentially captured all the variation in the features and hence K = 2 components 

were retained, which was also indicated by a cross-validation approach. 

 

Figure 5. Cumulative eigenvalue plot of GLCM features in case study 1. 

Figure 6 is a bivariate scatterplot of the principal component scores of the GLCM 

features for the NOC and NEW data. These data sets are well separated in the figure. This 

separation could be further quantified by using a random forest model with the four 

GLCM features as predictors to classify the data as either NOC or NEW. The random 

forest could do so with an out-of-bag error of approximately 9%, as indicated in Appendix A. 

Plots such as these could be used as a complementary means to track the flotation 

process, given that each marker in Figure 6 represents a froth image. This could serve as 

an aid to operators in steering the flotation process. 

Figure 5. Cumulative eigenvalue plot of GLCM features in case study 1.

Figure 6 is a bivariate scatterplot of the principal component scores of the GLCM
features for the NOC and NEW data. These data sets are well separated in the figure.
This separation could be further quantified by using a random forest model with the four
GLCM features as predictors to classify the data as either NOC or NEW. The random forest
could do so with an out-of-bag error of approximately 9%, as indicated in Appendix A.

Plots such as these could be used as a complementary means to track the flotation
process, given that each marker in Figure 6 represents a froth image. This could serve as an
aid to operators in steering the flotation process.

Although the principal component model consisted of two components only, the
Hotelling’s T2 and Q-statistics are still presented as a more general basis for monitoring
purposes. These charts are shown in Figure 7 and show that approximately 75.3% of the
new data could be flagged as out of control.
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Figure 6. Principal component score plot of four GLCM features with 8 grey levels in case study 1.
Blue circles and red squares indicate NOC and NEW data, respectively.
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Figure 7. Hotelling’s T2 (top) and Q-chart (bottom) of GLCM features in case study 1. The 95% and
99% confidence limits are indicated by dashed and dotted lines in each plot.

3.2. Monitoring Based on LBP Features

The optimal LBP features were obtained with a neighbourhood of 2 and 59 features
were extracted. The eigenspectrum of the principal components of these features is shown
in Figure 8. K = 3 principal components were retained in the model, as determined by
cross-validation. This value is of necessity comparatively low, owing to the comparatively
small size of the NOC data set in relation to the number of features.

The diagnostic charts generated by the principal component model are shown in
Figure 9. Interestingly, the LBP feature set could flag approximately 65.4% of the NEW
data as out of control at a 95% confidence level.



Minerals 2021, 11, 683 8 of 14Minerals 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 8. Eigenspectrum of the LBP features of the NOCs froth images in case study 1. 

The diagnostic charts generated by the principal component model are shown in Fig-

ure 9. Interestingly, the LBP feature set could flag approximately 65.4% of the NEW data 

as out of control at a 95% confidence level. 

4. Case Study 2: Monitoring of Platinum Froths Associated with Different Grades 

In the second case study, the froth image database previously considered by Marais 

and Aldrich [38], as well as Horn et al. [39], was revisited. The image data were originally 

collected over a four-hour period on a primary cleaner cell on a South African industrial 

PGM plant. During collection of the images, the air flow rate of the cell was periodically 

varied. Concentrate samples were collected after stabilization of the flotation cell and af-

terwards, the PGM content was analysed in a laboratory. 

The 256 × 256 pixel images represent four different operational regimes with relative 

platinum grades of 1, 0.464, 0.306, and 0.115, as indicated in Figure 9. 

 

Figure 9. The Hotelling T2 (top) and Q-chart (bottom) showing NOCs and new data, based on the 

use of LBP features. The 95% and 99% confidence limits are indicated by dashed and dotted lines in 

each plot. 

 

 

Figure 8. Eigenspectrum of the LBP features of the NOCs froth images in case study 1.

Minerals 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 8. Eigenspectrum of the LBP features of the NOCs froth images in case study 1. 

The diagnostic charts generated by the principal component model are shown in Fig-
ure 9. Interestingly, the LBP feature set could flag approximately 65.4% of the NEW data 
as out of control at a 95% confidence level. 

4. Case Study 2: Monitoring of Platinum Froths Associated with Different Grades 

In the second case study, the froth image database previously considered by Marais 
and Aldrich [38], as well as Horn et al. [39], was revisited. The image data were originally 
collected over a four-hour period on a primary cleaner cell on a South African industrial 
PGM plant. During collection of the images, the air flow rate of the cell was periodically 
varied. Concentrate samples were collected after stabilization of the flotation cell and af-
terwards, the PGM content was analysed in a laboratory. 

The 256 × 256 pixel images represent four different operational regimes with relative 
platinum grades of 1, 0.464, 0.306, and 0.115, as indicated in Figure 9. 

 
Figure 9. The Hotelling T2 (top) and Q-chart (bottom) showing NOCs and new data, based on the 
use of LBP features. The 95% and 99% confidence limits are indicated by dashed and dotted lines in 
each plot. 

0 100 200 300 400 500 600
Sample Index

0

10

20

30

40

H
ot

el
lin

g 
T

2 -s
ta

tis
tic

Hotelling T2 score plot (reliability 0.525)

NOC
NEW

50 100 150 200 250 300 350 400 450 500 550 600
Sample Index

0

50

100

150

200

250

Q
-s

ta
tis

tic

SPE score plot (reliability 0.654)

NOC
NEW

Figure 9. The Hotelling T2 (top) and Q-chart (bottom) showing NOCs and new data, based on the use of
LBP features. The 95% and 99% confidence limits are indicated by dashed and dotted lines in each plot.

4. Case Study 2: Monitoring of Platinum Froths Associated with Different Grades

In the second case study, the froth image database previously considered by Marais
and Aldrich [38], as well as Horn et al. [39], was revisited. The image data were originally
collected over a four-hour period on a primary cleaner cell on a South African industrial
PGM plant. During collection of the images, the air flow rate of the cell was periodically
varied. Concentrate samples were collected after stabilization of the flotation cell and
afterwards, the PGM content was analysed in a laboratory.

The 256 × 256 pixel images represent four different operational regimes with relative
platinum grades of 1, 0.464, 0.306, and 0.115, as indicated in Figure 9.

The NOC image set consisted of froth images associated with a high grade of platinum,
while the NEW1, NEW2, and NEW3 data sets consisted of froth images with progressively
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lower grades. Figure 10 shows a typical example of an image of each regime. As before,
features were extracted from all the images, while the principal component model was
based on NOC data only.
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4.1. Monitoring Based on GLCM Features

As before, four GLCM features were extracted from the images based on the use of
G = 8 grey levels and a horizontal distance of 1 between pixels. The eigenspectrum of the
extracted features is shown in Figure 11.
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With these features, the principal component model could flag approximately 44.7%
of the new data as out of control, i.e., 18%, 50%, and 66% of the NEW1, NEW2, and NEW3
data, respectively, as indicated in Figure 12.

To put this in perspective, a random forest model (Appendix A) using the GLCM
features as predictors could discriminate between the NOCs data and the NEW1, NEW2,
and NEW3 data respectively with accuracies of approximately 77%, 92%, and 98%.
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4.2. Monitoring Based on LBP Vectors

Monitoring of the process was again based on 59 LBP vectors extracted from the
images. K = 3 principal components were retained, the cumulative eigenspectrum of which
is shown in Figure 13.
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Figure 13. Cumulative eigenspectrum of the principal component model based on the retention of 3
of 59 LBP features in case study 2.

The diagnostic charts are shown in Figure 14. As can be seen from the Q-chart at
the bottom of Figure 14, the model could identify NEW1, NEW2, and NEW3 process
deviations with a reliability of 31%, 41%, and 47%. This could be compared with the
ability of a random forest model (Appendix A) using the 59 LBP features as predictors
to discriminate between the NOC data and the NEW1, NEW2, and NEW2 data, which
was approximately 79%, 90%, and 98%. This was essentially the same as what could be
obtained with the GLCM features.
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5. Discussion and Conclusions

In this paper, it was shown that features extracted from froth images representative of
normal operating conditions (NOCs) could be used in a traditional multivariate statistical
process control framework, such as being based on the use of principal component analysis.

To this end, the physical interpretation of the features was not important, although it
would be possible to link some of these features to the physical characteristics of the froth,
such as the bubble size and shape distributions and the appearance of the froth in general.
Such an analysis would also have to consider changes in the froth structures over time.

Both algorithms that were used to extract features from the images performed rea-
sonably well, despite the wide disparity in the number of features that were used to
characterize the froth images. Nonetheless, there appeared to be considerable scope for
improvement. First, it should be noted that the small sizes of the NOCs image data sets
placed significant constraints on the use of some of the state-of-the-art approaches to image
analysis, particularly methods based on deep learning, such as those considered by Fu and
Aldrich [40,41] for example. Larger NOCs data sets would therefore need to be considered
in future studies.

In addition, extension of the linear principal component model to any number of
nonlinear versions could also lead to potentially considerable improvement in the results.

Finally, if these image features are used in combination with other process variables,
further diagnostic methods would add critical additional functionality to the model and
could be readily incorporated into the model. In practice, this would be important in order
to steer an out-of-control process back to an in-control state.
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Appendix A. Random Forest Models with the Froth Image Features

Case Study 1—Discrimination between NOC and NEW data with a Random Forest Model

Table A1. Random forest model parameters used in Case Study 1.

Number of Trees GLCM Features LBP Features Variables at Split Terminal Nodes

200 4 59 LBP (7), GLCM (2) 5 samples
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Figure A1. Out-of-bag (OOB) prediction errors of a random forest model trained on GLCM features
from the NOC data in Case Study 1 and used to discriminate between the NOC and NEW data.
Training on the LBP features gave similar results (not shown here).

Case Study 2—Discrimination between NOC and NEW1, NEW2 and NEW3 data sets
with Random Forest Models

Table A2. Random forest model parameters used in Case Study 2.

Number of Trees GLCM Features LBP Features Variables at Split Terminal Nodes

200 4 59 LBP (7), GLCM (2) 5 samples
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