Channelized CO2-Rich Fluid Activity along a Subduction Interface in the Paleoproterozoic Wutai Complex, North China Craton
Abstract
:1. Introduction
2. Geologic Setting and Samples
2.1. Regional Geology
2.2. Field Occurrence and Sample Description
3. Methods
3.1. Instrumental Analyses
3.2. Phase Equilibria Modelling and C–O Isotopes Calculations
4. Results
4.1. Mineral Chemistry
4.2. C–O Isotopes
4.3. Date and U–Th Contents of Xenotime
4.4. Pseudosections
4.5. Oxygen Isotopic Equilibrium
5. Discussion
5.1. Hydrothermal Fluid Activity
5.1.1. Evidence for Fluid Activity
5.1.2. Fluid Compositions
5.1.3. Origin of the Fluid
5.2. Geological Implications
5.2.1. Implications for the Carbon Cycle
5.2.2. Implications for Subduction Lubrication
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tatsumi, Y.; Eggins, S. Subduction Zone Magmatism; Blackwell Science: Oxford, UK, 1995; 211p. [Google Scholar]
- Stern, R.J. Subduction zones. Rev. Geophys. 2002, 40, 1012. [Google Scholar] [CrossRef]
- Hacker, B.R.; Peacock, S.M.; Abers, G.A.; Holloway, S.D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, Y. The subduction factory: How it operates in the evolving Earth. GSA Today 2005, 15, 4–10. [Google Scholar] [CrossRef]
- Bebout, G. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol. 1995, 126, 191–218. [Google Scholar] [CrossRef]
- Miller, J.A.; Cartwright, I.; Buick, I.S.; Barnicoat, A.C. An O-isotope profile through the HP-LT Corsican ophiolite, France and its implications for fluid flowduring subduction. Chem. Geol. 2001, 178, 43–69. [Google Scholar] [CrossRef]
- Gorman, P.J.; Kerrick, D.M.; Connolly, J.A.D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosystems 2006, 7, 04007. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.-Y.; Wang, L.; Chen, Y.-X.; Zheng, Y.-F.; Chen, R.-X.; Huang, F.; Zhang, Q.-Q.; Ji, M.; Meng, Z.-Y. Geochemical evidence from coesite-bearing jadeite quartzites for large-scale flow of metamorphic fluids in a continental subduction channel. Geochim. Cosmochim. Acta 2019, 265, 354–370. [Google Scholar] [CrossRef]
- Bebout, G.E.; Barton, M.D. Metasomatism during subduction: Products and possible paths in the Catalina Schist, California. Chem. Geol. 1993, 108, 61–92. [Google Scholar] [CrossRef]
- Cartwright, I.; Barnicoat, A.C. Stable isotope geochemistry of Alpine ophiolites: A window to ocean-floor hydrothermal alteration and constraints on fluid-rock interaction during high-pressure metamorphism. Int. J. Earth Sci. 1999, 88, 219–235. [Google Scholar] [CrossRef]
- Breeding, C.M.; Ague, J.J.; Brocker, M.; Bolton, E.W. Blueschist preservation in a retrograded, high-pressure, lowtemperature metamorphic terrane, Tinos, Greece: Implications for fluid flow paths in subduction zones. Geochem. Geophys. Geosyst. 2003, 4, 9002. [Google Scholar] [CrossRef] [Green Version]
- Zack, T.; John, T. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem. Geol. 2007, 239, 199–216. [Google Scholar] [CrossRef]
- Konrad-Schmolke, M.; O’Brien, P.J.; Zack, T. Fluid Migration above a Subducted Slab—Constraints on Amount, Pathways and Major Element Mobility from Partially Overprinted Eclogite-facies Rocks (Sesia Zone, Western Alps). J. Pet. 2011, 52, 457–486. [Google Scholar] [CrossRef] [Green Version]
- Sleep, N.H.; Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 2001, 106, 1373–1399. [Google Scholar] [CrossRef]
- Lee, C.-T.A.; Shen, B.; Slotnick, B.S.; Liao, K.; Dickens, G.R.; Yokoyama, Y.; Lenardic, A.; Dasgupta, R.; Jellinek, M.; Lackey, J.S.; et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 2012, 9, 21–36. [Google Scholar] [CrossRef]
- Brune, S.; Williams, S.E.; Müller, R.D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 2017, 10, 941–946. [Google Scholar] [CrossRef]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Bani, P. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 2019, 9, 5442. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef]
- Kerrick, D.M.; Connolly, J.A.D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 2001, 411, 293–296. [Google Scholar] [CrossRef]
- Kerrick, D.; Connolly, J. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 2001, 189, 19–29. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, M.; Wilde, S.; Li, S. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for accretion and assembly of the North China Craton. Am. J. Sci. 2002, 302, 191–226. [Google Scholar] [CrossRef]
- Kröner, A.; Wilde, S.A.; Li, J.H.; Wang, K.Y. Age and evolution of a late Archaean to early Palaeozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J. Asian Earth Sci. 2005, 24, 577–595. [Google Scholar] [CrossRef]
- Tang, L.; Santosh, M.; Tsunogae, T.; Koizumi, T.; Hu, X.; Teng, X.-M. Petrology, phase equilibria modelling and zircon U-Pb geochronology of Paleoproterozoic mafic granulites from the Fuping Complex, North China Craton. J. Metamorph. Geol. 2017, 35, 517–540. [Google Scholar] [CrossRef]
- Kröner, A.; Wilde, S.A.; O’Brien, P.J.; Li, J.H.; Passchier, C.W.; Walte, N.P.; Liu, D.Y. Field relationships, geochemistry, zircon ages and evolution of a late Archean to Paleoproterozoic lower crustal section in the Hengshan Terrain of Northern China. Acta Geol. Sin. 2005, 79, 605–629. [Google Scholar]
- Zhao, G.; Cawood, P.A.; Wilde, S.; Lu, L. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. J. Pet 2001, 42, 1141–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, C.; Tian, W.; Zhou, X. Reinterpretation of metamorphic age of the Hengshan Complex, North China Craton. Chin. Sci. Bull. 2013, 58, 4300–4307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, C.; Lu, M.; Zhou, X. P–T–t evolution of the high-pressure mafic granulites from northern Hengshan, North China Craton: Insights from phase equilibria and geochronology. Precambrian Res. 2018, 312, 1–15. [Google Scholar] [CrossRef]
- Qian, J.; Wei, C.J. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: Insights from phase equilibria and geochronology. J. Metamorph. Geol. 2016, 34, 423–446. [Google Scholar] [CrossRef]
- Wilde, S.A.; Cawood, P.A.; Wang, K.Y. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China Craton. In Precambrian Geology-Metamorphic Petrology, Proceedings of the 30th International Geological Conference, Beijing, China, August 1997; Qian, X.L., You, Z.D., Halls, H.C., Eds.; CRC Press: Boca Raton, FL, USA, 1997; Volume 17, pp. 75–88. [Google Scholar]
- Wilde, S.; Cawood, P.A.; Wang, K.; Nemchin, A.; Zhao, G. Determining Precambrian crustal evolution in China: A case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. Geol. Soc. Lond. Spec. Publ. 2004, 226, 5–26. [Google Scholar] [CrossRef]
- Bai, J. The Early Precambrian Geology of Wutaishan; Tianjin Science and Technology Press: Tianjin, China, 1986; pp. 1–435. (In Chinese) [Google Scholar]
- Zhao, G.; Cawood, P.; Lu, L. Petrology and P–T history of the Wutai amphibolites: Implications for tectonic evolution of the Wutai Complex, China. Precambrian Res. 1999, 93, 181–199. [Google Scholar] [CrossRef]
- Qian, J.H.; Wei, C.J.; Zhou, X.W.; Chu, H. Metamorphic P-T paths and New Zircon U–Pb age data for garnet–mica schist from the Wutai Group, North China Craton. Precambrian Res. 2013, 233, 282–296. [Google Scholar] [CrossRef]
- Qian, J.; Wei, C.; Clarke, G.; Zhou, X. Metamorphic evolution and Zircon ages of Garnet–orthoamphibole rocks in southern Hengshan, North China Craton: Insights into the regional Paleoproterozoic P–T–t history. Precambrian Res. 2015, 256, 223–240. [Google Scholar] [CrossRef]
- Wei, C.J.; Qian, J.H.; Zhou, X.W. Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, North China Craton. Geosci. Front. 2014, 5, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Wei, C.; Yin, C. Paleoproterozoic P–T–t evolution in the Hengshan–Wutai–Fuping area, North China Craton: Evidence from petrological and geochronological data. Precambrian Res. 2017, 303, 91–104. [Google Scholar] [CrossRef]
- Wei, C.J. Paleoproterozoic metamorphism and tectonic evolutionin Wutai–Hengshan Region, Trans–North China Orogen. Earth Sci. 2018, 43, 24–43, (In Chinese with English abstract). [Google Scholar]
- Wilde, S.A.; Zhao, G.C.; Wang, K.Y.; Sun, M. First precise SHRIMP zircon U-Pb ages for the Hutuo Group in Wutaishan: Further evidence for amalgamation of North China Craton. Chin. Sci. Bull. 2004, 49, 83–90. [Google Scholar] [CrossRef]
- Du, L.L.; Yang, C.H.; Wang, W.; Ren, L.D.; Wan, Y.S.; Song, H.X.; Geng, Y.S.; Hou, K.J. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in the Wutai Mountains area, North China Craton: Evidence from geology and zircon U-Pb geochronology. Acta Petrol. Sin. 2011, 27, 1037–1055, (In Chinese with English abstract). [Google Scholar]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J. Response of xenotime to prograde metamorphism. Contrib. Miner. Pet. 2011, 162, 1259–1277. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, L.F.; Wei, C.J.; Slabunov, A.I.; Bader, T. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P–T path of Belomorian eclogites. J. Metamorph. Geol. 2018, 36, 11–12. [Google Scholar] [CrossRef]
- Yang, L.; Tian, W.; Hou, G.; Liu, S.; Wang, B.; Li, J.; Chen, M. Volcanic succession, petrology, and geochemistry of the Sujiagou komatiite from the North China Craton. Geol. J. 2020, 55, 3265–3282. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, L.; Li, S.; Zhu, J.; Ke, S. Significant contrast in the Mg-C-O isotopes of carbonate between carbonated eclogite and marble from the S.W. Tianshan UHP subduction zone: Evidence for two sources of recycled carbon. Chem. Geol. 2018, 483, 65–77. [Google Scholar] [CrossRef]
- Ickert, R.; Hiess, J.; Williams, I.; Holden, P.; Ireland, T.; Lanc, P.; Schram, N.; Foster, J.; Clement, S. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 2008, 257, 114–128. [Google Scholar] [CrossRef]
- Fletcher, I.R.; McNaughton, N.J.; Aleinikoff, J.A.; Rasmussen, B.; Kamo, S.L. Improved calibration procedures and new standards for U–Pb and Th–Pb dating of Phanerozoic xenotime by ion microprobe. Chem. Geol. 2004, 209, 295–314. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; pp. 1–39. [Google Scholar]
- Powell, R.; Holland, T. An internally consistent dataset with uncertainties and correlations: Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 1988, 6, 173–204. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally-consistent thermodynamic dataset for phases of petrological interest, involving a newequation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Phillips, G.N. A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia. J. Metamorph. Geol. 2003, 21, 455–468. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. Activity? Composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Miner. Pet. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.; Green, E.C.R. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta 1991, 55, 2299–2307. [Google Scholar]
- Matthews, A.; Katz, A. Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim. Cosmochim. Acta 1977, 41, 1431–1438. [Google Scholar] [CrossRef]
- Matthews, A.; Beckinsale, R.D. Oxygen isotope equilibration systematics between quartz and water. Am. Mineral. 1979, 64, 232–240. [Google Scholar]
- Ganor, J.; Matthews, A.; Schliestedt, M. Post-metamorphic low δ13 C calcite in the Cycladic complex (Greece) and their implications for modeling fluid infiltration processes using carbon isotope compositions. Eur. J. Miner. 1994, 6, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Spandler, C.; Hermann, J. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos 2006, 89, 135–153. [Google Scholar] [CrossRef]
- Garlick, G.D. Oxygen isotope fractionation in igneous rocks. Earth Planet. Sci. Lett. 1966, 1, 361–368. [Google Scholar] [CrossRef]
- Valley, T.; John, W. Stable isotope geochemistry of metamorphic rocks. Rev. Mineral. Geochem. 1986, 16, 445–488. [Google Scholar]
- Zheng, Y.-F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 1999, 33, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Chacko, T.; Cole, D.R.; Horita, J. Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems. Rev. Mineral Geochem. 2001, 43, 1–81. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Miner. Mag. J. Miner. Soc. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the Composition and a Classification of the Chlorites. Geological Survey. Professional Paper 414-A; United States Government Printing Office: Washington, DC, USA, 1962; pp. 1–33.
- Nutman, A.P.; Friend, C.R.L.; Bennett, V.C.; Wright, D.; Norman, M.D. ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): Simple evidence for early life? Precambrian Res. 2010, 183, 725–737. [Google Scholar] [CrossRef]
- Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 1996, 380, 237–240. [Google Scholar] [CrossRef]
- Manning, C. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 2004, 223, 1–16. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wang, A.J.; Xu, H. Geneticmodel of ductile-shear type gold deposits in Wutai Mountain area. Miner. Depos. 1997, 16, 350–364, (in Chinese with English abstract). [Google Scholar]
- McNaughton, N.J.; Rasmussen, B. Geochemical characterisation of xenotime formation environments using U-Th. Chem. Geol. 2018, 484, 109–119. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R.; Thorne, W.S.; Broadbent, G.C. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U–Pb geochronology of hydrothermal xenotime. Earth Planet. Sci. Lett. 2007, 258, 249–259. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R.; Wilde, S.A. In situ U–Th–Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Res. 2010, 180, 26–46. [Google Scholar] [CrossRef]
- Rasmussen, B.; Mueller, A.G.; Fletcher, I.R. Zirconolite and xenotime U–Pb age constraints on the emplacement of the Golden Mile Dolerite sill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Contrib. Miner. Pet. 2009, 157, 559–572. [Google Scholar] [CrossRef]
- Vielreicher, N.M.; Groves, D.I.; Snee, L.W.; Fletcher, I.R.; McNaughton, N.J. Broad synchroneity of three gold mineralization styles in the Kalgoorlie Goldfield: SHRIMP, U–Pb, and 40Ar/39Ar geochronological evidence. Econ. Geol. 2010, 105, 187–227. [Google Scholar] [CrossRef]
- Rausell-Colom, J.A.; Wiewiora, A.; Matesanz, E. Relation between composition and d001 for chlorite. Am. Mineral. 1991, 76, 1373–1379. [Google Scholar]
- Nieto, E. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. Eur. J. Mineral. 1997, 9, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, S. Applying X-Ray Geothermometer Diffraction to a Chlorite. Clays Clay Miner. 1999, 47, 54–63. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–127. [Google Scholar]
- Boni, M.; Parente, G.; Bechstaedt, T.; Vivo, B.D.; Iannace, A. Hydrothermal dolomites in SW Sardinia (Italy): Evidence for a widespread late-Variscan fluid flow event (in Paleofluid flow and diagenesis during basin evolution). Sed. Geol. 2000, 131, 181–200. [Google Scholar] [CrossRef]
- Lonnee, J.; Al-Aasm, I.S. Dolomitization and fluid evolution in the Middle Devonian sulphur point formation, Rainbow South Field, Alberta: Petrographic and geochemical evidence. Bull. Can. Petrol. Geol. 2000, 48, 262–283. [Google Scholar] [CrossRef]
- Al-Aasm, I.; Lonnee, J.; Clarke, J. Multiple fluid flow event and the formation of saddle dolomite: Case studies from Middle Devonian carbonates of the Western Canada Sedimentary Basin. Mar. Pet. Geol. 2002, 19, 209–217. [Google Scholar] [CrossRef]
- Chen, D.; Qing, H.; Yang, C. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 2004, 51, 1029–1051. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, W.; Qian, Y.; Wang, X.; Cao, J.; Zhu, J.; Li, Q.; Xie, X. Formation of saddle dolomites in Upper Cambrian carbonates, western Tarim Basin (northwest China): Implications for fault-related fluid flow. Mar. Pet. Geol. 2009, 26, 1428–1440. [Google Scholar] [CrossRef]
- Choquette, P.W.; Hiatt, E.E. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites. Sedimentology 2008, 55, 423–460. [Google Scholar] [CrossRef]
- Hood, A.V.; Wallace, M.W.; Drysdale, R.N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes. Geology 2011, 39, 871–874. [Google Scholar] [CrossRef]
- Hood, A.; Wallace, M. Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation. Sediment. Geol. 2012, 255-256, 56–71. [Google Scholar] [CrossRef]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Friend, C.R.L.; Nutman, A.; Bennett, V.C.; Norman, M. Seawater-like trace element signatures (REE + Y) of Eoarchaean chemical sedimentary rocks from southern West Greenland, and their corruption during high-grade metamorphism. Contrib. Miner. Pet. 2008, 155, 229–246. [Google Scholar] [CrossRef]
- Wang, S.-J.; Teng, F.-Z.; Li, S.-G. Tracing carbonate–silicate interaction during subduction using magnesium and oxygen isotopes. Nat. Commun. 2014, 5, 5328. [Google Scholar] [CrossRef] [Green Version]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaC1 on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Trommsdorff, V.; Skippen, G. Vapour loss (“boiling”) as a mechanism for fluid evolution in metamorphic rocks. Contrib. Miner. Pet. 1986, 94, 317–322. [Google Scholar] [CrossRef]
- Holness, M.B.; Graham, C.M. Equilibrium dihedral angles in the system H2O-CO2-NaCl-Calcite, and implications for fluid flow during metamorphism. Contrib. Mineral. Petrol. 1991, 108, 368–383. [Google Scholar] [CrossRef]
- Selverstone, J.; Franz, G.; Thomas, S.; Getty, S. Fluid variability in 2 GPa eclogites as an indicator of fluid behavior during subduction. Contrib. Miner. Pet. 1992, 112, 341–357. [Google Scholar] [CrossRef]
- Duan, Z.; Møller, N.; Weare, J.H. Equation of state for the NaCl-H2O-CO2 system: Prediction of phase equilibria and volumetric properties. Geochim. Cosmochim. Acta 1995, 59, 2869–2882. [Google Scholar] [CrossRef]
- Anderson, G.M.; Burnham, C.W. Feldspar solubility and the transport of aluminum under metamorphic conditions. Am. J. Sci. 1983, 283, 283–297. [Google Scholar]
- Newtona, R.C.; Manning, C.E. Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900 °C. Geochim. Cosmochim. Acta 2000, 64, 2993–3005. [Google Scholar] [CrossRef]
- Tumiati, S.; Tiraboschi, C.; Sverjensky, D.A.; Pettke, T.; Recchia, S.; Ulmer, P.; Miozzi, F.; Poli, S. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nat. Commun. 2017, 8, 616. [Google Scholar] [CrossRef] [Green Version]
- Van der Straaten, F.; Halama, R.; John, T.; Schenk, V.; Hauff, F.; Andersen, N. Tracing the effects of high-pressuremetasomatic fluids and seawater alteration in blueschistfacies overprinted eclogites: Implications for subduction channel processes. Chem. Geol. 2012, 292, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Cook-Kollars, J.; Bebout, G.; Collins, N.C.; Angiboust, S.; Agard, P. Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chem. Geol. 2014, 386, 31–48. [Google Scholar] [CrossRef]
- Collins, N.C.; Bebout, G.; Angiboust, S.; Agard, P.; Scambelluri, M.; Crispini, L.; John, T. Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chem. Geol. 2015, 412, 132–150. [Google Scholar] [CrossRef] [Green Version]
- Becker, H.; Jochum, K.P.; Carlson, R.W. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chem. Geol. 1999, 160, 291–308. [Google Scholar] [CrossRef]
- Franz, L.; Oberhansli, R.; Wagner, T.; Dong, S.; Romer, R.L.; Klemd, R.; Schmid, R.M. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Pet. 2001, 141, 322–346. [Google Scholar] [CrossRef]
- Scambelluri, M.; Philippot, P. Deep fluids in subduction zones. Lithos 2001, 55, 213–227. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Gao, T.-S.; Wu, Y.-B.; Gong, B.; Liu, X.M. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. J. Metamorph. Geol. 2007, 25, 267–283. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Schwarcz, H.P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contrib. Miner. Pet. 1970, 26, 161–198. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Ague, J.J. Release of CO2 from carbonate rocks during regional metamorphism of lithologically heterogeneous crust. Geology 2000, 28, 1123–1126. [Google Scholar] [CrossRef]
- Molina, J.F.; Poli, S. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O–CO2-bearing basalts. Earth Planet. Sci. Lett. 2000, 176, 295–310. [Google Scholar] [CrossRef]
- Schmidt, C.; Watenphul, A. Ammonium in aqueous fluids to 600 °C, 1.3 GPa: A spectroscopic study on the effects on fluid properties, silica solubility, and K-feldspar to muscovite reactions. Geochim. Cosmochim. Acta 2010, 74, 6852–6866. [Google Scholar] [CrossRef]
- Wohlers, A.; Manning, C.; Thompson, A.B. Experimental investigation of the solubility of albite and jadeite in H2O, with paragonite+quartz at 500 and 600 °C, and 1–2.25 GPa. Geochim. Cosmochim. Acta 2011, 75, 2924–2939. [Google Scholar] [CrossRef]
- Agrinier, P.; Javoy, M.; Smith, D.C.; Pineau, F. Carbon and oxygen isotopes in eclogites, amphibolites, veins and marbles from the Western Gneiss region, Norway. Chem. Geol. Isot. Geosci. Sect. 1985, 52, 145–162. [Google Scholar] [CrossRef]
- Ridley, J. Syn-metamorphic gold deposits in amphibolite and granulite facies rocks. Mitt. Österr. Miner. Ges. 1997, 142, 101–110. [Google Scholar]
- Vho, A.; Lanari, P.; Rubatto, D.; Hermann, J. Tracing fluid transfers in subduction zones: An integrated thermodynamic and δ18O fractionation modelling approach. Solid Earth 2020, 11, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Spandler, C.; Pirard, C. Element recycling from subducting slabs to arc crust: A review. Lithos 2013, 170-171, 208–223. [Google Scholar] [CrossRef]
- Sorensen, S.S.; Barton, M.D. Metasomatism and partial melting in a subduction complex Catalina Schist, southern California. Geology 1987, 15, 115–118. [Google Scholar] [CrossRef]
- García-Casco, A.; Lázaro, C.; Rojas-Agramonte, Y.; Kröner, A.; Torres-Roldán, R.L.; Núñez, K.; Neubauer, F.; Millán, G.; Blanco-Quintero, I. Partial Melting and Counterclockwise P T Path of Subducted Oceanic Crust (Sierra del Convento Melange, Cuba). J. Pet. 2007, 49, 129–161. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, R.; Hirschmann, M.M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 2010, 298, 1–13. [Google Scholar] [CrossRef]
- Brown, M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 2006, 34, 961. [Google Scholar] [CrossRef]
- Palin, R.M.; Santosh, M.; Cao, W.; Li, S.S.; Hernández-Uribe, D.; Parsons, A. Secular metamorphic change and the onset of plate tectonics. Earth Sci. Rev. 2020, 207, 103172. [Google Scholar] [CrossRef]
- Martin, H.; Moyen, J.-F. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. Geology 2002, 30, 319–322. [Google Scholar] [CrossRef]
- Sorensen, S.; Grossman, J. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochim. Cosmochim. Acta 1989, 53, 3155–3177. [Google Scholar] [CrossRef]
- Qian, J.H.; Wei, C.J.; Zhou, X.W.; Chu, H. Genesis of the megacryst orthoamphi-bole rock from Hengshan Mts, Shanxi Province: Evidence from geochemistry and Sm–Nd isotopic data. Acta Petrol. Sin. 2012, 28, 2819–2830, (in Chinese with English abstract). [Google Scholar]
- McLoughlin, N.; Fliegel, D.J.; Furnes, H.; Staudigel, H.; Simonetti, A.; Zhao, G.C.; Robinson, P.T. Assessing the biogenicity and syngenicity of candidate bioalteration textures in pillow lavas of the ~2.52 Ga Wutai greenstone terrane of China. Chin. Sci. Bull. 2010, 55, 188–199. [Google Scholar] [CrossRef]
- Li, J.; Kusky, T.; Niu, X.; Jun, F.; Polat, A. Neoarchean Massive Sulfide of Wutai Mountain, North China: A Black Smoker Chimney and Mound Complex Within 2.50 Ga-Old Oceanic Crust. In Developments in Precambrian Geology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 339–362. [Google Scholar]
- Polat, A.; Kusky, T.; Li, J.; Fryer, B.; Kerrich, R.; Patrick, K. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth. GSA Bull. 2005, 117, 1387. [Google Scholar] [CrossRef]
- Peacock, S.A. Fluid Processes in Subduction Zones. Science 1990, 248, 329–337. [Google Scholar] [CrossRef]
- Gao, J.; John, T.; Klemd, R.; Xiong, X. Mobilization of Ti–Nb–Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim. Cosmochim. Acta 2007, 71, 4974–4996. [Google Scholar] [CrossRef]
- Ague, J.J. Models of permeability contrasts in subduction zone mélange: Implications for gradients in fluid fluxes, Syros and Tinos Islands, Greece. Chem. Geol. 2007, 239, 217–227. [Google Scholar] [CrossRef]
- Li, J.-L.; Schwarzenbach, E.M.; John, T.; Ague, J.J.; Huang, F.; Gao, J.; Klemd, R.; Whitehouse, M.J.; Wang, X.-S. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nat. Commun. 2020, 11, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamori, H. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett. 1998, 160, 65–80. [Google Scholar] [CrossRef]
- Marty, B.; Tolstikhin, I.N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 1998, 145, 233–248. [Google Scholar] [CrossRef]
- Ague, J.J.; Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 2014, 7, 355–360. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Manning, C.E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA 2015, 112, E3997–E4006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ellis, D.J.; Williams, S.; Jiang, W. Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am. Miner. 2002, 87, 861–866. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, X.; Zhu, D.; Meng, Q.; Xu, H.; Peng, W.; Huang, X.; Liu, J. Generation and resource potential of abiogenic alkane gas under organic–inorganic interactions in petroliferous basins. J. Nat. Gas Geosci. 2021, 6, 79–87. [Google Scholar] [CrossRef]
- Shreve, R.L.; Cloos, M. Dynamics of sediment subduction, melange formation, and prism accretion. J. Geophys. Res. 1986, 91, 10229–10245. [Google Scholar] [CrossRef]
- Sobolev, S.V.; Brown, M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 2019, 570, 52–57. [Google Scholar] [CrossRef]
- Lamb, S.; Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 2003, 425, 792–797. [Google Scholar] [CrossRef]
- Tobin, H.J.; Saffer, D.M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 2009, 37, 679–682. [Google Scholar] [CrossRef]
- Behr, W.M.; Becker, T.W. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett. 2018, 502, 166–173. [Google Scholar] [CrossRef]
- Agard, P.; Plunder, A.; Angiboust, S.; Bonnet, G.; Ruh, J. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos 2018, 320-321, 537–566. [Google Scholar] [CrossRef]
- Hayman, N.W.; Lavier, L.L. The geologic record of deep episodic tremor and slip. Geology 2014, 42, 195–198. [Google Scholar] [CrossRef]
- Behr, W.M.; Kotowski, A.J.; Ashley, K.T. Dehydration-induced rheological heterogeneity and the deep tremor source inwarmsubduction zones. Geology 2018, 46, 475–478. [Google Scholar] [CrossRef]
- Kimura, G.; Ludden, J. Peeling oceanic crust in subduction zones. Geology 1995, 23, 217–220. [Google Scholar] [CrossRef]
Element | dol-1 | dol-2 | dol-3 | dol-4 | dol-5 | Element | dol-1 | dol-2 | dol-3 | dol-4 | dol-5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 27.71 | 26.5 | 21.41 | 21.87 | 20.29 | Gd | 0.176 | 0.315 | 0.1495 | 0.197 | 0.64 |
Rb | 0.0091 | 0.0095 | 0.0103 | 0.0088 | 0.0102 | Tb | 0.0219 | 0.0538 | 0.0195 | 0.0319 | 0.1059 |
Sr | 143.11 | 141.74 | 150.29 | 165.68 | 275.99 | Dy | 0.1373 | 0.268 | 0.1182 | 0.1655 | 0.495 |
Y | 0.74 | 0.939 | 0.564 | 0.513 | 1.75 | Ho | 0.0326 | 0.0508 | 0.0238 | 0.0304 | 0.0791 |
Zr | 29.23 | 0.2392 | 23.28 | 0.32 | 0.004 | Er | 0.1103 | 0.1276 | 0.0857 | 0.0635 | 0.1952 |
Nb | 0.0047 | 0.297 | 0.0033 | 0.0027 | 0.0031 | Tm | 0.0292 | 0.02 | 0.0193 | 0.0129 | 0.0232 |
Ba | 0.069 | 0.114 | 0.0741 | 0.1066 | 0.209 | Yb | 0.228 | 0.1429 | 0.1876 | 0.1009 | 0.262 |
La | 0.0231 | 0.0287 | 0.0204 | 0.061 | 0.085 | Lu | 0.0538 | 0.0326 | 0.0406 | 0.0244 | 0.0435 |
Ce | 0.0872 | 0.1305 | 0.075 | 0.1438 | 0.321 | Hf | 0.927 | 0.0148 | 0.641 | 0.0082 | 0.0064 |
Pr | 0.022 | 0.0363 | 0.0137 | 0.0317 | 0.0707 | Ta | 0.0024 | 0.0151 | 0.0025 | 0.0019 | 0.0019 |
Nd | 0.1741 | 0.308 | 0.1151 | 0.241 | 0.626 | Pb | 11.777 | 11.217 | 10.639 | 9.6 | 8.62 |
Sm | 0.0997 | 0.234 | 0.0847 | 0.1487 | 0.452 | Th | 0.0149 | 0.0056 | 0.015 | 0.0033 | 0.0041 |
Eu | 0.571 | 0.522 | 0.537 | 0.982 | 1.027 | U | 0.0269 | 0.0096 | 0.0155 | 0.0025 | 0.0028 |
Materials | Samples | δ13CV-PDB | δ18OV-PDB | δ18OV-SMOW |
---|---|---|---|---|
Dolomite | 16EK05 | −3.90 | −16.80 | 13.59 |
−3.99 | −16.97 | 13.42 | ||
−4.17 | −17.04 | 13.34 | ||
16EK06 | −3.10 | −18.27 | 12.08 | |
−3.83 | −16.55 | 13.85 | ||
17EK11 a | −3.82 | −18.02 | 12.33 | |
Kang-2 b | −4.28 | - | 10.94 | |
−4.39 | - | 11.62 | ||
Matrix | 16EK05 | - | - | 5.64 |
16EK06 | - | - | 4.63 |
Minerals | Samples | Ranges | Weighted Mean | Count | ||
---|---|---|---|---|---|---|
Min. | Max. | Mean | 1σ | |||
dol | 16EK05 a | 11.50 | 12.08 | 11.84 | 0.08 | 20 |
16EK06 a | 11.29 | 12.01 | 11.67 | 0.08 | 27 | |
qz | 16EK02 | 12.01 | 12.95 | 12.5 | 0.1 | 27 |
17EK11 | 11.70 | 12.97 | 12.3 | 0.2 | 19 | |
mt | 16EK02 | −6.03 | 0.18 | −2.8 | 0.7 | 27 |
17EK11a | −3.22 | 2.51 | −0.6 | 1.9 | 8 |
No. | Th | U | U/Th | Total Isotopic Ratios | 204Pb Corrected Ages (Ma) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(ppm) | (ppm) | 238U/206Pb | sd.% | 207Pb/206Pb | sd.% | 206Pb/238U | 1σ sd. | 207Pb/206Pb | 1σ sd. | ||
xen1.1 | 121 | 39 | 0.32 | 3.067 | 3.65 | 0.1177 | 4.24 | 1782 | 61 | 1567 | 256 |
xen1.2 | 212 | 51 | 0.24 | 2.882 | 3.71 | 0.1360 | 4.05 | 1895 | 63 | 1999 | 158 |
xen2.1 | 380 | 235 | 0.62 | 2.877 | 1.76 | 0.1166 | 1.39 | 1916 | 29 | 1848 | 37 |
xen3.1 | 2367 | 254 | 0.11 | 2.940 | 1.74 | 0.1150 | 1.35 | 1886 | 29 | 1869 | 27 |
xen3.2 | 804 | 132 | 0.16 | 3.156 | 2.09 | 0.1161 | 2.04 | 1753 | 33 | 1696 | 88 |
xen3.3 | 1138 | 155 | 0.14 | 3.010 | 1.96 | 0.1097 | 1.89 | 1833 | 32 | 1643 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Tian, W.; Fu, B.; Fang, J.-Q. Channelized CO2-Rich Fluid Activity along a Subduction Interface in the Paleoproterozoic Wutai Complex, North China Craton. Minerals 2021, 11, 748. https://doi.org/10.3390/min11070748
Wang B, Tian W, Fu B, Fang J-Q. Channelized CO2-Rich Fluid Activity along a Subduction Interface in the Paleoproterozoic Wutai Complex, North China Craton. Minerals. 2021; 11(7):748. https://doi.org/10.3390/min11070748
Chicago/Turabian StyleWang, Bin, Wei Tian, Bin Fu, and Jia-Qi Fang. 2021. "Channelized CO2-Rich Fluid Activity along a Subduction Interface in the Paleoproterozoic Wutai Complex, North China Craton" Minerals 11, no. 7: 748. https://doi.org/10.3390/min11070748
APA StyleWang, B., Tian, W., Fu, B., & Fang, J. -Q. (2021). Channelized CO2-Rich Fluid Activity along a Subduction Interface in the Paleoproterozoic Wutai Complex, North China Craton. Minerals, 11(7), 748. https://doi.org/10.3390/min11070748