Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects
Abstract
:1. Introduction
- reflects the composition of the original raw materials and is controlled by local geology;
- results from paste preparation techniques that have modified the original raw composition of each raw material component through the act of combining one or more clay-bearing materials with plastic or aplastic media;
- has been modified by use of the ceramic (e.g., cooking, lime mortar mixing, etc.);
- has been altered as a result of the burial environment;
- reflects the combination of some or all of these five factors.
1.1. The Structure of a Ceramic and Locations of Potential Post-Depositional Contamination
- Microstructure—the abundance, distribution, shape, size, orientation, and alteration of pores, textures within the micromass (materials <0.01 mm in size), and texture and orientation of individual non-plastic grains [50] (p. 129);
- Surface treatment—any modification to the ceramic surface, including smoothing, burnishing, slip, paint, glaze, incision, stamping, scraping, or any combination thereof.
1.2. Mobility of Calcareous Material in Archaeological Ceramics
- Superficial deposits of calcium carbonate—carbonate layers coating the exterior surface of a ceramic. Cau Ontiveros et al. note that the accretion of carbonate matter on the ceramic surface may have little to no relationship with the presence of secondary calcite within the ceramic matrix [42] (p. 17, Figure 1h).
- Textural deformation of the microstructure—birefringent crystallites within the micromass. Often these are observed as striations or patches within the micromass and can often obscure features within both the microstructure and groundmass [42] (p. 17, Figure 1d).
1.3. Post-Depositional Alteration of Calcite and Archaeological Interpretations of Compositional Data
2. Materials and Methods
2.1. Case Study 1: Jovel Valley Archaeological Context and Geology
Case Study 1: Jovel Valley Methods
2.2. Case Study 2: Mycenaean Fineware Pottery Archaeological Context and Geology
Case Study 2: Mycenaean Fineware Pottery Methods
3. Results and Discussion
3.1. Case Study 1: Jovel Valley Calcite Tempered Wares: Calcite Depletion Effects
3.1.1. Jovel Valley Calcareous Fabrics
3.1.2. SEM-EDS Results
3.1.3. ICP-MS/OES Results
3.1.4. Summary
3.2. Case 2: Mycenaean Fineware Pottery: Calcite Redistribution
3.2.1. SAR 1
3.2.2. SAR 11
3.2.3. Effect of Post-Depositional Calcite Alterations on Bulk Chemical Analysis
3.2.4. Summary
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neff, H. Good, Fast, Cheap; pick any two: Characterization of ceramic materials. In Ceramics in Archaeology: Readings from Am. Antiq., 1936–2002; Neff, H., Ed.; Society for American Archaeology: Washington, DC, USA, 2005; pp. 209–214. [Google Scholar]
- Krieger, A.D. The Typological Concept. Am. Antiq. 1944, 9, 277–288. [Google Scholar] [CrossRef]
- Rouse, I. On the Typological Method. Am. Antiq. 1944, 10, 202–204. [Google Scholar] [CrossRef]
- Spaulding, A.C. Statistical Techniques for the Discovery of Artifact Types. Am. Antiq. 1944, 18, 305–313. [Google Scholar] [CrossRef]
- Sabloff, J.A.; Smith, R.E. The Importance of Both Analytic and Taxonomic Classification in the Type-Variety System. Am. Antiq. 1969, 34, 278–285. [Google Scholar] [CrossRef]
- Dunnell, R.C. Sabloff and Smith’s. The Importance of Both Analytic and Taxonomic Classification in the Type-Variety System. Am. Antiq. 1971, 36, 115–118. [Google Scholar] [CrossRef]
- Ford, J.A. A Chronological Method Applicable to the Southeast. Am. Antiq. 1938, 3, 260–264. [Google Scholar] [CrossRef]
- Rowe, J.H. Stratigraphy and Seriation. Am. Antiq. 1961, 26, 324–330. [Google Scholar] [CrossRef]
- Dunnell, R.C. Seriation Method and Its Evaluation. Am. Antiq. 1970, 35, 305–319. [Google Scholar] [CrossRef]
- Shennan, S.J.; Wilkinson, J.R. Ceramic Style Change and Neutral Evolution: A Case Study from Neolithic Europe. Am. Antiq. 2001, 66, 577–593. [Google Scholar] [CrossRef]
- Asaro, F.; Perlman, I. Provenience studies of Mycenaean pottery employing neutron activation analysis. In Acts of the International Archaeological Symposium: The Mycenaeans in the Eastern Mediterranean; Department of Antiquities: Nicosia, Cyprus, 1973; pp. 213–224. [Google Scholar]
- Feathers, J.K. Explaining Shell-Tempered Pottery in Prehistoric Eastern North America. J. Archaeol. Method Theory 2006, 13, 89–113. [Google Scholar] [CrossRef]
- Hein, A.; Kilikoglou, V. Compositional variability of archaeological ceramics in the eastern Mediterranean and implications for the design of provenance studies. J. Archaeol. Sci. Rep. 2017, 16, 564–572. [Google Scholar] [CrossRef]
- Jones, R.E. Pottery as Evidence for Trade and Colonisation in the Aegean Bronze Age: The Contribution of Scientific Techniques. In Wace and Blegen: Pottery as Evidence for Trade in the Aegean Bronze Age 1939–1989, Proceedings of the International Conference held at the American School of Classical Studies, Athens, Greece, 2–3 December 1989; Zerner, C., Zerner, P., Winder, J., Eds.; J. C. Gieben: Amsterdam, The Netherlands, 1993; pp. 11–17. [Google Scholar]
- Miksa, E.J.; Heidke, J. It All Comes Out in the Wash: Actualistic Petrofacies Modeling of Temper Provenance, Tonto Basin, Arizona, USA. Geoarchaeology 2001, 16, 177–222. [Google Scholar] [CrossRef]
- Neff, H. Neutron Activation Analysis for Provenance Determination in Archaeology. In Modern Analytical Methods in Art and Archaeology; Ciliberto, E., Spoto, G., Eds.; John Wiley and Sons: New York, NY, USA, 2000; pp. 81–134. [Google Scholar]
- Steponaitis, V.; Blackman, M.J.; Neff, H. Large-Scale Patterns in the Chemical Composition of Mississippian Pottery. Am. Antiq. 1996, 61, 555–572. [Google Scholar] [CrossRef]
- Stoltman, J. A Quantitative Approach to the Petrographic Analysis of Ceramic Thin Sections. Am. Antiq. 1989, 54, 147–160. [Google Scholar] [CrossRef]
- Stoner, W.D.; Glascock, M.D. The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA-ICP-MS. J. Archaeol. Sci. 2014, 39, 2668–2683. [Google Scholar] [CrossRef]
- Buxeda i Garrigós, J. Minoanising pottery traditions in the SW Aegean: Understanding the social context of technological and consumption practices. J. Archaeol. Sci. 1999, 26, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.W.; Van de Moortel, A.; Day, P.M.; Kilikoglou, V. A LM IA Ceramic Kiln in South-Central Crete: Function and Pottery Production. Hesperia Suppl. 2001, 30. [Google Scholar]
- Day, P.M.; Kiriatzi, E.; Tsolakidou, A.; Kilikoglou, V. Group Therapy in Crete: A Comparison between Analyses of NAA and Thin Section Petrography of Early Minoan Pottery. J. Archaeol. Sci. 1999, 26, 1025–1036. [Google Scholar] [CrossRef]
- Druc, I.C. Portable Digital Microscope—Atlas of Ceramic Pastes: Components, Texture and Technology; Deep University Press: Madison, WI, USA, 2015. [Google Scholar]
- Gosselain, O.P. Bonfire of the Inquiries. Pottery firing temperatures in Archaeology: What for? J. Archaeol. Sci. 1992, 19, 243–259. [Google Scholar] [CrossRef]
- Kilikoglou, V.; Vekinis, G.; Maniatis, Y. Toughening of ceramic earthenwares by quartz inclusions: An ancient art revisited. Acta Metall. Mater. 1995, 43, 2959–2965. [Google Scholar] [CrossRef]
- Kilikoglou, V.; Vekinis, G.; Maniatis, Y.; Day, P.M. Mechanical performance of quartz-tempered ceramics. Part I: Strength and toughness. Archaeometry 1998, 40, 261–279. [Google Scholar] [CrossRef]
- Matson, F.R. Technological Ceramic Studies. Collage Art J. 1942, 1, 25–28. [Google Scholar] [CrossRef]
- Matson, F.R. Ceramics and Man; Aldine Publishing Co.: Chicago, IL, USA, 1965. [Google Scholar]
- Meanwell, J.L.; Paris, E.H.; Peraza Lope, C.; Seymour, L.; Masic, A. Blowpipes and their metalworking applications: New evidence from Mayapán, Yucatán, Mexico. PLoS ONE 2020, 15, e0238885. [Google Scholar] [CrossRef]
- Meanwell, J.L.; Paris, E.H.; Cruz Alvarado, W.; Peraza Lope, C. Metallurgical ceramics from Mayapán, Yucatán, Mexico. J. Archaeol. Sci. 2013, 40, 4306–4318. [Google Scholar] [CrossRef]
- Müller, N.S.; Kilikoglou, V.; Day, P.M.; Vekinis, G. The influence of temper shape on the mechanical properties of archaeological ceramics. J. Eur. Ceram. Soc. 2010, 30, 2457–3465. [Google Scholar] [CrossRef]
- Müller, N.S.; Kilikoglou, V.; Day, P.M.; Vekinis, G. Thermal shock resistance of tempered archaeological ceramics. In Craft and Science: International Perspectives on Archaeological Ceramics; Martinón-Torres, M., Ed.; Bloomsbury Qatar Foundation: Doha, Qatar, 2014; pp. 263–270. [Google Scholar]
- Maniatis, Y.; Tite, M.S. Ceramic Technology in the Aegean World. In Thera and the Aegean World; Doumas, C., Ed.; The Thera Foundation: London, UK, 1978; pp. 483–492. [Google Scholar]
- Maniatis, Y.; Tite, M.S. Technological Examination of Neolithic-Bronze Age Pottery from Central and Southeast Europe and from the Near-East. J. Archaeol. Sci. 1981, 8, 59–76. [Google Scholar] [CrossRef]
- Ownby, M.F. The Importance of Petrography for Interpreting Compositional Data A Case Study of Tanque Verde Red-on-Brown. In Integrative Approaches in Ceramic Petrography; Ownby, M.F., Druc, I.C., Masucci, M.A., Eds.; University of Utah Press: Salt Lake City, UT, USA, 2016; pp. 24–28. [Google Scholar]
- Shepard, A.O. The technology of Pecos pottery. In Pottery of Pecos. Vol. 2, Papers of the Southwestern Expedition, Vol. 7; Phillips Academy, New Haven, Department of Archaeology: Andover, MA, USA, 1936; pp. 389–587. [Google Scholar]
- Shepard, A.O. Ceramics for the Archaeologist; Carnegie Institution of Washington Publication: Washington, DC, USA, 1965. [Google Scholar]
- Schiffer, M.B.; Skibo, J.M. Theory and Experiment in the Study of Technological Change. Curr. Anthropol. 1987, 28, 595–622. [Google Scholar] [CrossRef]
- Skibo, J.M.; Butts, T.C.; Michael, B.S. Ceramic Surface Treatment and Abrasion Resistance: An Experimental Study. J. Archaeol. Sci. 1997, 24, 311–317. [Google Scholar] [CrossRef]
- Rice, P.M. Pottery Analysis: A Sourcebook; University of Chicago Press: Chicago, IL, USA, 1986. [Google Scholar]
- Buxeda i Garrigós, J.; Mommsen, H.; Tsolakidou, A. Alterations of Na, K, and Rb in Mycenaean pottery and a proposed explanation using x-ray diffraction. Archaeometry 2002, 44, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Cau Ontiveros, M.A.; Day, P.M.; Montana, G. Secondary calcite in archaeological ceramics: Evaluation of contamination and alteration processes by thin section study. In Modern Trends in Scientific Studies on Ancient Ceramics; Kilikoglou, V., Hein, A., Maniatis, Y., Eds.; Papers presented at the 5th annual European Meeting on Ancient Ceramics, Athens 1999; BAR International Series 1011; Archaeopress: Oxford, UK, 2002; pp. 8–18. [Google Scholar]
- Golitko, M.; Dudgeon, J.V.; Neff, H.; Terrell, J.E. Identification of post-depositional chemical alteration of ceramics from the north coast of Papau New Guinea (Sanduan Province) by time-of-flight-laser ablation-inductively coupled plasma-mass spectrometry (TOF-LA-ICP-MS). Archaeometry 2012, 54, 80–100. [Google Scholar] [CrossRef]
- Golitko, M.A.; McGrath, A.; Kreitler, I.V.; Lightcap, P.R.; Duffy, G.M.; Parditka, G.M.; Giblin, J.I. Down to the Crust: Chemical and Mineralogical Analysis of Ceramic Surface Encrustations on Bronze Age Ceramics from Békés 103, Eastern Hungary. Minerals 2021, 11, 436. [Google Scholar] [CrossRef]
- Maggetti, M. Phase Analysis and its Significance for Technology and Origin. In Archaeological Ceramics; Olin, J.S., Franklin, A.D., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1982; pp. 121–133. [Google Scholar]
- Mommsen, H. Provenance determination of pottery by trace element analysis: Problems, solutions and applications. J. Radioanal. Nucl. 2001, 247, 657–662. [Google Scholar] [CrossRef]
- Picon, M. Remarques préliminaires sur deux types d’altération de la composition chimique des céramiques au cours du temps. Figlina 1976, 1, 159–166. [Google Scholar]
- Picon, M. Quelques observations complémentaires sur les altérations de composition des céramiques au cours du temps: Cas de quelques alcalins et alcalino-terreux. Rev. D’archeometrie 1991, 15, 117–122. [Google Scholar] [CrossRef]
- Neff, H.; Cogswell, J.W.; Ross, L.M.J. Supplementing bulk chemistry in archaeological provenance investigations. In Patterns and Process: A Festschrift in Honor of Dr. Edward V. Sayre; van Zelst, L., Ed.; Smithsonian Center for Materials Research and Education: Suitland, MD, USA, 2003; pp. 220–224. [Google Scholar]
- Whitbread, I.K. A proposal for the systematic descriptions of thin sections towards the study of ancient ceramic technology. In Archaeometry; Maniatis, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 127–138. [Google Scholar]
- Whitbread, I.K. Greek Transport Amphorae: A petrological and Archaeological Study. Fitch Laboratory Occasional Paper 4; British School at Athens: Athens, Greece, 1995. [Google Scholar]
- Kemp, R.A. Soil micromorphology and the Quaternary. Quaternary Research Association Technical Guide 2; Cambridge, UK, 1985. [Google Scholar]
- Vekinis, G.; Kilikoglou, V. Mechanical performance of quartz-tempered ceramics: Part II, Hertzian strength, wear resistance and applications to ancient ceramics. Archaeometry 1998, 40, 281–292. [Google Scholar] [CrossRef]
- Hein, A.; Müller, N.S.; Day, P.M.; Kilikoglou, V. Thermal conductivity of archaeological ceramics: The effects of inclusions, porosity and firing temperature. Thermochim. Acta 2008, 480, 35–42. [Google Scholar] [CrossRef]
- Müller, N.S.; Hein, A.V.; Kilikoglou, P.M. Day Modelling thermal stresses in Prehistoric cooking ware. In Proceedings of the 5th Conference of the Hellenic Society for Archaeometry (2008); Zacharias, N., Georgakopoulou, M., Polykreti, K., Fakorellis, G., Bakoulis, T., Eds.; Papazisi Editions: Athens, Greece, 2012; pp. 477–491. [Google Scholar]
- Allegretta, I.; Eramo, G.; Pinto, D.; Hein, A. The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics. Appl. Clay Sci. 2017, 135, 260–270. [Google Scholar] [CrossRef]
- Roux, V. Ceramics and Society: A Technological Approach to Archaeological Assemblages; Springer: New York, NY, USA, 2019. [Google Scholar]
- Skibo, J.M. Pottery Function: A Use-Alteration Perspective; Springer: New York, NY, USA, 1992. [Google Scholar]
- Schiffer, M.B.; Skibo, J.M.; Griffitts, J.L.; Hollenbeck, K.L. Behavioral archaeology and the study of technology. Am. Antiq. 2001, 66, 729–737. [Google Scholar] [CrossRef]
- Meanwell, J.L. Technical requirements and technical choices in pottery production: A view from the Middle Balsas Region of Guerrero, Mexico. Am. Antiq. 2015, 80, 312–331. [Google Scholar] [CrossRef]
- Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Halek, V.; Novak, M. Problems concerning solution of steady and unsteady groundwater flow by statistical methods. Dev. Soil Sci. 1972, 2, 101–118. [Google Scholar]
- Courtois, L. Examen au microscope pétrographique des céramiques archéologiques. Centre de Recherches Archéologiques. In Notes et Monographies Techniques No. 8; Centre National de la Recherche Scientifique: Paris, France, 1976. [Google Scholar]
- Schneider, G. Anwendung quantitativer Materialanalysen auf Herkunftsbestimmunen antiker Keramik. Berl. Beiträge zur Archäometrie 1978, 3, 63–122. [Google Scholar]
- Schneider, G. Mineralogical and Chemical Alteration. In The Oxford Handbook of Archaeological Ceramic Analysis; Alice, M.W.H., Ed.; Oxford University Press: Oxford, UK, 2006; pp. 162–180. [Google Scholar]
- Olin, J.S.; Harbottle, G.; Sayre, E.V. Elemental Compositions of Spanish and Spanish-Colonial Majolica Ceramics in the Identification of Provenience. In Archaeological Chemistry II. Advances in Chemistry Series 171; Carter, G.F., Ed.; American Chemical Society: Washington, DC, USA, 1978; pp. 200–229. [Google Scholar]
- Olin, J.S.; Sayre, E.V. Environmental and Technological Causes of Variations in the Absolute Concentrations of Elements in Ceramics. In Proceedings of the 18th International Symposium on Archaeometry (Bonn), Archaeophysika, Bonn, Germany, 14–17 March 1978; Volume 10, p. 607. [Google Scholar]
- Heimann, R.B.; Maggetti, M. Experiments on simulated burial calcareous Terra Sigillata (mineralogical change). Preliminary results. In Scientific Studies in Ancient Ceramics. British Museum Occasional Paper 19; Hughes, M.J., Ed.; British Museum: London, UK, 1981; pp. 163–177. [Google Scholar]
- Maggetti, M.; Westley, H.; Olin, J.S. Provenance and Technical Studies of Mexican Majolica Using Elemental and Phase Analysis. Archaeol. Chem. III 1984, 151–191. [Google Scholar] [CrossRef]
- Joyner, L.; Day, P.M. Appendix: Petrographic Fabric Descriptions, in D.E. Wilson and P.M. Day EMIIB ware groups at Knossos: The 1907-1908 South Front tests. Annu. Br. Sch. Athens. 1999, 94, 1–62. [Google Scholar]
- Echallier, J.C. Premières données pétrographiques sur les amphores massaliètes du Languedoc. Lett. d’information du CRA 21 Archéologie du Midi Médéitrranéen 1983, 9, 68–73. [Google Scholar]
- García Heras, M. Deposiciones invisibles: Microprocesos de calcitización postdeposicional en cerámicas celtibéricas. Arqueol. Espac. 1993, 16–17, 391–406. [Google Scholar]
- Walter, V. Étude Pétrographique, Minéralogique Et Géochimique D’amphores Gauloises Découvertes Dans Le Nord-est De La France; Thèse de Doctorat, Université des Sciences Humaines de Strasbourg U.F.R. des Sciences Historiques; CNRS-Centre de Sédimentologie et de Géochimie de la Surface: Strasbourg, France, 1988. [Google Scholar]
- Buxeda i Garrigós, J.; Ontiveros, M.A.C. Identificación y significado de la calcita secundaria en cerámicas arqueológicas. Complutum 1995, 6, 293–309. [Google Scholar]
- Prag, A.J.N.W.; Schweizer, F.; Williams, J.L.I.W.; Schubiger, P.A. Hellenistic glazed wares from Athens and southern Italy: Analytical techniques and applications. Archaeometry 1974, 16, 153–187. [Google Scholar] [CrossRef]
- Wilson, D.E.; Day, P.M. Ceramic regionalism in Prepalatial Central Crete: The Mesara imports at EMI to EMIIA Knossos. Annu. Br. Sch. Athens 1994, 89, 1–87. [Google Scholar] [CrossRef]
- Arvidson, R.S.; Ertan, I.E.; Amonette, J.E.; Luttge, A. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 2003, 67, 1623–1634. [Google Scholar] [CrossRef]
- Chou, L.; Garrels, R.M.; Wollast, R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 1989, 78, 269–282. [Google Scholar] [CrossRef]
- Noiriel, C.; Steefel, C.I.; Yang, L.; Ajo-Franklin, J. Upscaling calcium carbonate precipitation rates from pore to continuum scale. Chem. Geol. 2012, 318–319, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Fan, C.; Teng, H.H. Calcite dissolution kinetics in view of Gibbs free energy, dislocation density, and pCO2. Chem. Geol. 2012, 322–323, 11–18. [Google Scholar] [CrossRef]
- Leslie, A.B.; Hughes, J.J. Binder microstructure in lime mortars: Implications for the interpretation of analysis results. Q. J. Eng. Geol. Hydrogeol. 2002, 35, 257–263. [Google Scholar] [CrossRef]
- Lubelli, B.; Nijland, T.G.; van Hees, R.P.J. Self-healing of lime based mortars: Microscopy observations on case studies. Heron 2011, 56, 81–97. [Google Scholar]
- Jackson, M.D.; Vola, G.; Všianský, D.; Oleson, J.P.; Scheetz, B.E.; Brandon, C.; Hohlfelder, R.L. Cement Microstructures and Durability in Ancient Roman Seawater Concretes. In Historic Mortars. RILEM Bookseries, Vol. 7; Válek, J., Hughes, J., Groot, C., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 49–76. [Google Scholar] [CrossRef]
- Glascock, M.D. Introduction: Geochemical Evidence for Long Distance Exchange. In Geochemical Evidence for Long Distance Exchange; Glascock, M., Ed.; Bergan and Garvey: London, UK, 2002; pp. 1–12. [Google Scholar]
- Kilikoglou, V.; Grimanis, A.P.; Hein, A.; Malamidou, D.; Tsirtsoni, Z. Neutron activation patterning of archaeological materials at the National Center for Scientific Research ‘Demokritos’: The case of black-on-red Neolithic pottery from Macedonia, Greece. Archaeometry 2007, 49, 301–319. [Google Scholar] [CrossRef]
- Day, P.M. The production and distribution of storage jars in Neopalatial Crete. In Problems in Greek Prehistory: Papers Presented at the Centenary Conference of the British School of Archaeology at Athens, Manchester, April 1986; French, E.B., Wardle, K.A., Eds.; Bristol Classical Press: Bristol, UK, 1988; pp. 499–508. [Google Scholar]
- Aitchison, J. The Statistical Analysis of Compositional Data. In Monographs of Statistics and Applied Probability; Chapman and Hall: New York, NY, USA, 1986. [Google Scholar]
- Buxeda i Garrigós, J.; Kilikoglou, V. Total Variation as a measure of variability in chemical datasets. In Patterns and Process. A Festschrift in Honor of Dr. Edward V. Sayre; van Zelst, L., Ed.; Smithsonian Center for Materials Research and Education: Washington, DC, USA, 2003; pp. 185–198. [Google Scholar]
- Buxeda i Garrigós, J.; Kilikoglou, V.; Day, P.M. Chemical and Mineralogical Alteration of Ceramics from a Late Bronze Age Kiln at Kommos, Crete: The Effect on the Formation of a Reference Group. Archaeometry 2001, 43, 349–371. [Google Scholar] [CrossRef] [Green Version]
- Mommsen, H.; Sjöberg, B.L. The Importance of the ‘Best Relative Fit Factor’ When Evaluating Elemental Concentration Data of Pottery, Demonstrated with Mycenaean Sherds from Sinda, Cyprus. Archaeometry 2007, 49, 357–369. [Google Scholar] [CrossRef]
- Culbert, T.P. The Ceramic History of the Central Highlands of Chiapas, Mexico; Papers of the New World Archaeological Foundation No. 19; Brigham Young University: Provo, UT, USA, 1965. [Google Scholar]
- Lee, T.A., Jr. El Asentamiento Humano Precolombino del Valle de Hueyzacatlan. In San Cristobal y Sus Alrededores; Gobierno del Estado de Chiapas: Tuxtla Gutierrez, Chiapas, Mexico, 1985; pp. 153–186. [Google Scholar]
- Paris, E.H.; López Bravo, R.; Lalo Jacinto, G. An Archaic Period Stemmed and Barbed Point from Tenam Puente, Chiapas, Mexico. Arqueol. Iberoam. 2019, 43, 62–66. [Google Scholar]
- Prufer, K.M.; Alsgaard, A.V.; Robinson, M.; Meredith, C.R.; Culleton, B.J.; Dennehy, T.; Magee, S.; Huckell, B.B.; Stemp, W.J.; Awe, J.J.; et al. Linking late Paleoindian stone tool technologies and populations in North, Central and South America. PLoS ONE 2019, 14, e0219812. [Google Scholar] [CrossRef] [Green Version]
- Paris, E.H. Cross-valley communities: Identity and interaction in Early Postclassic period highland Chiapas. J. Anthropol. Archaeol. 2014, 34, 78–99. [Google Scholar] [CrossRef]
- Paris, E.H. Political Economy on the Postclassic Western Maya Frontier. Ph.D. Dissertation, Department of Anthropology, University at Albany, Albany, NY, USA, 2012. [Google Scholar]
- Paris, E.H.; López Bravo, R. Gulf Coast influence at Moxviquil, Chiapas, Mexico. Camb. Archaeol. J. 2020, 30, 183–199. [Google Scholar] [CrossRef]
- Paris, E.H.; López Bravo, R.; Serafin, S. A funerary cave at Moxviquil, Chiapas, Mexico. J. Field Archaeol. 2020, 45, 86–105. [Google Scholar] [CrossRef]
- Weiant, C.W. Digging in Chiapas. Explor. J. 1954, 32, 30–36. [Google Scholar]
- Mora, J.C.; Jaimes-Viera, M.C.; Garduño-Monroy, V.H.; Layer, P.W.; Pompa-Mera, V.; Godinez, M.L. Geology and geochemistry characteristics of the Chiapanecan Volcanic Arc (Central Area), Chiapas, Mexico. J. Volcanol. Geotherm. Res. 2007, 162, 43–72. [Google Scholar] [CrossRef]
- León-Nájera, J.A.; Gómez-Álvarez, R.; Hernández-Daumás, S.; Álvarez-Solís, J.D.; Palma-López, D.J. Mineralización en suelos con incorporación de residuos orgánicos en los Altos de Chiapas, México. Univ. Y Cienc. 2006, 22, 163–164. [Google Scholar]
- Berlin, B.; Breedlove, D.E.; Raven, P.H. Principles of Tzeltal Plant Classification: An Introduction to the Botanical Ethnography of a Mayan Speaking People of Highland Chiapas; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Breedlove, D.E. (Ed.) Flora of Chiapas; California Academy of Sciences: San Francisco, CA, USA, 1981. [Google Scholar]
- Meanwell, J.L.; Paris, E.H.; López Bravo, R. Shifting domestic economies at Postclassic Period Moxviquil: Insights from ceramic petrography. In Proceedings of the Paper presented at the 82nd Annual SAA Meeting, Vancouver, BC, Canada, 29 March–2 April 2017. [Google Scholar]
- Meanwell, J.L.; Paris, E.H.; López Bravo, R. Ceramic production and exchange networks in the Jovel Valley of Highland Chiapas. In Proceedings of the Paper Presented at the 118th Annual AAA/CASCA Meeting, Vancouver, BC, Canada, 20–24 November 2019. [Google Scholar]
- Kennett, D.J.; Sackai, S.; Neff, H.; Gossett, R.; Larson, D.O. Compositional Characterization of Prehistoric Ceramics: A New Approach. J. Archaeol. Sci. 2002, 29, 443–455. [Google Scholar] [CrossRef]
- Higgins, M.D.; Higgins, R. A Geological Companion to Greece and the Aegean; Cornell University Press: Ithaca, NY, USA, 1996. [Google Scholar]
- Whitbread, I.K.; Mari, A. Provenance and Proximity: A technological analysis of Late and Final Neolithic ceramics from Euripides’ Cave, Salamis, Greece. J. Archaeol. Sci. 2014, 41, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Kiriatzi, E.; Georgakopoulou, M.; Pendadeka, A. Section C. Pottery Production and Importation at Bronze Age Kolonna: The Ceramic Fabrics. In Pottery Production and Supply at Bronze Age Kolonna, Aegina; Gauss, W., Kiriatzi, E., Eds.; Verlag der Österreichen Akademie der Wissenschaften: Wien, Austria, 2011; pp. 69–145. [Google Scholar]
- Gilstrap, W.D.; Day, P.M.; Kilikoglou, V. Pottery production at two neighbouring centres in the Late Bronze Age Saronic Gulf: Historical contingency and craft organisation. J. Archaeol. Sci. Rep. 2016, 7, 499–509. [Google Scholar] [CrossRef]
- Hein, A.; Day, P.M.; Cau Ontiveros, M.A.; Kilikoglou, V. Red clays from Central and Eastern Crete: Geochemical and mineralogical properties in view of provenance studies on ancient ceramics. Appl. Clay Sci. 2004, 24, 245–255. [Google Scholar] [CrossRef]
- Hein, A.; Day, P.M.; Quinn, P.S.; Kilikoglou, V. Geochemical diversity of Neogene clay deposits in Crete and its implications on Provenance studies of Minoan pottery. Archaeometry 2004, 46, 357–384. [Google Scholar] [CrossRef]
- Hein, A.; Mommsen, H.; Zender, G. Pliocene clays from Aegina (Greece): Reference material for chemical provenance studies on Bronze Age pottery from the island. Geoarchaeology 2004, 19, 553–564. [Google Scholar] [CrossRef]
- Ho, J.W.I.; Quinn, P.S. Intentional Clay-Mixing in the Production of Traditional and Ancient Ceramics and Its Identification in Thin Section. J. Archaeol. Sci. Rep. 2021, 37, 102945. [Google Scholar] [CrossRef]
- Gilstrap, W.D. Ceramic production and exchange in the Late Mycenaean Saronic Gulf. Unpublished Doctoral Dissertation; University of Sheffield: Sheffield, UK, 2015. [Google Scholar]
- Glascock, M.D. Characterization of Archaeological Ceramics at MURR by Neutron Activation Analysis and Multivariate Statistics. In Chemical Characterization of Ceramic Pastes in Archaeology; Neff, H., Ed.; Prehistory Press: Madison, WI, USA, 1992; pp. 11–26. [Google Scholar]
- Paris, E.H.; Taladoire, E.; Lee Whiting, T. Return to Moxviquil. Anc. Mesoam. 2015, 26, 81–112. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S.; Shoval, S. The presence of calcite in archaeological ceramics. J. Eur. Ceram. Soc. 2014, 34, 1899–1911. [Google Scholar] [CrossRef]
- Bayazit, M.; Çağine, D.; Genç, E. Early Bronze Age Plain Simple Wares (Tripod Vessels) of Tilbeshar (Turkey): Archaeometric Characterization. BEU J. Sci. 2019, 8, 484–495. [Google Scholar]
- Tenconi, M.; Maritan, L.; Mazzoli, C. Textural Changes in Speleothem Inclusions during Firing: A Useful Tool to Estimate Temperature in Speleothem-Bearing Pottery. Archaeometry 2016, 58, 39–53. [Google Scholar] [CrossRef]
- Brady, J.E.; Scott, A.; Neff, H.; Glascock, M.D. Speleothem breakage, movement, removal, and caching: An aspect of ancient Maya cave modification. Geoarchaeology 1997, 12, 725–750. [Google Scholar] [CrossRef]
- Moore, C.H. Concepts of Sequence Stratigraphy as Applied to Carbonate Depositional Systems. Dev. Sedimentol. 2001, 55, 19–36. [Google Scholar] [CrossRef]
- Cogswell, J.W.; Neff, H.; Glascock, M.D. Analysis of Shell-Tempered Pottery Replicates: Implications for Provenance Studies. Am. Antiq. 1998, 63, 63–72. [Google Scholar] [CrossRef]
- Papavassiliou, C.; Chorianopoulou, P.; Tsaila-Monopolis, S.; Tsapralis, V.; Bornovas, J. Geological Map of Greece. 1:50,000. Athens Piraeus; IGME: Athens, Greece, 1982. [Google Scholar]
- Burke, C.; Day, P.M.; Pullen, D.J. The contribution of petrography to understand the consumption of Early Helladic Ceramics from Nema, Mainland Greece. In Integrative Approaches in Ceramic Petrography; Ownby, M.F., Druc, I.C., Masucci, M.A., Eds.; University of Utah Press: Salt Lake City, UT, USA, 2016; pp. 104–115. [Google Scholar]
- Day, P.M.; Rutter, J.B.; Quinn, P.S.; Kilikoglou, V. A World of Goods. Transport Jars and Commodity Exchange at the Late Bronze Age Harbour of Kommos, Crete. Hesperia 2011, 80, 511–558. [Google Scholar]
- Neff, H. Quantitative Techniques for Analyzing Ceramic Compositional Data. In Ceramic Production and Circulation the Greater Southwest: Source Determination by INAA and Complimentary Mineralogical Investigations; Glowacki, D.M., Neff, H., Eds.; Cotsen Institute of Archaeology: Los Angeles, CA, USA, 2002; pp. 15–36. [Google Scholar]
- Buxeda i Garrigós, J.; Cau Ontiveros, M.A. Possibilitats i Limitacions en l’estudi archaeométric de les produccions ceràmiques ebusitanes. Pyrenae 1998, 29, 97–115. [Google Scholar]
Sample | Ware | Site | Fabric | ICP-MS/OES | SEM-EDS |
---|---|---|---|---|---|
MOX-31 | San Gregorio Coarse | Moxviquil | C-1 | N | N |
MOX-32 | San Gregorio Coarse | Moxviquil | C-1 | N | N |
MOX-33 | San Gregorio Coarse | Moxviquil | C-1 | N | N |
MOX-34 | San Gregorio Coarse | Moxviquil | C-1 | N | N |
MOX-35 | San Gregorio Coarse | Moxviquil | C-1 | N | N |
M46 | San Gregorio Coarse | Moxviquil | C-1 | Y | Y |
M47 | San Gregorio Coarse | Moxviquil | C-1 | Y | N |
M48 | San Gregorio Coarse | Moxviquil | OTHER | Y | N |
M49 | San Gregorio Coarse | Moxviquil | C-1var | Y | N |
M50 | Unidentified: Fine Paste Red Ware | Moxviquil | C-1 | Y | N |
M51 | San Gregorio Coarse | Moxviquil | C-2 | Y | N |
M52 | San Gregorio Coarse | Moxviquil | C-2 | Y | N |
M53 | San Gregorio Coarse | Moxviquil | C-2var | Y | N |
M54 | San Gregorio Coarse | Moxviquil | C-2 | Y | N |
M55 | San Gregorio Coarse | Moxviquil | C-2 | Y | N |
M59 | San Gregorio Coarse | Moxviquil | C-1 | Y | Y |
M31 | San Gregorio Coarse | CV-38 | C-1 | Y | N |
M36 | San Gregorio Coarse | CV-38 | C-1 | Y | N |
M40 | San Gregorio Coarse | CV-38 | C-1 | Y | N |
M41 | San Gregorio Coarse | CV-38 | C-1 | Y | N |
M46 | M46 Ca Leach | M59 | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
C | 23.41 | 0.55 | 15.49 | 8.47 | 0.00 | 0.00 |
O | 51.44 | 1.52 | 51.26 | 9.96 | 63.98 | 19.99 |
Na | 0.00 | 0.00 | 1.56 | 1.30 | 0.11 | 0.20 |
Mg | 0.52 | 0.12 | 0.54 | 0.69 | 0.80 | 0.71 |
Al | 1.86 | 0.37 | 6.46 | 6.63 | 0.93 | 1.62 |
Si | 2.22 | 0.34 | 9.04 | 5.49 | 1.35 | 1.34 |
Cl | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 19.86 | 1.36 | 8.93 | 6.18 | 31.73 | 21.04 |
Fe | 0.42 | 0.03 | 4.86 | 4.38 | 0.06 | 0.10 |
Ti | 0.00 | 0.00 | 0.29 | 0.27 | 0.18 | 0.31 |
K | 0.00 | 0.00 | 0.46 | 0.63 | 0.25 | 0.34 |
Mn | 0.00 | 0.00 | 1.09 | 1.89 | 0.00 | 0.00 |
Total | 99.78 | 99.98 | 99.39 |
Chemical Group 1 | Chemical Group 3 | |||||
---|---|---|---|---|---|---|
Element (ppm) | Mean | SD | SD (%) | Mean | SD | SD (%) |
Ca (%) | 5.11 | 1.4 | 28.0 | 11.02 | 2.9 | 26.6 |
Sc | 21.00 | 1.3 | 6.2 | 18.9 | 2.3 | 12.1 |
Cr | 645.70 | 113.4 | 17.6 | 218 | 27.4 | 12.6 |
Fe (%) | 5.41 | 0.5 | 10.0 | 4.92 | 0.6 | 12.2 |
Co | 35.60 | 4.3 | 12.0 | 26.3 | 3.1 | 11.6 |
Zn | 126.20 | 29.4 | 23.3 | 110.8 | 19.7 | 17.8 |
Rb | 113.60 | 20.0 | 17.6 | 117.3 | 20.9 | 17.8 |
Zr | 110.60 | 17.9 | 16.2 | 90.6 | 18.1 | 20 |
Cs | 14.60 | 5.2 | 35.7 | 7.7 | 1.5 | 19.3 |
Ba | 526.00 | 165.7 | 31.5 | 408.9 | 151.8 | 37.1 |
La | 28.80 | 3.2 | 11.1 | 30.1 | 3 | 10 |
Ce | 61.90 | 6.8 | 10.9 | 59.4 | 6 | 10.2 |
Sm | 5.75 | 0.5 | 8.9 | 5.32 | 0.5 | 9.4 |
Eu | 1.14 | 0.1 | 8.6 | 1.11 | 0.1 | 8.9 |
Tb | 0.71 | 0.1 | 19.3 | 0.66 | 0.1 | 16.3 |
Yb | 2.54 | 0.2 | 9.0 | 2.42 | 0.2 | 10.3 |
Lu | 0.37 | 0.0 | 9.8 | 0.36 | 0.04 | 11.8 |
Hf | 4.52 | 0.5 | 10.7 | 3.42 | 0.4 | 12.8 |
Ta | 0.92 | 0.1 | 10.0 | 0.85 | 0.1 | 12.7 |
Th | 9.88 | 1.1 | 10.9 | 9.96 | 1.2 | 12.2 |
U | 2.34 | 0.4 | 17.7 | 2.23 | 0.4 | 16.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilstrap, W.D.; Meanwell, J.L.; Paris, E.H.; López Bravo, R.; Day, P.M. Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects. Minerals 2021, 11, 749. https://doi.org/10.3390/min11070749
Gilstrap WD, Meanwell JL, Paris EH, López Bravo R, Day PM. Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects. Minerals. 2021; 11(7):749. https://doi.org/10.3390/min11070749
Chicago/Turabian StyleGilstrap, William D., Jennifer L. Meanwell, Elizabeth H. Paris, Roberto López Bravo, and Peter M. Day. 2021. "Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects" Minerals 11, no. 7: 749. https://doi.org/10.3390/min11070749
APA StyleGilstrap, W. D., Meanwell, J. L., Paris, E. H., López Bravo, R., & Day, P. M. (2021). Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects. Minerals, 11(7), 749. https://doi.org/10.3390/min11070749