Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities
Abstract
:1. Introduction
2. Methodology of Investigation
Study Area and Sampling Procedure
3. Potential Sources of Soil and Groundwater Contamination
3.1. Weathering of Rocks and Raw Materials
3.2. Influence of the Groundwater Salinity
3.3. Smelting/Combustion of Raw Materials
3.3.1. Bauxites and Fe-Ni-Laterites
3.3.2. Chromite Deposits and Ferrochromium (FeCr)
3.3.3. Coal Mining/Combustion (Fly Ash)
4. Discussion
4.1. Implications of the Green Economy
4.1.1. Smelting Residues (Red Mud and Slag)
4.1.2. Bioaccumulation of Harmful Metal(loids)
4.2. Application of the Stable Chromium Isotopes to the Groundwater Contamination by (Cr(VI)
4.3. Knowledge Gaps
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Panagos, P.; van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Burke, I.T.; Mayes, W.M.; Peacock, C.L.; Brown, A.P.; Jarvis, A.P.; Gruiz, K. Speciation of Arsenic, Chromium, and Vanadium in Red Mud Samples from the Ajka Spill Site, Hungary. Environ. Sci. Technol. 2012, 46, 3085–3092. [Google Scholar] [CrossRef]
- Balderacchi, M.; Filippini, M.; Gemitzi, A.; Klöve, B.; Petitta, M.; Trevisan, M.; Wachniew, P.; Witczak, S.; Gargini, A. Does groundwater protection in Europe require new EU-wide environmental quality standards? Front. Chem. 2014, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Orioli, S.; De Maio, M. Assessment of groundwater geochemistry and diffusion of hexavalent chromium contamination in an industrial town of Italy. J. Contam. Hydrol. 2019, 225, 103503. [Google Scholar] [CrossRef] [PubMed]
- Losi, E.; Amrhein, C.; Frankenberger, W.T.J. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 1994, 136, 91–131. [Google Scholar]
- Massoud, M.A.; Scrimshaw, M.D.; Lester, J.N. Qualitative assessment of the effectiveness of the Mediterranean action plan: Wastewater management in the Mediterranean Geofluids 3 region. Ocean Coast. Manag. 2003, 46, 875–899. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances, Disease Registry). Toxicological Profile for Chromium; Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services: Washington, DC, USA, 2000. [Google Scholar]
- Fawell, J.; Nieuwenhuijsen, M.J. Contaminants in drinking water: Environmental pollution and health. Br. Med. Bull. 2003, 68, 199–208. [Google Scholar] [CrossRef]
- Welsh Government. River Basin Districts Surface Water and Groundwater Classification (Water Framework Directive) (England and Wales) Direction 2009 (2009 No.53). Available online: https://gov.wales/sites/default/files/publications/2019-07/091222direct53.pdf (accessed on 30 May 2021).
- Libutti, A.; Monteleone, M. Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions. Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Yan, X.; Meng, X.; Chen, Y. Processes of chromium (VI) migration and transformation in chromate production site: A case study from the middle of China. Chemosphere 2020, 257, 127282. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Literature Review of Contaminants in Livestock and Poultry Manure and Implications for Water Quality; USEPA: Washington, DC, USA, 2013. [Google Scholar]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Sagasta, J.; Marjani, S.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review Executive Summary; FAO IWMI: Rome, Italy, 2017; pp. 1–35. [Google Scholar]
- Van der Putten, W.; Ramirez, K.; Poesen, J.; Lenka, L.; Šimek, M.; Anne, W.; Mari, M.; Philippe, L.; Heikki, S.; Andrey, Z.; et al. Opportunities for Soil Sustainability in Europe; European Academies’ Science Advisory Council: Halle, Germany, 2018; p. 41. [Google Scholar]
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green economy and related concepts: An overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Hertel, T.; Blanpain, B.; Pontikes, Y. A Proposal for a 100 % Use of Bauxite Residue Towards Inorganic Polymer Mortar. J. Sustain. Metall. 2016, 2, 394–404. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee 2 and the Committee of the Regions COM(2020) 474 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Cassard, D.; Bertrand, G.; Billa, M.; Serrano, J.J.; Tourlière, B.; Angel, J.M.; Gaál, G. ProMine Mineral Databases: New Tools to Assess Primary and Secondary Mineral Resources in Europe. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe; Weihed, P., Ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Cassard, D.; Tertre, F. Improvement of KDPs’ applications and interaction with the RMIS and the GeoERA Information Platform. 2021. Available online: https://geoera.eu/wp-content/uploads/2021/03/D5.5-KDP%E2%80%99s-applications-delivery-to-RMIS.pdf (accessed on 30 May 2021).
- EUROPE. A Strategy for Smart, Sustainable and Inclusive Growth. 2020. Available online: https://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%20EN%20version.pdf (accessed on 30 May 2021).
- Mintell4EU. Mineral Intelligence for Europe. Available online: https://geoera.eu/projects/mintell4eu7/ (accessed on 30 May 2021).
- Papanikolaou, D.; Lykoysis, V.; Chronis, G.; Pavlakis, P. A comparative study of neotectonic basins across the Hellenic arc: The Messiniakos, Argolikos, Saronikos and Southern Evoikos gulfs. Basin Res. 1988, 1, 167–176. [Google Scholar] [CrossRef]
- Chatoupis, T.; Fountoulis, I. The neotectonic deformation of N. Parnis Mt, (Attica, Greece). Bull. Geol. Soc. Greece 2004, 36, 1588–1597. [Google Scholar]
- Giannoulopoulos, P. Hydrogeological-Hydro-Chemical Survey of Groundwater Quality in the Wider Area of Assopos River Basin, Viotia Prefecture; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 2008; pp. 1–74. (In Greek) [Google Scholar]
- Vasilatos, C.; Megremi, I.; Economou-Eliopoulos, M.; Mitsis, I. Hexavalent chromium and other toxic elements in natural waters in the Thiva-Tanagra-Malakasa Basin, Greece. Hell. J. Geosci. 2008, 43, 57–66. [Google Scholar]
- Moraki, A. Assessment of groundwater contamination by hexavalent chromium and its remediation at Avlida area, Central Greece. Hell. J. Geosci. 2010, 45, 175–183. [Google Scholar]
- Pavlopoulos, K.; Chrisanthaki, I.; Economou-Eliopoulos, M.; Lekkas, S. Hydrochemical study of metals in the groundwater of the wider area of Koropi. In Advances in the Research of Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–176. [Google Scholar]
- Megremi, I.; Vasilatos, C.; Atsarou, A.; Theodoratou, C.; Economou-Eliopoulos, M.; Mitsis, I. Geochemical evidences for the sources of the Cr(VI) contamination in groundwater in central Euboea and Assopos-Thiva basins, Greece. Natural versus anthropogenic origin. Eur. Water 2013, 41, 23–34. [Google Scholar]
- Megremi, I.; Vasilatos, C.; Vassilakis, E.; Economou-Eliopoulos, M. Spatial diversity of Cr distribution in soil and groundwater sites in relation with land use management in a Mediterranean region: The case of C. In Evia and Assopos-Thiva basins, Greece. Sci. Total Environ. 2019, 651, 656–667. [Google Scholar] [CrossRef]
- Ellis, A.S.; Johnson, T.M.; Bullen, T.D. Chromium isotopes and the fate of hexavalent chromium in the environment. Science 2002, 295, 2060–2062. [Google Scholar] [CrossRef] [Green Version]
- Demetriades, A.; Stavrakis, P.; Vergou-Vichou, K. Contamination of surface soil of the Lavreotiki peninsula (Attiki, Greece) by mining and smelting activities. Min. Wealth 1996, 98, 7–15. [Google Scholar]
- Korre, A.; Durucan, S.; Koutroumani, A. Quantitative-spatial assessment of the risks associated with high Pb loads in soils around Lavrio, Greece. Appl. Geochem. 2002, 17, 1029–1045. [Google Scholar] [CrossRef]
- Komnitsas, K.; Modis, K. Soil risk assessment of As and Zn contamination in a coal mining region using geostatistics. Sci. Total Environ. 2006, 371, 190–196. [Google Scholar] [CrossRef]
- Gamaletsos, P.; Godelitsas, A.; Dotsika, E.; Tzamos, E.; Göttlicher, J.; Filippidis, A. Geological sources of as in the environment of Greece: A review. Threat. Qual. Groundw. Resour. 2013, 77–113. [Google Scholar] [CrossRef]
- Kampouroglou, E.; Economou-Eliopoulos, M. Natural contamination by As and heavy metals in soil, their bio-accumulation and potential sources: The case of a travertine limestone quarry, Greece. Cent. Eur. J. Geosci. 2013, 5, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Kampouroglou, E.E.; Economou-Eliopoulos, M. Assessment of arsenic and associated metals in the soil-plant-water system in Neogene basins of Attica, Greece. Catena 2017, 150, 206–222. [Google Scholar] [CrossRef]
- Morris, B.L.; Lawrence, A.R.; Chilton, P.J.; Adams, B.; Calow, R.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problems and Options for Management. Early Warning and Assessment Report Series, RS, 03–3; United Nations Environment Programme: Nairobi, Kenya, 2003. [Google Scholar]
- Schmoll, O.; Howard, G.; Chilton, P.J.; Chorus, I. (Eds.) Protecting Groundwater for Health: Managing the Quality of Drinking Water Sources; WHO/IWA: London, UK, 2006. [Google Scholar]
- Marinos, G.; Petrascheck, W.E. Lavrion. Institute for geology and subsurface research. Geol. Geophys. Res. 1956, 4, 1–247. [Google Scholar]
- Skarpelis, N.; Ardyraki, A. Geology and origin of supergene ore at the Lavrion Pb-Ag-Zn deposit, Attica, Greece. Resour. Geol. 2008, 59, 1–14. [Google Scholar] [CrossRef]
- Kalogeropoulos, S.I.; Kilias, S.P.; Bitzios, D.C.; Nicolaou, M.; Both, R.A. Genesis of the Olympias carbonate-hosted Pb-Zn (Au, Ag) sulfide ore deposit, eastern Chalkidiki peninsula, northern Greece. Econ. Geol. 1989, 84, 1210–1234. [Google Scholar] [CrossRef]
- Eldorado Gold Corporation. Resources and Reserves. Available online: www.eldoradogold.com/assets/resources-and-reserves (accessed on 29 October 2017).
- Conophagos, E.C. Le Laurium Antique et la Technique Grecque de la Production de L’argen; National Technical University: Athens, Greece, 1980; p. 458. (In French) [Google Scholar]
- Stamatis, G.; Lambrakis, N.; Alexakis, D.; Zagana, E. Groundwater quality in Mesogea basin in eastern Attica (Greece). Hydrol. Process 2006, 20, 2803–2818. [Google Scholar]
- Maravelias, C.; Hatzakis, A.; Katsouyanni, K.; Trichopoulos, D.; Koutselinis, A.; Ewers, U.; Brockhaus, A. Exposure to lead and cadmium of children living near a lead smelter at Lavrion, Greece. Sci. Total Environ. 1989, 84, 61–70. [Google Scholar] [CrossRef]
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Franklin, J.M.; Sangster, D.M.; Lydon, J.W. Volcanic-associated massive sulfide deposits. Econ. Geol. 1991, 75, 485–627. [Google Scholar]
- Economou-Eliopoulos, M.; Eliopoulos, D.G.; Chryssoulis, S. A comparison of high-Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: Genetic significance. Ore Geol. Rev. 2008, 33, 81–100. [Google Scholar] [CrossRef]
- Eliopoulos, D.; Economou-Eliopoulos, M. Geochemical and mineralogical characteristics of Fe-Ni and bauxitic-laterite deposits of Greece. Ore Geol. Rev. 2000, 16, 41–58. [Google Scholar] [CrossRef]
- Oze, C.; Bird, K.D.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef] [Green Version]
- Vithanage, M.; Kumarathilaka, P.; Oze, C.; Karunatilake, S.; Seneviratne, M.; Hseu, Z.Y.; Gunarathne, V.; Dassanayake, M.; Ok, Y.S.; Rinklebe, J. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environ. Int. 2019, 131, 104974. [Google Scholar] [CrossRef] [PubMed]
- Golightly, J.P. Progress in Understanding the Evolution of Nickel Laterites. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Richard, J.G., Erin, E.M., Thomas, M., Eds.; Special Publication of the Society of Economic Gelogists: Littleton, CO, USA, 2010; Volume 15. [Google Scholar]
- Valeton, I.; Biermann, M.; Reche, R.; Rosenberg, F. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geol. Rev. 1987, 2, 359–404. [Google Scholar] [CrossRef]
- Alevizos, G. Mineralogy, Geochemistry and Origin of the Sedimentary Fe-Ni Ores of Lokris. Ph.D. Thesis, Technical University, Crete, Greece, 1997; p. 245. [Google Scholar]
- Babechuk, M.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Ďurišová, J. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Bolaños-Benítez, V.; van Hullebusch, E.D.; Birck, J.L.; Garnier, J.; Lens, P.N.L.; Tharaud, M.; Quantin, C.; Sivry, Y. Chromium mobility in ultramafic areas affected by mining activities in Barro Alto massif, Brazil: An isotopic study. Chem. Geol. 2021, 561, 120000. [Google Scholar] [CrossRef]
- Papazotos, P.; Vasileiou, E.; Perraki, M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, Central Euboea. Greece. Environ. Monit. Assess. 2019, 191, 317. [Google Scholar] [CrossRef] [PubMed]
- Megremi, I. Controlling Factors of the Mobility and Bioavailability of Cr and Other Metals at the Environment of Ni-Laterites. Ph.D Thesis, University of Athens, Athens, Greece, 2010; p. 316. [Google Scholar]
- Atsarou, C. Distribution of Chromium and Other Heavy Metals in Groundwater, Soil and Crops at the Avlona Area, Attica: Factors Controlling Their Bioavailability. Master’s Thesis, University of Athens, Athens, Greece, 2011; p. 204. (In Greek). [Google Scholar]
- Theodoratou, C. Estimation of Contamination Due to Hexavalent Chromium and Other Heavy Metals in the Oropos Area: Interaction in the Soil-Plant-Water System. Master’s Thesis, University of Athens, Athens, Greece, 2011; p. 198. (In Greek). [Google Scholar]
- Economou-Eliopoulos, M.; Antivachi, D.; Vasilatos, C.; Megremi, I. Evaluation of the Cr(VI) and other toxic element contamination and their potential sources: The case of the Thiva basin (Greece). Geosci. Front. 2012, 3, 523–539. [Google Scholar] [CrossRef] [Green Version]
- Michalakis, I.B. Hydrogeological Research in the Industrial Plain of ELVAL Ltd. (Oinofita, Viotia): Implication to the Contamination Source Report; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 2015; pp. 1–161. (In Greek) [Google Scholar]
- Economou-Eliopoulos, M.; Frei, R.; Megremi, I. Potential leaching of Cr(VI) from laterite mines and residues of metallurgical products (red mud and slag): An integrated approach. J. Geochem. Explor. 2016, 262, 40–49. [Google Scholar] [CrossRef]
- Post, V.E.A.; Eichholz, M.; Brentführer, R. Groundwater Management in Coastal Zones; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2018; p. 107. [Google Scholar]
- Rose, W.; Hawkes, E.; Webb, S. Geochemistry in Mineral Exploration, 2nd ed.; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Fantoni, D.; Brozzo, G.; Canepa, M.; Cipolli, F. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Geol. 2002, 42, 871–882. [Google Scholar] [CrossRef]
- Purnama, S.; Marfai, M.A. Saline Water Intrusion Toward Groundwater: Issues and Its Control. J. Nat. Resour. Dev. 2012, 2, 25–32. [Google Scholar]
- DiGiulio, D.C.; Jackson, R.B. Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, field. Environ. Sci. Technol. 2016, 50, 4524–4536. [Google Scholar] [CrossRef]
- Lund, J.W. Geothermal Spas in Czechoslovakia. Geo-Heat Center Quart. Bull. 1990, 12, 20–24. [Google Scholar]
- Fytikas, M.; Andritsos, N.; Karydakis, G.; Kolios, N.; Mendrinos, D.; Papachristou, M. Geothermal exploration and development activities in Greece during 1995–1999. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 199–208. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Tyrovola, K.; Nikolaidis, N.P.; Veranis, N.; Kallithrakas-Kontos, N.; Koulouridakis, P.E. Arsenic removal from geothermal waters with zero-valent iron—Effect of temperature, phosphate and nitrate. Water Res. 2006, 40, 2375–2386. [Google Scholar] [CrossRef]
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct utilization of geothermal energy 2010 worldwide review. In Proceedings of the World Geothermal Congress 2010 (CD-ROM), Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Katsoyiannis, I.A.; Mitrakas, A.; Zouboulis, A.I. Arsenic occurrence in Europe: Emphasis in Greece and description of the applied full-scale treatment plants. Desalination Water Treat. 2015, 54, 2100–2107. [Google Scholar] [CrossRef]
- Kanellopoulos, C. Influence of ultramafic rocks and hot springs with travertine depositions on geochemical composition and baseline of soils. Application to eastern central Greece. Geoderma 2020, 380, 114649. [Google Scholar] [CrossRef]
- Wilkie, J.A.; Hering, J.G. Rapid oxidation of geothermal arsenic (III) in stream waters of the eastern Sierra Nevada. Environ. Sci. Technol. 1998, 32, 657–662. [Google Scholar] [CrossRef]
- Langner, H.W.; Jackson, C.R.; McDermott, T.R.; Inskeep, W.P. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 2001, 35, 3302–3309. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Tzollas, N.M.; Tolkou, A.K.; Mitrakas, M.; Ernst, M.; Zouboulis, A.I. Use of novel composite coagulants for arsenic removal from waters—Experimental insight for the application of polyferric sulfate (PFS). Sustainability 2017, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Golfinopoulos, S.K.; Varnavas, S.P.; Alexakis, D.E. The Status of Arsenic Pollution in the Greek and Cyprus Environment: An Overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Frei, R.; Atsarou, C. Application of chromium stable isotopes to the evaluation of Cr (VI) contamination in groundwater and rock leachates from central Euboea and the Assopos basin (Greece). Catena 2014, 122, 216–228. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Mitropoulos, P.; Valsami-Jones, E.; Voudouris, P. A new terrestrial active mineralising hydrothermal system associated with ore-bearing travertines in Greece (northern Euboea Island and Sperchios area). J. Geochem. Explor. 2017, 179, 9–24. [Google Scholar] [CrossRef]
- Sanjuan, B.; Negrel, G.; Le Lous, M.; Poulmarch, E.; Gal, F.; Damy, P.C. Main geochemical characteristics of the deep geothermal brine at Vendenheim (Alsace, France) with constraints on temperature and fluid circulation. In World Geothermal Congress; CCSD: Rekjavik, Iceland, 2020. [Google Scholar]
- Sanjuan, B.; Millot, R.; Innocent, C.; Dezayes, C.; Scheiber, J.; Brach, M. Main geochemical characteristics of geothermal brines collected from the granite basement in the upper Rhine Graben and constraints on their deep temperature and circulation. Chem. Geol. 2016, 428, 27–47. [Google Scholar] [CrossRef]
- Kumar, M. An approach towards green alumina refinery and sustainable development. Travaux 2011, 36, 11–22. [Google Scholar]
- Bray, E.L. Bauxite and alumina. In Min. Eng.; 2010; 62, pp. 40–41, USGS Publications Warehouse. Available online: http://pubs.er.usgs.gov/publication/70044852 (accessed on 30 May 2021).
- Balomenos, E.; Gianopoulou, I.; Panias, D.; Paspaliaris, I.; Perry, K.; Boufounos, D. Efficient and complete exploitation of the bauxite residue (red mud) produced in the Bayer process. In Proceedings of the EMC, Düsseldorf, Germany, 26–29 June 2011; pp. 745–758. [Google Scholar]
- Power, G.; Graefe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar] [CrossRef]
- Eliopoulos, D.G.; Economou-Eliopoulos, M.; Apostolikas, A.; Golightly, J.P. Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geol. Rev. 2012, 48, 413–427. [Google Scholar] [CrossRef]
- Alevizos, G. Mineralogische und erzmikroskopische Untersuchung an Eisennickelerzen des Vorkommens von Marmeiko (Lokris-Griechenland). Ber. Deutsch. Mineral. Ges. Beih. Eur. J. Mineral. 1999, 11, 18. [Google Scholar]
- Zevgolis, M.N.; Georgakellos, N.; Spyropoulos, P. Ferrous Metals and Ferroalloys in Greece. Present State and Perspective. 1999. In Proceedings of the Conference, Metallurgy of Balkan Countries, Metallurgy of Ferous Metals of Balkan Countries, Volume No. 1 Sofia, Bulgari. Available online: https://www.researchgate.net/profile/Emmanouil-Zevgolis/publication/320979810_Ferrous_Metals_and_Ferroalloys_in_Greece_Present_State_and_Perspective/links/5a057cbf0f7e9bc40794e2e6/Ferrous-Metals-and-Ferroalloys-in-Greece-Present-State-and-Perspective.pdf (accessed on 30 May 2021).
- Wazne, M.; Jagupilla, S.C.; Moon, D.H.; Christodoulatos, C.; Koutsospyros, A. Leaching mechanisms of Cr(VI) from chromite ore processing residue. J. Environ. Qual. 2008, 37, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Chrysochoou, M.; Dermatas, D.; Moon, D.H.; Christodoulatos, C. Reductive treatment of Chromite Ore Processing Residue (COPR): Lessons from a field study. In Proceedings of the GeoCongress 2008: Geotechnics of Waste Management and Remediation, New Orleans, LA, USA, 9–12 March 2008; pp. 748–755. [Google Scholar]
- Tsioptsias, C.; Samiotis, G.; Lefteri, L.; Amanatidou, E. Cr(VI) Leached from Lignite Fly Ash—Assessment of Groundwater Contamination Risk. Water Air Soil Pollut. 2020, 231, 373. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Roumpos, C.; Karlopoulos, E.; Koukouzas, N. Sustainable Rehabilitation of Surface Coal Mining Areas: The Case of Greek Lignite Mines. Energies 2020, 13, 3995. [Google Scholar] [CrossRef]
- Christanis, K.; Georgakopoulos, A.; Fernandez-Turiel, J.L.; Bouzinos, A. Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. Int. J. Coal Geol. 1998, 36, 295–313. [Google Scholar] [CrossRef]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A. Leachability of major and trace elements of fly ash from Ptolemais power station, Northern Greece. Energy Sources 2002, 24, 103–113. [Google Scholar] [CrossRef]
- Veranis, N.; Nimfopoulos, M.K.; Gertsis, A.; Gerouki, F. Agricultural and industrial applications of the hellenic fly ash and environmental impacts. In Proceedings of the 19th International Congress Industrial Minerals, Athens, Greek, 30 March–2 April 2008. [Google Scholar]
- Kazakis, N.; Mattas, C.; Pavlou, A.; Patrikaki, O.; Voudouris, K. Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes. Environ. Earth Sci. 2017, 76, 349. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Expounding the origin of chromium in groundwater of the Sarigkiol basin, Western Macedonia, Greece: A cohesive statistical approach and hydrochemical study. Environ. Monit. Assess. 2019, 191, 509. [Google Scholar] [CrossRef] [PubMed]
- Blagoeva, D.T.; Alves Dias, P.; Marmier, A.; Pavel, C.C. Assessment of Potential Bottlenecks Along the Materials Supply Chain for the Future Deployment of Low-Carbon Energy and Transport Technologies in the EU. Wind Power, Photovoltaic and Electric Vehicles Technologies, Time Frame: 2015–2030; JRC Science for Policy Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. Des. Sci. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Cassard, D.; Lips, A.L.W.; Leistel, J.M.; Itard, Y.; Debeglia-Marchand, N.; Guillou-Frottier, L.; Spakman, W.; Stein, G.; Husson, Y. Understanding and assessing European mineral resources—A new approach using GIS Central Europe. Schweiz. Mineral. Petrogr. Mitt. 2004, 84, 3–24. [Google Scholar]
- Pontikes, Y.; Rathossi, C.; Nikolopoulos, P.; Angelopoulos, G.N.; Jayaseelan, D.D.; Lee, W.E. Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceram. Int. 2009, 35, 401–407. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; van Gerven, T.; Pontikes, Y. Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Min. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Gamaletsos, P. Mineralogy and Geochemistry of Bauxites from Parnassos-Ghiona Mines and the Impact on the Origin of the Deposits. Ph.D. Thesis, University of Athens, Athens, Greece, 2014; p. 347. [Google Scholar]
- Bergman, R.A. Nickel production from low-iron laterite ores: Process descriptions. CIM Bull. 2003, 96, 127–138. [Google Scholar]
- Sharma, S.; Singh, R.; Nielson, G.G. Selenium in soil, plant, and animal systems. Crit. Rev. Environ. Sci. Technol. 1983, 13, 23–50. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, andmitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, J.; Tang, Y.; Shi, H.; Ladwig, K. Leaching Characteristics of Arsenic and Selenium from Coal Fly Ash: Role of Calcium. Energy Fuels 2009, 23, 2959–2966. [Google Scholar] [CrossRef]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Zhang, Z.; Wang, J.J. Influence of humic substances on bio-availability of Cu and Zn during sewage sludge composting. Bioresour. Technol. 2011, 102, 8022–8026. [Google Scholar] [CrossRef]
- Raptis, S.; Gasparatos, D.; Economou-Eliopoulos, M.; Petridis, A. Chromium uptake by lettuce as affected by the application of organic matter and Cr (VI)-irrigation water: Implications to the land use and water management. Chemosphere 2018, 210, 597–606. [Google Scholar] [CrossRef]
- Cavani, L.; Ciavatta, C.; Gessa, C. Identification of organic matter from peat, leonardite and lignite fertilisers using humification parameters and electro-focusing. Bioresour. Technol. 2003, 86, 45–52. [Google Scholar] [CrossRef]
- Levy, D.; Fogelman, E.; Itzhak, Y. The effect of water salinity on potatoes (Solanum tuberosum L.): Physiological indices and yielding capacity. Potato Res. 1988, 31, 601–610. [Google Scholar] [CrossRef]
- Rhoades, S.A. The efficiency effects of horizontal bank mergers. J. Bank. Financ. 1993, 17, 411–422. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; p. 550. [Google Scholar]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Rai, D.; Eary, L.E.; Zachara, J.M. Environmental chemistry of chromium. Sci. Total Environ. 1989, 86, 15–23. [Google Scholar] [CrossRef]
- Frei, R.; Gaucher, C.; Poulton, S. Canfield, D.E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 2009, 461, 250–253. [Google Scholar] [CrossRef]
- Døssing, L.N.; Dideriksen, K.; Stipp, S.L.S.; Frei, R. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments. Chem. Geol. 2011, 285, 157–166. [Google Scholar] [CrossRef]
- Frei, R.; Gaucher, C.; Døssing, L.N.; Sial, A.N. Chromium isotopes in carbonates—A tracer for climate change and for reconstructing the redox state of ancient seawater. Earth Planet. Sci. Lett. 2011, 312, 114–125. [Google Scholar] [CrossRef]
- Bauer, K.W.; Cole, D.B.; Asael, D.; Francois, R.; Calvert, S.E.; Poulton, S.W.; Planavsky, N.J.; Crowe, S.A. Chromium isotopes in marine hydrothermal sediments. Chem. Geol. 2019, 529, 119286. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Schauble, E.A. Applying Stable Isotope Fractionation Theory to New Systems. Rev. Mineral. Geochem. 2004, 55, 65–111. [Google Scholar] [CrossRef]
- Schoenberg, R.; Zink, S.; Staubwasser, M.; von Blanckenburg, F. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem. Geol. 2008, 249, 294–306. [Google Scholar] [CrossRef]
- Eary, L.E.; Rai, D. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ. Sci. Technol. 1987, 21, 1187–1193. [Google Scholar] [CrossRef]
- Slejko, F.F.; Petrini, R.; Lutman, A.; Forte, C.; Ghezzi, L. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy. Isot. Environ. Health Stud. 2019, 55, 56–59. [Google Scholar] [CrossRef]
- Cucchi, F.; Franceschini, G.; Zini, L. Hydrochemical investigations and groundwater provinces of the Friuli Venezia Giulia Plain aquifers, northeastern Italy. Environ. Geol. 2008, 55, 985–999. [Google Scholar] [CrossRef]
- Pettine, M.; Millero, F.J.; La Noce, T. Chromium(III) interactions in seawater through its oxidation kinetics. Mar. Chem. 1991, 34, 29–46. [Google Scholar] [CrossRef]
- Xie, B.; Shan, C.; Xu, Z.; Li, X.; Zhang, X.; Chen, J.; Pan, B. One-step Removal of Cr(VI) at Alkaline pH by UV/sulfiteProcess: Reduction to Cr(III) and in situ Cr(III) Precipitation. Chem. Eng. J. 2017, 308, 791–797. [Google Scholar] [CrossRef]
- Eliopoulos, I.P.; Eliopoulos, G.D.; Economou-Eliopoulos, M. The Cr(VI) stability in contaminated coastal groundwater: Salinity as a driving force. Minerals 2021, 11, 160. [Google Scholar] [CrossRef]
- Riveraa, J.; Reicha, M.; Schoenbergb, R.; Gonzalez-Jimenezc, J.M.; Barraa, F.; Aiglspergerd, T.; Proenzae, J.A.; Carretier, S. Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks. Chem. Geol. 2018, 499, 84–99. [Google Scholar] [CrossRef]
- Novak, M.; Chrastny, V.; Cadkova, E.; Farkas, J.; Bullen, T.D.; Tylcer, J.; Szurmanova, Z.; Cron, M.; Prechova, E.; Curik, J.; et al. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values. Environ. Sci. Technol. 2014, 48, 6089–6096. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Martinkova, E.; Chrastny, V.; Stepanova, M.; Sebek, O.; Andronikov, A.; Curik, J.; Veselovsky, F.; Prechova, E.; Houskova, M. The fate of Cr(VI) in contaminated aquifers 65 years after the first spillage of plating solutions: A δ53Cr study at four Central European sites. Catena 2017, 158, 371–380. [Google Scholar] [CrossRef]
- Koilakos, D. Aspects of hexavalent chromium pollution of Thebes Plain Aquifer, Boeotia, Greece. Water 2017, 9, 611. [Google Scholar] [CrossRef] [Green Version]
- Economou-Eliopoulos, M.; Megremi, I.; Vasilatos, C.; Frei, R.; Mpourodimos, I. Geochemical constraints on the sources of Cr(VI) contamination in waters of Messapia (Central Evia) Basin. Appl. Geochem. 2017, 84, 13–25. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Wright, M.T.; Seymour, W.A.; McCleskey, R.B.; Fram, M.S.; Belitz, K.; Esser, B.K. Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Appl. Geochem. 2015, 63, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.C.; Demetriades, A. Urban geochemical mapping: A review of case studies in this volume. Chapter 2. In Mapping the Chemical Environment of Urban Areas; Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 7–27. [Google Scholar]
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef] [PubMed]
Index | wt% | mg/kg | Index | wt% | mg/kg | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Location | UMIA | MnO | Cr | Ni | Co | Location | UMIA | MnO | Cr | Ni | Co |
Kastoria | C. Greece, Lokris | 52 | 0.18 | 3350 | 13,300 | 280 | |||||
Weathered peridotites | Laterites of karst type | 69.4 | 0.12 | 26,960 | 4790 | 220 | |||||
Ka-2 | 1.4 | 0.05 | 120 | 17,000 | 50 | 77.4 | 0.27 | 40,570 | 5400 | 280 | |
Ka-3 | 6.9 | 0.08 | 1500 | 23,000 | 180 | 70.2 | 0.13 | 20,190 | 58,900 | 280 | |
Fe-Ni-Laterites | 83.6 | 0.33 | 20,190 | 2360 | 280 | ||||||
Ka-4 | 54.7 | 0.95 | 16,000 | 8500 | 1600 | 85.1 | 1.57 | 20,340 | 6120 | 283 | |
Ka-4b | 69.3 | 0.88 | 23,000 | 10,500 | 1200 | 87.8 | 0.58 | 26,960 | 5180 | 219 | |
Ka-5 | 98.4 | 0.25 | 20,000 | 8000 | 330 | 95.1 | 0.17 | 38,800 | 4320 | 280 | |
Ka-6 | 93.4 | 1.7 | 15,000 | 9100 | 820 | 77.4 | 0.5 | 32,300 | 13,500 | 281 | |
Ka-7 | 93.0 | 0.79 | 23,000 | 7100 | 420 | 67.8 | 0.24 | 19,840 | 8280 | 286 | |
Ka-8 | 94.6 | 0.3 | 17,000 | 4400 | 330 | 77.1 | 0.31 | 14,650 | 3690 | 280 | |
W. Vermion | 83.2 | 0.27 | 27,800 | 3700 | 280 | ||||||
Weathered peridotites | 59.6 | 0.07 | 19,000 | 4630 | 278 | ||||||
PR-1 | 20 | 0.24 | 5800 | 5500 | 300 | 76.2 | 0.13 | 23,100 | 13,400 | 280 | |
PR-2 | 12 | 0.11 | 2500 | 2200 | 200 | C. Evia (Psachna) | |||||
PR-3 | 18 | 0.23 | 3500 | 4100 | 200 | Soils | 19.7 | 0.11 | 1080 | 650 | 41 |
PR-4 | 18 | 0.18 | 3300 | 4700 | 200 | 18.7 | 0.09 | 1180 | 670 | 40 | |
P-p | 14 | 0.1 | 3800 | 3100 | 240 | 18.8 | 0.11 | 2090 | 1120 | 62 | |
Laterites | 20.2 | 0.12 | 1500 | 810 | 52 | ||||||
PR-5 | 87 | 0.97 | 21,900 | 15,000 | 1300 | 13.6 | 0.1 | 1850 | 1300 | 66 | |
PR-6 | 79 | 0.61 | 12,900 | 6900 | 700 | 23.9 | 0.15 | 2200 | 1280 | 76 | |
WV4 | 51 | 0.41 | 11,500 | 10,200 | 500 | 24.1 | 0.16 | 1760 | 1630 | 88 | |
WV5 | 36 | 0.33 | 11,400 | 9500 | 400 | 20.9 | 0.12 | 1530 | 700 | 45 | |
WV6 | 78 | 0.62 | 11,000 | 7800 | 820 | 22.2 | 0.13 | 1230 | 820 | 52 | |
Bauxite laterites | 18.1 | 0.1 | 1640 | 730 | 45 | ||||||
P-1 | 47 | 0.37 | 5500 | 5200 | 400 | 21.1 | 0.13 | 1650 | 780 | 52 | |
P-2 | 80 | 0.41 | 4400 | 5200 | 320 | 17.9 | 0.11 | 1650 | 650 | 41 | |
P-3 | 81 | 0.24 | 3800 | 6400 | 400 | 21.6 | 0.12 | 1460 | 730 | 48 | |
P-4 | 81 | 0.36 | 4100 | 4200 | 400 | 18.4 | 0.11 | 1640 | 860 | 50 | |
P-5 | 82 | 0.26 | 3600 | 4200 | 400 | 23.7 | 0.13 | 1330 | 720 | 52 | |
P-6 | 17 | 0.31 | 1900 | 2000 | 200 | 16.7 | 0.09 | 1720 | 600 | 38 |
mg/kg | |||||
---|---|---|---|---|---|
Metals | Range | Mean | Normal | Deficient | Excesive |
Cr | 0.3–200 | 27 | 0.1–0.5 | _ | 5–210 |
Ni | 4–210 | 50 | 0.1–5 | _ | 10–100 |
Mn | 8–190 | 65 | 30–300 | 0–30 | 400–1000 |
Co | 0.5–15 | 7 | 10 | _ | 50–69 |
Zn | 28–380 | 50 | 27–150 | 0–20 | 100–400 |
Fe | 28–3000 | 780 | _ | _ | 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Economou-Eliopoulos, M.; Megremi, I. Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities. Minerals 2021, 11, 775. https://doi.org/10.3390/min11070775
Economou-Eliopoulos M, Megremi I. Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities. Minerals. 2021; 11(7):775. https://doi.org/10.3390/min11070775
Chicago/Turabian StyleEconomou-Eliopoulos, Maria, and Ifigeneia Megremi. 2021. "Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities" Minerals 11, no. 7: 775. https://doi.org/10.3390/min11070775
APA StyleEconomou-Eliopoulos, M., & Megremi, I. (2021). Contamination of the Soil–Groundwater–Crop System: Environmental Risk and Opportunities. Minerals, 11(7), 775. https://doi.org/10.3390/min11070775