Influence of Amino Acids on the Mobility of Iodide in Hydrocalumite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of I-Hydrocalumite
2.3. Reaction with Amino Acids
2.4. Chemical Analysis and Solid Characterization
2.5. DFT Simulation
3. Results and Discussion
3.1. Characterizations of Pristine I-Hydrocalumite
3.2. Effects of Amino Acids on Releasing of I− from I-Hydrocalumite in Alkaline Solutions
3.3. Behavior of Amino Acids in I-Hydrocalumite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avalos, N.M.; Varga, T.; Mergelsberg, S.T.; Silverstein, J.A.; Saslow, S.A. Behavior of iodate substituted ettringite during aqueous leaching. Appl. Geochem. 2021, 125, 104863. [Google Scholar] [CrossRef]
- Leisinger, S.M.; Lothenbach, B.; Le Saout, G.; Johnson, C.A. Thermodynamic modeling of solid solutions between monosulfate and monochromate 3CaO·Al2O3·Ca[(CrO4)x(SO4)1−x]·nH2O. Cem. Concr. Res. 2012, 42, 158–165. [Google Scholar] [CrossRef]
- Guo, B.; Xiong, Y.; Chen, W.; Saslow, S.A.; Kozai, N.; Ohnuki, T.; Dabo, I.; Sasaki, K. Spectroscopic and first-principles investigations of iodine species incorporation into ettringite: Implications for iodine migration in cement waste forms. J. Hazard. Mater. 2020, 389, 121880. [Google Scholar] [CrossRef]
- Toyohara, M.; Kaneko, M.; Ueda, H.; Mitsutsuka, N.; Fujihara, H.; Murase, T.; Saito, N. Iodine sorption onto mixed solid alumina cement and calcium compounds. J. Nucl. Sci. Technol. 2000, 37, 970–978. [Google Scholar] [CrossRef]
- Toyohara, M.; Kaneko, M.; Mitsutsuka, N.; Fujihara, H.; Saito, N.; Murase, T. Contribution to understanding iodine sorption mechanism onto mixed solid alumina cement and calcium compounds. J. Nucl. Sci. Technol. 2002, 39, 950–956. [Google Scholar] [CrossRef]
- Gao, H.; Cao, R.; Xu, X.; Xue, J.; Zhang, S.; Hayat, T.; Alharbi, N.S.; Li, J. Surface area-and structure-dependent effects of LDH for highly efficient dye removal. ACS Sustain. Chem. Eng. 2018, 7, 905–915. [Google Scholar] [CrossRef]
- Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. 2003, 729, 3–128. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, L.; Walther, C.; Medina, F.; Hölzer, A.; Neumann, A.; Lozano-Rodriguez, M.J.; Álvarez, M.G.; Torapava, N. A comprehensive study on iodine uptake by selected LDH phases via coprecipitation, anionic exchange and reconstruction. J. Radioanal. Nucl. Chem. 2016, 307, 111–121. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Iodide removal using LDH technology. Chem. Eng. J. 2016, 296, 300–309. [Google Scholar] [CrossRef]
- Haruguchi, Y.; Higuchi, S.; Obata, M.; Sakuragi, T.; Takahashi, R.; Owada, H. A study on Iodine Release Behavior from Iodine-Immobilizing Cement Solid. MRS Online Proc. Libr. 2013, 1518, 85–90. [Google Scholar] [CrossRef]
- Atkins, M.; Glasser, F.P.; Kindness, A. Cement hydrate phase: Solubility at 25 °C. Cem. Concr. Res. 1992, 22, 241–246. [Google Scholar] [CrossRef]
- Ochs, M.; Mallants, D.; Wang, L. Radionuclide and Metal Sorption on Cement and Concrete; Springer: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Aimoz, L.; Wieland, E.; Taviot-Guého, C.; Dähn, R.; Vespa, M.; Churakov, S.V. Structural insight into iodide uptake by AFm phases. Environ. Sci. Technol. 2012, 46, 3874–3881. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.L.; Zhang, M.; Hu, Q.H.; Huang, Y.Z.; Wang, R.Q.; Zhu, Y.G. Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma 2009, 153, 130–135. [Google Scholar] [CrossRef]
- Emerson, H.P.; Xu, C.; Ho, Y.; Zhang, S.; Schwehr, K.A.; Lilley, M.; Kaplan, D.I.; Santschi, P.H.; Powell, B.A. Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments. Appl. Geochem. 2014, 45, 105–113. [Google Scholar] [CrossRef]
- Xu, C.; Kaplan, D.I.; Zhang, S.; Athon, M.; Ho, Y.; Li, H.; Yeager, C.M.; Schwehr, K.A.; Grandbois, R.; Wellman, D. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site. J. Environ. Radioactiv. 2015, 139, 43–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zhou, H.; Wang, Y.; Xie, X.; Qian, K. Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes. J. Contam. Hydrol. 2017, 201, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Nedyalkova, L.; Lothenbach, B.; Geng, G.; Mäder, U.; Tits, J. Uptake of iodide by calcium aluminate phases (AFm phases). Appl. Geochem. 2020, 116, 104559. [Google Scholar] [CrossRef]
- Gao, K.; Chen, G.; Wu, D. A DFT study on the interaction between glycine molecules/radicals and the (8, 0) SiCNT. Phys. Chem. Chem. Phys. 2014, 16, 17988–17997. [Google Scholar] [CrossRef]
- Ma, B.; Fernandez-Martinez, A.; Grangeon, S.; Tournassat, C.; Findling, N.; Claret, F.; Koishi, A.; Marty, N.C.; Tisserand, D.; Bureau, S. Evidence of multiple sorption modes in layered double hydroxides using Mo as structural probe. Environ. Sci. Technol. 2017, 51, 5531–5540. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernzerhof, M.; Perdew, J.P.; Burke, K. Coupling-constant dependence of atomization energies. Int. J. Quantum Chem. 1998, 64, 285–295. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- William, D.C. Fundamentals of Materials Science and Engineering: An Interactive; Wiley: London, UK, 2001. [Google Scholar]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Sacerdoti, M.; Passaglia, E. Hydrocalumite from Latium, Italy: Its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte 1988, 10, 462–475. [Google Scholar]
- Ong, S.P.; Richards, W.D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.L.; Persson, K.A.; Ceder, G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Sánchez-Herrero, M.J.; Fernández-Jiménez, A.; Palomo, A. Alkaline hydration of tricalcium aluminate. J. Am. Chem. Soc. 2012, 95, 3317–3324. [Google Scholar] [CrossRef]
- Rapin, J.P.; Walcarius, A.; Lefevre, G.; Francois, M. A double-layered hydroxide, 3CaO·Al2O3·CaI2·10H2O. Acta Crystallogr. Sect. C Cryst. Struct.Commun. 1999, 55, 1957–1959. [Google Scholar] [CrossRef]
- Ching, C.; Hidajat, K.; Uddin, M. Evaluation of equilibrium and kinetic parameters of smaller molecular size amino acids on KX zeolite crystals via liquid chromatographic techniques. Sep. Sci. Technol. 1989, 24, 581–597. [Google Scholar] [CrossRef]
- Weast, C.; Astle, M. Handbook of Chemistry and Physics; Table D-190; CRC Press: Boca Raton, FL, USA, 1979. [Google Scholar]
- Nölting, B. Physical Interactions That Determine the Properties of Proteins; Springer: Berlin, Germany, 2006. [Google Scholar]
- Silvério, F.; Dos Reis, M.J.; Tronto, J.; Valim, J.B. Sorption of aspartic and glutamic aminoacids on calcined hydrotalcite. SpringerPlus 2013, 2, 211. [Google Scholar] [CrossRef] [Green Version]
- Khenifi, A.; Derriche, Z.; Mousty, C.; Prévot, V.; Forano, C. Adsorption of glyphosate and glufosinate by Ni2AlNO3 layered double hydroxide. Appl. Clay Sci. 2010, 47, 362–371. [Google Scholar] [CrossRef]
- Choi, W.; Ghorpade, P.A.; Kim, K.; Shin, J.; Park, J. Properties of synthetic monosulfate as a novel material for arsenic removal. J. Hazard. Mater. 2012, 227, 402–409. [Google Scholar] [CrossRef]
- Yan, D.; Lu, J.; Wei, M.; Ma, J.; Evans, D.G.; Duan, X. A combined study based on experiment and molecular dynamics: Perylene tetracarboxylate intercalated in a layered double hydroxide matrix. Phys. Chem. Chem. Phys. 2009, 11, 9200–9209. [Google Scholar] [CrossRef]
- Grégoire, B.; Erastova, V.; Geatches, D.L.; Clark, S.J.; Greenwell, H.C.; Fraser, D.G. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals. Geochim. Cosmochim. Acta 2016, 176, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Zhang, C.; He, M.; Lu, X. Interlayer structures and dynamics of arsenate and arsenite intercalated layered double hydroxides: A first principles study. Minerals 2017, 7, 53. [Google Scholar] [CrossRef] [Green Version]
LDHs | Chemical Formula | Ca/mmol⋅g−1 | Al/mmol⋅g−1 | I/mmol⋅g−1 | Ca/Al |
---|---|---|---|---|---|
I-hydrocalumite | Ca6.0⋅Al3.2⋅(OH)18⋅(I)2.19‧6H2O | 6.0 | 3.2 | 2.19 | 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Akamatsu, H.; Sasaki, K. Influence of Amino Acids on the Mobility of Iodide in Hydrocalumite. Minerals 2021, 11, 836. https://doi.org/10.3390/min11080836
Wang M, Akamatsu H, Sasaki K. Influence of Amino Acids on the Mobility of Iodide in Hydrocalumite. Minerals. 2021; 11(8):836. https://doi.org/10.3390/min11080836
Chicago/Turabian StyleWang, Mengmeng, Hirofumi Akamatsu, and Keiko Sasaki. 2021. "Influence of Amino Acids on the Mobility of Iodide in Hydrocalumite" Minerals 11, no. 8: 836. https://doi.org/10.3390/min11080836
APA StyleWang, M., Akamatsu, H., & Sasaki, K. (2021). Influence of Amino Acids on the Mobility of Iodide in Hydrocalumite. Minerals, 11(8), 836. https://doi.org/10.3390/min11080836