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Abstract: A major problem in the post-inversion geophysical interpretation is the extraction of geo-
logical information from inverted physical property models, which do not necessarily represent all
underlying geological features. No matter how accurate the inversions are, each inverted physical
property model is sensitive to limited aspects of subsurface geology and is insensitive to other
geological features that are otherwise detectable with complementary physical property models.
Therefore, specific parts of the geological model can be reconstructed from different physical property
models. To show how this reconstruction works, we simulated a complex geological system that
comprised an original layered Earth model that has passed several geological deformations and
alteration overprints. Linear combination of complex geological features comprised three physical
property distributions: electrical resistivity, induced polarization chargeability, and magnetic suscep-
tibility models. This study proposes a multivariate feature extraction approach to extract information
about the underlying geological features comprising the bulk physical properties. We evaluated
our method in numerical simulations and compared three feature extraction algorithms to see the
tolerance of each method to the geological artifacts and noises. We show that the fast-independent
component analysis (Fast-ICA) algorithm by negentropy maximization is a robust method in the geo-
logical feature extraction that can handle the added unknown geological noises. The post-inversion
physical properties were also used to reconstruct the underlying geological sources. We show that
the sharpness of the inverted images is an important constraint on the feature extraction process.
Our method successfully separates geological features in multiple 3D physical property models.
This methodology is reproducible for any number of lithologies and physical property combinations
and can recover the latent geological features, including the background geological patterns from
overprints of chemical alteration.

Keywords: feature extraction; independent component analysis; 3D inversion; physical properties

1. Introduction

Integrated imaging methods provide a high potential for precise detection and char-
acterization of mineral deposits [1]. However, identifying distinct geological features is
often very difficult and usually demands a detailed knowledge of prior petrophysical
information, which is a piece of costly information during the early stages of an exploration
program [1]. Therefore, inferring geological information from multiple physical property
models without incorporating prior information adds value to pre-drilling decision-making
assessments [1–6]. Nonetheless, the complex and irregular structures of the mineral de-
posits lead to difficulties in the conventional 3D imaging methods. The overlap of physical
properties between different rock units is a common characteristic of mineralization sys-
tems, and in most cases, additional chemical alteration heterogeneously overprints the
whole system and eventually changes the bulk physical properties of rocks [1,2].

The current numerical advances are focused mainly on the inversion methodologies to
tackle the problem of non-uniqueness of the recovered physical properties through various
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methods such as borehole constrained inversion [3–6], cooperative inversion [7,8], and joint
inversion methods [9–13]. Though it is essential to recover accurate 3D physical property
models, a more fundamental phenomenon has remained untouched: the interdependency
of physical properties and their relation to the underlying geological factors. The question
is how efficiently one can reduce the effect of the physical properties’ overlap in the
underlying complex multicomponent geological systems, to uncover the hidden geological
features from multiple interdependent geophysical images.

This study explores a 3D implementation of independent component analysis (ICA)
to extract the underlying 3D geological features hidden inside multiple layers of 3D
geophysical images. The ICA algorithm in this study incorporates higher-order statistics to
separate a set of modeled images (physical properties) into the independent components
(geological features) without the need for further preliminary information.

ICA is an active and interdisciplinary research topic [14–17] with numerous applica-
tions in research areas such as remote sensing [18–21], medical imaging [22–24], and image
processing [25,26]. In geophysical research, the applications are mainly dedicated to the
exploration of seismology to handle the multidimensionality of seismic data and reduce
the unwanted seismic artifacts from raw data [27] or extract useful frequency features from
processed seismic data [28]. Therefore, the applications of ICA in geophysics are mostly
data-based, rather than model-based, implementations.

In this work, we used a 3D model-based implementation of ICA, or post-inversion
ICA, in which we viewed the lithological interpretation of inverted geophysical images
as a blind source separation problem. We propose an unmixing scheme that is based
on kurtosis and negentropy maximization principles. Our model-based ICA assumes
several underlying factors are responsible for the outputs of physical properties in each 3D
voxel cell. For example, the results of 3D inversion of three geophysical methods can be
expressed as three cell-based physical property models. These three models have some
correlations and dependencies that permeate the latent information from one space into
another. The ICA helps reduce the effect of this information leakage and lets each 3D
model characterize a unique representation of its underlying patterns that otherwise are
buried within large sets of model parameters. Our ICA algorithm statistically separates the
physical properties of rocks into independent components that are optimal approximations
of the hidden geological features. This study shows how the proposed feature extraction
scheme increases the accuracy of 3D geological interpretations, and how inversion artifacts
influence the robustness of the feature extraction procedure.

First, we simulated the interdependency between physical properties, including
magnetic susceptibility (χ), electrical resistivity (ρ), and induced polarization chargeability
(m) due to varying sensitivities of geophysical methods to the source geological features.
Then, we maximized the non-Gaussianity of inverted geophysical images through different
high-order statistical methods to recover the hidden geological features responsible for
the physical properties. Finally, we evaluated the geological information loss due to the
inversion of surface geophysical responses.

2. Materials and Methods
2.1. Theoretical Background

Geologists define specific assemblages of minerals as different lithotypes to differ-
entiate rocks in different macroscopic scales. However, geophysicists need to interpret
geophysical signals to recover physical property distributions that are usually linked to
the underlying geological patterns. Each physical property highlights different geological
features and can be mapped by relevant geophysical methods. This section demonstrates a
methodology to simulate the conversion of information from underground lithologies to
physical properties and then to the measured geophysical signals on the surface. Then, we
explain a reverse procedure to model these signals and recover an approximated image of
the physical properties. Then, we use a source separation method to retrieve the underlying
geological features from the modeled physical properties.
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A linear non-Gaussian mixing model was used in this study to create physical property
images (Pj) from non-Gaussian independent lithological data (Li) with an additional non-
Gaussian geological noise (PNoise) as follows:

Pj = ∑ aijLi + PNoise (1)

where i = 1, 2, . . . , n denotes the number of the latent variables (geological features) and
j = 1, 2, . . . , m denotes the number of physical properties, and aij are the mixing weights.
For simplicity, we used a mixing model where m = n. A three-component model (n = m = 3)
was used for the mixing process in this study. When there is a one-to-one relationship
between physical properties and the underlying lithotypes, aij appears as an identity
matrix. In this simple case, we can easily interpret geophysical models mapping exact
geological features. However, the mixing process often has complicated forms since each
geophysical method is sensitive to one or more aspects of hidden geological factors. This
linear mixing petrophysical model helps us to simulate the overlap of physical properties
for different geological features. Depending on the sensitivity of each physical property
model (P1, P2, P3), different combinations of geological features (L1, L2, L3) comprise the
3D bulk physical property models. The problem is to find a separation matrix (wij) that
tends to unmix the physical properties (Pj) to recover the source geological features (Li).

Equation (2) is the general formulation of a feature extraction process that eliminates or at
least reduces the effect of physical property overlaps. This has crucial importance in exploring
mineral targets with complex hydrothermal alteration patterns overprinted on background
geology. Efficient estimation of the separation matrix enables us to separate different geological
features, such as host rocks, from different episodes of hydrothermal alterations.

Li = ∑ wijPj (2)

2.2. Simulation of Exploration Procedure

A schematic workflow of a typical exploration procedure is presented in Figure 1a to
demonstrate the effect of 3D Earth on geological feature extraction during an exploration
program. Minerals comprise macroscopic geological features (L), and a petrophysical
system links physical properties (P) to the underlying geological features. The physical
properties appear on the Earth’s surface as geophysical signals (S) observed in the form of
magnetic and electrical potential fields. The imaging system aims to recover approximated
physical property models (P*) from observed signals to be interpreted in the feature
extraction system for retrieving an approximation of the latent lithotypes (Li*). Physical
properties and lithotypes marked with an asterisk (Pj* and Li*) indicate that they are
approximations of the underlying physical properties and lithological variations.

The proposed feature extraction procedure enables us to simulate the interpretation
system for quantitative geological feature extraction. We simulated an exploration system to
test our source separation methodology. Figure 1b represents a simulation of the exploration
process that is used throughout this study. The linear mixing system (petrophysical
system in Equation (1) creates physical properties (Pj) from linear mixtures of the hidden
lithological factors (Li). The simulation of the geophysical system consists of a well-posed
set of equations that calculates the geophysical responses (Sc) of the 3D physical property
distributions on the Earth surface (forward modeling).

Sc = f (Pj) (3)

where f represents a forward problem operator that simulates the target geophysical
responses (signals), and c = 1, 2, 3, . . . , p denotes the number of p data points. Through
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this, we simulated the synthetic field data (Sd) to be fed into the imaging system with an
added non-Gaussian geophysical noise (SNoise).

Sd = Sc + SNoise (4)

where d = c.
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Figure 1. Workflow of geological feature extraction: (a) An exploration system: The synergy of
the hidden mixing petrophysical system with the geophysical system creates observed geophysical
signals (S) that produce measured physical properties (P). The approximated physical properties (P*)
are used in a feature extraction system to recover the hidden geological factors (L). (b) A simulation of
the exploration system: Synthetic geophysical signals (Sd) are calculated from the forward responses
of the simulated physical properties (Pj) that are linear mixtures of hidden geological features (Li).
Multiple inversions calculate the estimated physical properties (Pj*) that are used in the subsequent
feature extractions to retrieve an approximation of the latent lithotypes (Li*).

We inserted two sources of noise: geological and geophysical non-Gaussian noises.
The added noises helped us to compare the sensitivity of different feature extraction
methods to the unknown sources of outliers. We used a finite element method on the
three physical property models to calculate their apparent resistivity, chargeability, and
total magnetic field responses [29–31]. In the case of the DC/IP forward problem, the
IP chargeability model is considered as a small perturbation of the reference electrical
conductivity model [30,32]. Normalized chargeability (0 ≤ m ≤ 1) tends to decrease the
reference conductivity (σDC) in the modeled IP phenomenon and produces a perturbed
subsurface conductivity (σIP) in the function of [32] as follows:

σIP = (1−m)σDC (5)

The program calculates the forward potential responses of two conductivity models
(σDC & σIP) separately. The forward modeling σDC gives the apparent conductivity values
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(σa), and the modeled potentials (φ) are used to calculate the apparent chargeabilities
based on [32].

ma = [φ(σIP)− φ(σDC)]/φ(σDC) (6)

The imaging system approximates the physical properties (Pj*) through inverse mod-
eling as follows:

P∗j = f−1(Sd) (7)

where f −1 is the inverse problem operator. The recovered physical properties are then
used to reconstruct the hidden geological factors (Li*) through the higher-order statistical
unmixing process (Equation (2)).

In this study, we explore the effect of the smoothness and sharpness of the imaging
system on the output of the feature extraction system. This gives us a valuable view of
the way the sharpness of the imaging system could influence the recovered geological
features and provides means to predict how much information is essentially extractable
from geophysical imaging, i.e., to determine which parts of the spatial domain of the
original geology are vulnerable to the information loss due to the geophysical imaging.

We explore the two endpoints of the imaging scenarios (sharp versus smooth) in
DC/IP and magnetic inversions. We used a blocky inversion method for the inversion of
electrical resistivity and chargeability data [31,33,34] and an iterative reweighting inver-
sion [35,36] for inverse modeling of the magnetic susceptibility data. In each iteration of
DC/IP inversion, an incomplete Gauss-Newton least-squares optimization tries to reduce
the gap between measured and calculated properties (σa and ma) by modifying the σDC
and σIP values. When the calculation reaches its threshold, the modeled resistivities and
chargeabilities are determined by ρ = 1/σDC and m = [1− (σIP/σDC)], respectively.

The blocky inversion algorithm [34], which uses an extension of l2-norm and l1-norm
inversions, incorporates two cut-off factors in the DC/IP inversion—a data constraint
cut-off factor (0 < k1 < 1), and a model constraint cut-off factor (0 < k2 < 1). Large enough
cut-off factors result in smooth physical property models equivalent to l2-norm results. The
iterative reweighting magnetic inversion takes the first iteration susceptibility and uses
it as an iterative reweighting constraint when running a new inversion. This process is
iterated until a satisfactory model is achieved [35,36]. Reweighting magnetic inversion
tends to recover sharp magnetic variations, and its results are equivalent to the robust or
blocky inversion in the DC/IP inversion [33,34].

2.3. Independent Component Analysis (ICA)

Traditional visualization techniques incorporating conventional gridding, slicing, and
clipping methods cannot identify subtle structures inside the high-dimensional geophysi-
cal images. In the presence of statistical correlation and independence, multivariate tools
are necessary to recover the hidden patterns inside multiple interdependent geophysical
images. Statistical measures provide collective clues about the behaviors of multivariate
spaces. Instead of treating every geophysical image separately, one can extract the un-
derlying features by making few general assumptions about the multivariate statistical
measures. The mixing process has three statistical characteristics [37] that need to be
considered to reconstruct an integrated geological model from physical properties. Firstly,
the source geological features are statistically uncorrelated and independent, while the
physical properties are correlated and interdependent due to the linear mixing process.
Secondly, the mixing process increases the normality or Gaussianity of the images, i.e., the
observed (or modeled) physical property images are more Gaussian than the underlying
lithological distributions. This results from the central limit theorem (CLT) in probability
theory that says the distribution of a sum of independent random variables tends toward
a Gaussian distribution. Later, we used this principle to maximize the non-Gaussianity
of physical properties using kurtosis maximization as a criterion for estimating hidden
geological features. Thirdly, the spatial complexities of the physical property images are
equal to or greater than that of the least complex geological feature distribution. We later
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used this general principle to maximize the non-Gaussianity of physical properties using
negentropy maximization as a criterion for estimating hidden geological features.

One crucial statistical measure is correlation. It is very common for two geophysical
properties imaged by two different methods to be correlated. For example, if a perfect linear
relationship exists between a magnetic susceptibility image and an electrical resistivity
image, the amount of information that the first image provides is the same as the second
one. Therefore, one can transfer the bivariate data to a univariate form without losing
any valuable information. This transformation is called dimensionality reduction that
is the basis of PCA algorithms [37,38]. PCA is the standard method for unmixing the
correlated images. PCA produces linearly uncorrelated images, and this approach is
usually called whitening because this is the property of the white noise. PCA algorithms
utilize the maximization of second-order statistical measure (variance) for image separation.
However, when there is a nonlinear form of correlation (dependency) between images, PCA
will not work, and one needs to find another way to unmix interdependent images [38,39].

On the other hand, ICA separates mixed images into nonlinearly uncorrelated images
through the maximization of multivariate non-Gaussianity. The one-dimensional ICA
analogy is well known as a classical cocktail party problem [40], where people are talking
independently together. By incorporating two or more receivers, it is impossible to detect
each conversation independently. For example, the human auditory system, with two
receivers, hears a mixture of signals in a cocktail party and can differentiate the source
to a certain degree. However, by installing several microphones and maximizing the
non-Gaussianity of received signals, we will be able to separate more voices. The same
analogy is applied to neuroscience, where the spatiotemporal ICA problem in medical
imaging is compared to a neurological cocktail party problem by Von der Malsburg and
Schneider [41] and Brown [42]. Perhaps, a 3D equivalent to this 1D blind source separation
could be called a geophysical cocktail party problem, where geophysicists try to detect the
rocks’ hidden information inside mixtures of different physical property images.

Traditionally, ICA algorithms seek to maximize higher-order measures such as skew-
ness (third-order measure) and kurtosis (fourth-order measure). Another approach is the
application of information theory principles for the maximization of non-Gaussianity. This
study proposes a 3D model-based Fast-ICA algorithm based on the study by Hyvärinen
et al. [39], which utilizes two different non-Gaussianity maximization approaches—kurtosis
maximization and negentropy maximization.

Fast-ICA algorithm starts with two preprocessing steps: first, removing the mean of
input physical properties and then whitening by PCA giving their variance unit value.
PCA looks for a weight matrix D so that a maximal variance of the principal components
of the central physical properties (YPC) are confirmed as follows:

YPC = DT P (8)

Optimization of PCA criterion is possible by eigenvalue decomposition [39]. The
next step in the Fast-ICA algorithm is to increase the non-Gaussianity of the principal
components. The problem is to find a rotation matrix R that during the multiplication with
principal components produces the least Gaussian outputs (L*) that are approximations of
the original geological features.

L∗ = RTYPC (9)

One way to calculate the rotation matrix R is to use kurtosis as a measure of non-
Gaussianity as follows:

kurt(L∗) = E
(
(RTYPC)

4)− 3
{

E
(
(RTYPC)

2)}2
(10)

where E(.) denotes the expected value. Kurtosis provides a measure of how Gaussian
(kurt = 0), super-Gaussian (kurt > 0) or sub-Gaussian (kurt < 0) the probability density
functions of the physical properties are. Therefore, the highest non-Gaussianity of L* is
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equivalent to the maximum or minimum excess kurtosis of its distribution. In this study,
we used a fixed-point iteration scheme of Hyvärinen and Oja [15], where each point in a
converging sequence is a function of the previous one. Fast-ICA has a fast quadratic or
cubic convergence and requires slight memory space [16]. However, kurtosis is not a robust
measure of non-Gaussianity in the presence of noise. Kurtosis is an approximated measure
of the fourth central moment of the probability density function of data, and to calculate it
accurately, we need to have an infinite number of physical property values. This makes
kurtosis very sensitive to outliers, i.e., a single erroneous outlier value in the distribution’s
tails makes kurtosis extremely large. Therefore, using kurtosis is well justified when the
independent components (geological features) are sub-Gaussian, and there are no outliers
(geological noises or other artifacts on physical property images).

Therefore, we needed to assess non-Gaussianity in a different way that can handle
the fluctuations of outliers. Alternatively, the maximization of negentropy is a robust
technique for obtaining the rotation matrix R during the Fast-ICA procedure. Negentropy
(normalized differential entropy) of a signal is the difference between the entropy H (L*) of
that signal and the entropy H (Lgauss) of a Gaussian random vector of the same covariance
matrix as L*. Negentropy of the L*, therefore, is

neg(L∗) = H
(

Lgauss
)
− H(L∗) (11)

Negentropy is always non-negative and is zero when the signal has Gaussian distribution.
In other words, the more random (unpredictable and unstructured) the variable is, the larger
its entropy. We approximate the negentropy through the following nonpolynomial method:

neg(L∗) ≈ c[E{G(L∗)} − E{G(Lstd)}]2 (12)

where c is an irrelevant constant, and Lstd is a standardized Gaussian variable (Lgauss of
zero mean and unit variance). G is a non-quadratic exponential function that can handle
the outliers efficiently [16].

G(L∗) = −e(−
L∗ 2

2 ) (13)

To find the rotation matrix R, the objective negentropy is maximized using a fixed-
point algorithm [39].

3. Results
3.1. Simulation of Petrophysical System

The purpose of this study is to show numerically how the overlapped geological
features seen in the form of physical properties appear as geophysical signals on the
Earth’s surface, and how geological/geophysical noises and inversion artifacts influence
the process of feature extraction. Therefore, we were not concerned with the construction
of any specifically existing geological model from mineral exploration literature. We used
a range of physical property values (minimum and maximum) based on a reasonable
average of electrical resistivities, IP chargeabilities, and magnetic susceptibilities of dissem-
inated sulfide deposits [2] that provided us enough spatial complexity to test our feature
extraction methodology.

The basic lithology model was constructed from an original layered Earth model
passed through several faulting, folding, dyke intrusion, shear deformation, and alteration
overprints (Figures 2 and 3). The final 3D lithology model (stage 12 in Figure 3) included a
set of background rock units (L1a, L1b, L1c, L1d) and two stages of hydrothermal alteration
in the form of plug-shaped alteration overprints (L2 and L3). Figure 4 represents the last
episode of the geological history stored as six independent lithotypes to be used later in
this study.
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The linear overlap of the four rock units and the two alteration events comprised three
physical property distributions: electrical resistivity, induced polarization chargeability,
and magnetic susceptibility. A mixing system was built to simulate a disseminated sulfide
deposit, where background rock units are intruded by two distinct disseminated sulfide-
rich alteration events with the following mixing matrix form (Equation (1)).

L1 L2 L3
↓ ↓ ↓

A =

 0.9 0.05 0.05
0.5 0.2 0.75

0.45 0.25 0.3

 → ρ = 0.90L1 + 0.05L2 + 0.05L3
→ m = 0.05L1 + 0.20L2 + 0.75L3
→ χ = 0.45L1 + 0.25L2 + 0.30L3

(14)

Equation (14) means that 90 percent of the first physical property (P1 = ρ; electric
resistivity) is derived from the background rocks (L1a, L1b, L1c, L1d), 5 percent from the
alteration L2, and 5 percent from the alteration L3. The second physical property is induced
polarization chargeability (P2 = m), which is least sensitive to the background geology
(5 percent), and 20 percent and 75 percent of it result from the two alteration events
(L2 and L3). Note that 75 percent of chargeability comes from the alteration L3, which
means L3 bears the largest amount of disseminated sulfides. The magnetic susceptibility
(P3 = χ) represents 45 percent of the background geology, 25 percent the alteration L2
and 30 percent the alteration L3. The resulting mixtures were then scaled from zero
to a reasonable maximum; set to 500 Ohm-m, 100 mV/V, and 0.1 SI for resistivities,
chargeabilities, and susceptibilities.

Figure 5 shows the calculated physical property models. An additional non-Gaussian
noise accompanies the mixing process to simulate a realistic geological environment where
the lithologies are heterogeneous. We used a Pearson random system to create this geologi-
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cal noise in the form of a 3D matrix with unit standard deviation and skewness equal to
1 for resistivity and chargeability models and skewness equal to −1 for the susceptibility
model. The kurtosis of the geological noise was set to 5 for the resistivity model and 4 for
the chargeability and susceptibility models.
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Figure 5. The mixing system produces three overlapped physical properties (ρ, m and χ in b–d) from simulated geological
features (a). Each physical property distribution shows a portion of the whole geological features (b–d). The source
separation aims to recover the hidden independent features to reconstruct the whole geological model.

The histograms of the original litho-codes and the simulated physical properties are
shown in Figure 6. As can be seen, the histograms of physical properties (Figure 6d–f) show
the multimodal nature of the physical properties due to the mixing process. However,
the added non-Gaussian geological noise smooths some smaller patterns related to the
overlaps of the rock’s units with two alteration episodes (Figure 6g–i). We also predict that
the passage of lithological information from the geophysical system and then the imaging
system will significantly reduce this multimodality to bimodality or even unimodality. This
information loss is one of the major limitations of 3D geophysical imaging that we aim to
tackle in this study quantitatively.

This study used a three-component geological model and a three-component physical
property model to avoid too many drawn-out interpretations. However, in practice, we can
use any number of geological features and physical properties, including seismic velocities
and bulk densities, for 3D seismic tomography and gravity modeling. Nevertheless, to
avoid inconsistency, we kept the number of geological features equal to or less than the
physical properties (n ≤ m).
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3.2. Petrophysical Feature Extraction

We evaluated different source separation algorithms to see which method was more
stable in the recovery of lithological factors in the presence of the non-Gaussian noise on
the mixed physical properties. The objective is to recover the two separate alteration events
from the background lithology, supposing that the imaging system has zero influence on
the source separation, equivalent to a situation where geophysical inversion accurately
recovers physical properties. This strategy will help us to compare the exact results to the
more realistic scenario of an approximate inverse solution to understand the effect of the
geophysical and imaging systems on the source separation process.
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Running PCA to separate images did not yield efficient separate geological features,
and another form of mixture remained on the principal components (Figure 7a–c). Even if
the recovered principal components of the physical properties are uncorrelated, knowing
the values of one image still provides information about the other image. However, the
first and third principal components (PC1 and PC3 in Figure 7a,c) successfully represent
the background geology (L1) and the first alteration event (L2), but the third alteration
event (L3) is still mixed with the second alteration event in the second principal component
(PC2 in Figure 7b).
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Figure 7. Assessment of different source separation methods: (a–c) principal components (PC1, PC2, and PC3) from
the PCA method; (d–f) independent components (kIC1, kIC2, and kIC3) from Fast-ICA by kurtosis maximization; (g–i)
independent components (nIC1, nIC2 and nIC3) from Fast-ICA by negentropy maximization. PCA recreates another set of
overlapped images on PC2 and is ineffective in source separation (a–c). Fast-ICA by kurtosis maximization produces a set
of images (kICs) separated to some extent, but still, some of the features remain mixed in the first and second independent
components in the form of outliers, background geology mixed with the second alteration event. Fast-ICA by negentropy
maximization produces a set of images (nICs) that are efficiently separated (g–i). All principal and independent components
were normalized from zero to one for consistency of visualization.

Fast-ICA by kurtosis maximization could neither tolerate the mixing system’s added
geological noise, resulting in few overlapped features in the separated outputs (Figure 7d–f).
However, Fast-ICA by negentropy maximization recovered the underlying geological
features almost perfectly. As can be seen (Figure 7g–i), negentropy maximization can
efficiently handle the added non-Gaussian background geological noise separating the
main geological features.
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3.3. Simulation of the Geophysical System (Forward Modeling)

We calculated the geophysical responses of the mixed physical properties to explore
how the interdependent physical properties appear as geophysical signals on the surface of
the Earth. This is a more realistic assumption because most geophysical data are gathered on
the surface and are apparent indicators of 3D underground physical property distributions.

The DC/IP apparent physical properties were simulated over the mixed physical
properties with pole–dipole electrode configurations, dipolar spacing of 100 m, and dipolar
separations up to 12 times in X and Y directions. The model mesh consists of 151 cells
in the X direction, 111 cells in the Y direction, and 38 cells in the Z direction with two
nodes between the adjacent electrodes, which simulates the forward electrical potentials of
51 electrodes in the X direction and 31 electrodes in the Y direction. Therefore, the total
number of electrodes is 1581, over a 3D discretized volume with 636918 rectangular cells.

The same magnetic station intervals were applied for magnetic forward modeling,
i.e., 100 m spacing between observation points in both the X and Y directions. The magnetic
field over the 3D volume is set to 29,639 nT with inclination and declination of 21◦ and
1◦, respectively. We assumed that there is no remanent magnetization contributing to the
surface observations and that demagnetization of rocks is negligible.

We calculated the forward responses over the 3D rectangularly gridded physical
properties using forward modeling algorithms introduced in Li and Oldenburg [29,30].
Figure 8 shows the forward responses of the magnetic and DC/IP models in the form of
total magnetic field intensities (after reduction to magnetic pole), apparent resistivities, and
apparent chargeabilities.
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indicate the location of simulated DC/IP electrodes.

3.4. Imaging System (Inverse Modeling)

One of the main objectives of this study was exploring the sensitivity of feature
extraction to the tuning of the imaging system. Through inverse modeling (imaging
system), we sought to recover the physical properties with different adjustments of the
inversion parameters. Finally, we unmixed the recovered physical properties (in the
unmixing system) to approximate the underlying lithological factors. We evaluated how
the imaging system (inversion) can distort the unmixing process during the inference of
the lithological factors. Though the mixing system behaves linearly, the Earth forward
response (geophysical system in Figure 1), and the reconstruction of physical properties
(imaging system in Figure 1) add unwanted artifacts to the inverted physical property
images, specifically when we executed unconstrained 3D inversions due to the lack of prior
petrophysical information.

A set of underlying inversion parameters were set to recover sharp images of the
physical properties. The blocky DC/IP inversion was controlled by different cut-off factors
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to examine the effect of inversion artifacts on the outputs of the feature extraction algorithm.
Achieving a value too close to the l2-norm criteria (larger cut-off factors) increased the
misfit error, and closer to l1-norm (smaller cut-off factors) produced too sharp boundaries
that distorted the 3D continuity of the models. We used three representative DC/IP
inversion episodes with the following parameters: the first DC/IP inversion with a data
constraint cut-off factor k1 = 1 and a model constraint cut-off factor k2 = 1 (smoothest
physical properties); the second DC/IP inversion with k1 = 0.1 and k2 = 0.05 (sharper
physical properties); the third DC/IP inversion with k1 = 0.01 and k2 = 0.005 (sharpest
physical properties).

Three episodes (iterations) of the iterative reweighing magnetic inversion were also
used to produce three smooth-to-sharp representative susceptibility models. The recovered
physical properties (Figure 9) exhibit valuable information about the underlying features,
but some of the key background geological features are missed due to the imaging process.
The first imaging scenario (smoothest) was tuned to recover approximations of physical
properties (ρ, m, and χ), where the sharpness of images was enough to capture an overall
view of the underlying geological features (Figure 9a–c). However, increasing the depth
of investigation in the smooth inversions deforms the shape of the first alteration event
that is the deepest one (L2 in Figure 4f). Increasing the level of sharpness in Figure 9d–f
focuses more on the hidden geological features. However, the two alteration events are
still attached. The sharpest images are presented in Figure 9g–i, where the lithological
background is much more visible in the resistivity and susceptibility images (Figure 9g–i),
and two alteration events are more confined in the modeled chargeability image (Figure 9h).

Minerals 2021, 11, x FOR PEER REVIEW 15 of 21 
 

 

A set of underlying inversion parameters were set to recover sharp images of the 
physical properties. The blocky DC/IP inversion was controlled by different cut-off factors 
to examine the effect of inversion artifacts on the outputs of the feature extraction algo-
rithm. Achieving a value too close to the l2-norm criteria (larger cut-off factors) increased 
the misfit error, and closer to l1-norm (smaller cut-off factors) produced too sharp bound-
aries that distorted the 3D continuity of the models. We used three representative DC/IP 
inversion episodes with the following parameters: the first DC/IP inversion with a data 
constraint cut-off factor k1 = 1 and a model constraint cut-off factor k2 = 1 (smoothest 
physical properties); the second DC/IP inversion with k1 = 0.1 and k2 = 0.05 (sharper 
physical properties); the third DC/IP inversion with k1 = 0.01 and k2 = 0.005 (sharpest 
physical properties).  

Three episodes (iterations) of the iterative reweighing magnetic inversion were also 
used to produce three smooth-to-sharp representative susceptibility models. The recov-
ered physical properties (Figure 9) exhibit valuable information about the underlying fea-
tures, but some of the key background geological features are missed due to the imaging 
process. The first imaging scenario (smoothest) was tuned to recover approximations of 
physical properties (ρ, m, and χ), where the sharpness of images was enough to capture 
an overall view of the underlying geological features (Figure 9a–c). However, increasing 
the depth of investigation in the smooth inversions deforms the shape of the first altera-
tion event that is the deepest one (L2 in Figure 4f). Increasing the level of sharpness in 
Figure 9d–f focuses more on the hidden geological features. However, the two alteration 
events are still attached. The sharpest images are presented in Figure 9g–i, where the lith-
ological background is much more visible in the resistivity and susceptibility images (Fig-
ure 9g–i), and two alteration events are more confined in the modeled chargeability image 
(Figure 9h). 

  
Figure 9. Geophysical inversion results: (a–c) smooth inversion results; (d–f) sharper inversion results; (g–i) sharpest in-
version results. 

Figure 9. Geophysical inversion results: (a–c) smooth inversion results; (d–f) sharper inversion results; (g–i) sharpest
inversion results.



Minerals 2021, 11, 959 15 of 20

3.5. Post-Inversion Feature Extraction

We evaluated the effect of imaging systems (inverse modeling) on the performance of
feature extraction. We explored different inversion procedures to investigate how artifacts
from the imaging system leak into the estimated physical properties and then distort the
performance of geological feature extraction. We do not show the results of the PCA and
ICA by kurtosis maximization because we already showed that they were not as efficient
as the negentropy maximization algorithm. The major difference between pre-inversion
(petrophysical) and post-inversion feature extraction is that the depth estimation in the post-
inversion physical properties leads to distorted physical property images and erroneous
reconstructed geological features.

The post-inversion feature extraction results are shown in Figure 10 for the three
inversion scenarios. The independent components of the smoothest physical properties
(Figure 10a–c) keep some of the latent features mixed, which is understandable due to the
smoothness artifacts leaked into the imaging and feature extraction systems. The third
alteration event is clearly extracted in the second independent component (nIC2), but the
background geology and the first alteration event were mixed in the other independent
components (nIC1 and nIC3).
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Running a sharper inversion helped to increase the contrast of the models. How-
ever, a certain amount of information is still lost during the imaging process. Again, the
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second alteration event is clearly extracted in the third independent component (nIC3 in
Figure 10f), and the background geology is extracted in the second independent compo-
nent (nIC2 in Figure 10e). However, the first independent component (nIC1 in Figure 10d)
could not separate the first alteration event from background geology.

The separation of the sharpest physical property images results in the most accurate
geological features (Figure 10g–i). Both alteration events are successfully extracted as
distinct independent components (nIC1 and nIC2 in Figure 10g,h). The third independent
component also extracts a more accurate image of the latent background geology (nIC3 in
Figure 10i).

4. Discussion

Cross plots of the physical properties and extracted independent components were
compared to the initial geological features to evaluate the feature extraction performance
for both pre-inversion petrophysical and post-inversion feature extractions (Figure 11). As
shown in Figure 11a,b, the original petrophysical system produces overlapped expressions
of the latent geological features, where the background geological features are overprinted
with the two alteration events. The inverted physical properties from the imaging system
show a distorted background geological pattern, where the intruded dyke (L1d) is visually
separable from a mixture of older strata (L1a, L1b, and L1c).
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The overprints of alteration events were also imaged as overlapped patterns occu-
pying the same space. Without any prior petrophysical information, it is very hard to
differentiate two alteration events from each other and the background geology. The pre-
inversion petrophysical feature extraction extracted three independent components that
are representative of three underlying geological features (Figure 11e). The background
geological dyke and the two alterations are clearly separated into three separated regions.
The post-inversion extracted features are also separated into three distinct groups, though
there are still few overlaps in some places (Figure 11f).

Though the negentropy maximization captures the first plug-shaped alteration event
(deep feature), the recovered geometrical shape of that is not accurate, which is a side effect
of the geophysical inversion artifacts disturbing the feature extraction process. Specifically,
the non-uniqueness of magnetic inversion results in erroneous susceptibilities at deeper
levels that masked the first alteration event on the susceptibility image.

To reduce the non-uniqueness of the magnetic inversion, we suggest performing a
cooperative inversion that utilizes DC/IP inversion to constrain the magnetic inversion.
The similarity between two physical property distributions (resistivity and susceptibility in
this case) allows us to run a cooperative inversion. In this case, 90 percent of the background
geology is detectable in the original resistivity image, in contrast to the 45 percent of it that
is detectable in the original susceptibility image, making it possible to use the recovered
resistivity model to constrain the magnetic inversion cooperatively. This approach probably
increases the accuracy of the recovered susceptibility image; however, the potential field
nature of the DC/IP inversion also causes a certain number of geological features to go
missing during the imaging process.

One way to increase the accuracy of the physical property estimation is to add other
techniques such as seismic and electromagnetic imaging in a multistage and iterative
cooperative modeling procedure, where information from each physical property inversion
is used to constrain the other inversions as far as all physical property models converge
into a satisfactory result on the last iteration. The other way is to use borehole constraints to
reduce the non-uniqueness of the physical property models through constrained inversion.
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5. Conclusions

This study applied kurtosis and negentropy maximization in an independent compo-
nent analysis framework for geological feature extraction from multiple 3D geophysical
images with latent geological features. We presented a 3D post-inversion method for
geological feature extraction from multiple geophysical images, where negentropy of mul-
tiple physical properties are maximized as a criterion of Fast-ICA for extraction of latent
geological features from 3D geophysical images. The methodology was tested through sim-
ulation of a typical exploration procedure that provided a way to transform 3D geological
features to overlapped physical property models linearly. The simulation also involved the
calculation of geophysical responses of the 3D physical properties on the Earth’s surface.
We used the resulting synthetic geophysical signals to recover the 3D physical properties
and the hidden geological features.

We explored efficiencies of different source separation methods and showed that
the negentropy maximization is superior to the variance and kurtosis maximization in
tolerating the added non-Gaussian geological and geophysical noises. We also explored
the effect of the inversion artifacts on the performance of Fast-ICA through negentropy
maximization. The results showed that the smooth inversions result in spurious physical
property artifacts permeated to the ICA, destabilizing the feature extraction system, pro-
ducing another form of mixed features in the output components. However, increasing
the sharpness of the inversions produced sharper physical property images, enhanced the
feature extraction performance, and successfully recovered more geological features.

We used a three-feature geological system and a three-component physical property
model in this study. However, in practice, we can use any number of geological features
and physical properties. The simulation of the petrophysical system allowed us to study
the effect of spatially coexisting patterns inside multidimensional physical properties.
Interpretation of these types of complicated and mixed geological systems is a challenge to
post-inversion qualitative geophysical interpretations.

The proposed feature extraction method is a powerful tool for post-inversion semi-
automatic interpretations and needs no prior geological or petrophysical information for
geological feature extraction. The methodology is also applicable to many other exploration
scenarios where geophysicists are interested to understand the whole process of geophysi-
cal interpretation from data gathering to inversion and post-inversion interpretations.

Author Contributions: Conceptualization, B.A. and L.-Z.C.; methodology, B.A.; software, B.A.;
validation, B.A. and L.-Z.C.; formal analysis, B.A.; investigation, B.A.; resources, B.A.; data curation,
B.A.; writing—original draft preparation, B.A.; writing—review and editing, B.A. and L.-Z.C.;
visualization, B.A.; supervision, L.-Z.C.; project administration, L.-Z.C.; funding acquisition, L.-Z.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada
(NSERC), Fonds de recherche, Nature et technologies du Québec (FRQNT), and ministère de l’Énergie
et des Ressources naturelles du Québec (MERNQ).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lelièvre, P.G.; Farquharson, C.G. Integrated Imaging for Mineral Exploration. In Integrated Imaging of the Earth: Theory and

Applications; Geophysical Monograph 218; Moorkamp, M., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2016; pp. 61–95.
[CrossRef]

2. Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014.
[CrossRef]

3. Fullagar, P.K.; Hughes, N.A.; Pain, J. Drilling constrained 3D gravity inversion. Explor. Geophys. 2000, 31, 17–23. [CrossRef]
4. Wisen, R.; Christiansen, A.V. Laterally and mutually constrained inversion of surface wave seismic data and resistivity data.

J. Environ. Eng. Geophys. 2005, 10, 251–262. [CrossRef]
5. Lelièvre, P.G. Integrating Geologic and Geophysical Data through Advanced Constrained Inversions. Ph.D. Thesis, The University

of British Columbia, Vancouver, BC, Canada, 2009. Available online: http://hdl.handle.net/2429/6661 (accessed on 29 July 2021).

http://doi.org/10.1002/9781118929063
http://doi.org/10.1017/CBO9781139024358
http://doi.org/10.1071/EG00017
http://doi.org/10.2113/JEEG10.3.251
http://hdl.handle.net/2429/6661


Minerals 2021, 11, 959 19 of 20

6. Lelièvre, P.G.; Oldenburg, D.W.; Williams, N.C. Integrating geological and geophysical data through advanced constrained
inversions. Explor. Geophys. 2009, 40, 334–341. [CrossRef]

7. Lines, L.R.; Schultz, A.K.; Treitel, S. Cooperative inversion of geophysical data. Geophysics 1988, 53, 8–20. [CrossRef]
8. Paasche, H.; Tronicke, J. Cooperative inversion of 2D geophysical data sets: A zonal approach based on fuzzy c-means cluster

analysis. Geophysics 2007, 72, A35–A39. [CrossRef]
9. Haber, E.; Oldenburg, D. Joint inversion: A structural approach. Inverse Probl. 1997, 13, 63–77. [CrossRef]
10. Doetsch, J.; Linde, N.; Coscia, I.; Greenhalgh, S.; Green, A. Zonation for 3D aquifer characterization based on joint inversion of

multimethod crosshole geophysical data. Geophysics 2010, 75, G53–G64. [CrossRef]
11. Chen, J.; Hoversten, G.M. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and

Markov random fields. Geophysics 2012, 77, R65. [CrossRef]
12. Gallardo, L.A.; Fontes, S.L.; Meju, M.A.; Buonora, M.P.; de Lugao, P. Robust geophysical integration through structure-coupled

joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic and gravity images: Example from Santos
Basin, offshore Brazil. Geophysics 2012, 77, B237–B251. [CrossRef]

13. Haber, E.; Gazit, M.H. Model fusion and joint inversion. Surv. Geophys. 2013, 34, 675–695. [CrossRef]
14. Comon, P. Independent component analysis: A new concept. Signal Process. 1994, 36, 287–314. [CrossRef]
15. Hyvärinen, A.; Oja, E. A fast fixed-point algorithm for ICA. Neural Comput. 1997, 9, 1483–1492. [CrossRef]
16. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent component analysis. In Adaptive and Learning Systems for Signal Processing,

Communications, and Control; Haykin, S., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [CrossRef]
17. Hyvärinen, A. Independent component analysis: Recent advances. Phil. Trans. R. Soc. A 2013, 371, 1984. [CrossRef] [PubMed]
18. Bayliss, J.D.; Gualtieri, J.A.; Cromp, R.F. Analyzing hyperspectral data with independent component analysis. In Proceedings of

the 26th AIPR Workshop: Exploiting New Image Sources and Sensors, Washington, DC, USA, 15–17 October 1998; International
Society for Optics and Photonics: Washington, DC, USA, 1998; pp. 133–143.

19. Amato, U.; Antoniadis, A.; Cuomo, V.; Cutillo, L.; Franzese, M.; Murino, L.; Serio, C. Statistical cloud detection from SEVIRI
multispectral images. Remote Sens. Environ. 2008, 112, 750–766. Available online: https://spie.org/Publications/Proceedings/
Paper/10.1117/12.300050 (accessed on 29 July 2021). [CrossRef]

20. Barnie, T.; Oppenheimer, C. Extracting high temperature event radiance from satellite images and correcting for saturation using
Independent Component Analysis. Remote Sens. Environ. 2015, 158, 56–68. [CrossRef]

21. Liu, B.; Dai, W.; Peng, W.; Meng, X. Spatiotemporal analysis of GPS time series in vertical direction using independent component
analysis. Earth Planets Space 2015, 67, 189. [CrossRef]

22. Choudrey, R.; Roberts, S. Variational mixture of Bayesian independent component analysers. Neural Comput. 2002, 15, 213–252.
[CrossRef]

23. Beckmann, C.F.; Smith, S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE
Trans. Med. Imaging 2004, 23, 137–152. [CrossRef]

24. Griffanti, L.; Salimi-Khorshidi, G.; Beckmann, C.F.; Auerbach, E.J.; Douaud, G.; Sexton, C.E.; Zsoldos, E.; Ebmeier, K.P.; Filippini,
N.; Mackay, C.E. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
NeuroImage 2014, 95, 232–247. [CrossRef]

25. Jenssen, R.; Eltoft, T. Independent component analysis for texture segmentation. Pattern Recognit. 2003, 36, 2301–2315. [CrossRef]
26. Zou, W.; Li, Y.; Lo, K.C.; Chi, Z. Improvement of image classification with Wavelet and Independent Component Analysis (ICA)

based on Structured Neural Networks. In Proceedings of the IEEE International Conference on Neural Networks 2006, Vancouver,
BC, Canada, 24–29 July 2006; pp. 3949–3954. [CrossRef]

27. Van der Baan, M. PP/PS Wavefield separation by independent component analysis. Geophys. J. Int. 2006, 166, 339–348. [CrossRef]
28. Honório, B.C.Z.; Sanchetta, A.C.; Leite, E.P.; Vidal, A.C. Independent component spectral analysis. Interpretation 2014, 2, 1.

[CrossRef]
29. Li, Y.; Oldenburg, D.W. 3D inversion of magnetic data. Geophysics 1997, 61, 394–408. [CrossRef]
30. Li, Y.; Oldenburg, D.W. 3D inversion of induced polarization data. Geophysics 2000, 65, 1931–1945. [CrossRef]
31. Tutorial: 2D and 3D Electrical Imaging Surveys: Geotomo Software. Available online: http://www.geotomosoft.com/downloads.

php (accessed on 29 July 2021).
32. Oldenburg, D.W.; Li, Y. Inversion of induced polarization data. Geophysics 1994, 59, 1327–1341. [CrossRef]
33. Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [CrossRef]
34. Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys.

Explor. Geophys. 2003, 34, 182–187. [CrossRef]
35. Portniaguine, O.; Zhdanov, M.S. 3-D magnetic inversion with data compression and image focusing. Geophysics 2002, 67,

1532–1541. [CrossRef]
36. Sharpening using Iterative Reweighting Inversion: Oasis Montaj Best Practice Guide. Available online: http://updates.geosoft.

com/downloads/files/how-to-guides/Best-Practice-Guide_Sharpening_using_IRI.pdf (accessed on 29 July 2021).
37. Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [CrossRef]
38. Trauth, M.H. MATLAB Recipes for Earth Sciences, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]
39. Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley Interscience Publication: New York, NY, USA, 2002.

[CrossRef]

http://doi.org/10.1071/EG09012
http://doi.org/10.1190/1.1442403
http://doi.org/10.1190/1.2670341
http://doi.org/10.1088/0266-5611/13/1/006
http://doi.org/10.1190/1.3496476
http://doi.org/10.1190/geo2011-0219.1
http://doi.org/10.1190/geo2011-0394.1
http://doi.org/10.1007/s10712-013-9232-4
http://doi.org/10.1016/0165-1684(94)90029-9
http://doi.org/10.1162/neco.1997.9.7.1483
http://doi.org/10.1002/9780470608593.scard
http://doi.org/10.1098/rsta.2011.0534
http://www.ncbi.nlm.nih.gov/pubmed/23277597
https://spie.org/Publications/Proceedings/Paper/10.1117/12.300050
https://spie.org/Publications/Proceedings/Paper/10.1117/12.300050
http://doi.org/10.1016/j.rse.2007.06.004
http://doi.org/10.1016/j.rse.2014.10.023
http://doi.org/10.1186/s40623-015-0357-1
http://doi.org/10.1162/089976603321043766
http://doi.org/10.1109/TMI.2003.822821
http://doi.org/10.1016/j.neuroimage.2014.03.034
http://doi.org/10.1016/S0031-3203(03)00131-6
http://doi.org/10.1109/IJCNN.2006.246915
http://doi.org/10.1111/j.1365-246X.2006.03014.x
http://doi.org/10.1190/INT-2013-0074.1
http://doi.org/10.1190/1.1443968
http://doi.org/10.1190/1.1444877
http://www.geotomosoft.com/downloads.php
http://www.geotomosoft.com/downloads.php
http://doi.org/10.1190/1.1443692
http://doi.org/10.1190/1.1440378
http://doi.org/10.1071/EG03182
http://doi.org/10.1190/1.1512749
http://updates.geosoft.com/downloads/files/how-to-guides/Best-Practice-Guide_Sharpening_using_IRI.pdf
http://updates.geosoft.com/downloads/files/how-to-guides/Best-Practice-Guide_Sharpening_using_IRI.pdf
http://doi.org/10.1016/S0893-6080(00)00026-5
http://doi.org/10.1007/978-3-662-46244-7
http://doi.org/10.1002/0471221317


Minerals 2021, 11, 959 20 of 20

40. Cherry, E.C. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 1953, 25, 975–979.
[CrossRef]

41. Von der Malsburg, C.; Schneider, W. A neural cocktail-party processor. Biol. Cybern. 1986, 54, 29–40. [CrossRef]
42. Brown, G.D.; Yamada, S.; Sejnowski, T.J. Independent component analysis at the neural cocktail party. Trends Neurosci. 2001,

24, 54–63. [CrossRef]
43. Noddy Structural and Geological Modeling: Reference Manual, TecTask, Encom Technology Pty Ltd. Available online:

https://tectonique.net/noddy (accessed on 29 July 2021).

http://doi.org/10.1121/1.1907229
http://doi.org/10.1007/BF00337113
http://doi.org/10.1016/S0166-2236(00)01683-0
https://tectonique.net/noddy

	Introduction 
	Materials and Methods 
	Theoretical Background 
	Simulation of Exploration Procedure 
	Independent Component Analysis (ICA) 

	Results 
	Simulation of Petrophysical System 
	Petrophysical Feature Extraction 
	Simulation of the Geophysical System (Forward Modeling) 
	Imaging System (Inverse Modeling) 
	Post-Inversion Feature Extraction 

	Discussion 
	Conclusions 
	References

