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Abstract: The objective of this study was to investigate the valorization potential of clayey overburden
sterile materials from lignite-mining activities in the manufacturing of traditional ceramics. This
study aims to contribute toward the sustainable management and use of such waste materials in
line with the environmental objectives of the 2030 agenda. To assess this issue, clayey steriles were
incorporated in a white clay-body at 20, 50, and 80 wt%, whereas reference samples were also formed
from the individual raw materials. Laboratory processing of the ceramics was performed by dry
pressing loose powder into rectangular samples and firing at 1000 ◦C for 4 h. Characterization of
the raw materials included chemical, mineralogical, and thermal analysis. The fired bodies were
tested for their total linear shrinkage, apparent porosity, water absorption, bulk density, and bending
strength according to the relevant standards. The microstructural evolution of the final bodies was
analyzed by scanning electron microscopy, which observed differences related to the addition of the
steriles. The results showed that the tested clayey steriles can be utilized up to 50 wt% as a secondary
raw material in the production of ceramic materials (e.g., bricks) with comparable properties to the
reference clay-bodies. Furthermore, the color of the final samples changed from white-creamy to
reddish as the content of clayey sterile materials increased in the raw mix.

Keywords: smectite clayey steriles; valorization; secondary raw materials; clay-based ceramics;
technological properties; pigment

1. Introduction

Nowadays, the modern way of life and human demands are strongly related to differ-
ent natural resources (e.g., metallic and non-metallic minerals, fossil fuels, and biomass)
and their applications in a wide range of fields. Their uses have tripled since 1970, in
accordance with mining excavations and/or drilling exploitations [1]. The mining activities
alone produce a large amount of wastes, exceeding 100 billion tones/year, and they are
responsible for about 50% of global greenhouse gas emissions [1,2]. These wastes include
different materials, such as tailings, waste rocks (steriles), and slags, which all require
appropriate treatment and management under the frame of environmental and economic
sustainability [3]. Many previous investigations have presented different environmental
pollution problems, health risks, and other negative effects on the societies, communities,
and economies derived from mining such waste deposits [4,5]. In recent years, indus-
tries obeying ethical implications (e.g., Mine Waste Directive, 2006/21/EC [6]) and/or
other international official environmental agreements (e.g., Paris agreement (COP21) [7],
“European Green Deal” [8]) have invested in improved mining technologies and the de-
velopment of waste treatment processes, hence facing an increasing total management
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cost [9–11]. Therefore, cheap alternatives are being sought. In this direction, research
activities related to the valorization and/or remediation of mining wastes have increased
and are focused on the conservation of natural raw materials under the prism of circular
economy principles [10–14].

Industrial production strategies, as well as regional and/or national policies, are
required to develop the management of the available resources. A sound example is the
significant volume of wastes and residues which are produced today due to industrial-
ization. In this context, we should point out that we consider the above materials, the
wastes and residues, as potential natural resources [15]. On the other hand, the above
policies and strategies should be able to “decouple” economic growth from the utilization
of natural resources. Therefore, the utilization of secondary raw materials, such as wastes
and residues, are at the forefront of this effort.

In the case of the ceramic industry, its broad market continues to grow, with an
annual rate of ~8.5% [16]. In particular, for the extraction of non-metallic minerals (clay
deposits included), their global extraction rate accounts for 48%; 4.9 times higher in 2017
than in 1970 [17]. Besides this, the wastes that arise from mining activities are increasing
accordingly. In the EU, mining and quarrying wastes accounted for more than 25% in 2018
of all wastes generated by economic and household activities [18].

Clays are the most common raw materials used for ceramic production, especially in
the field of traditional ceramics. Globally, there is a wide range of clay-based raw materials
used for different ceramic applications, such as mullite-based refractory materials, bricks
and tiles, porcelain, stoneware, etc. [19–21] Previous investigations have demonstrated that
there are different mining steriles or other wastes with similar compositions and compa-
rable properties appropriate for new competitive (even improved and energy-efficient)
ceramic products, compared to the commercial ones [11,22]. Over the last decade, there
has been an increasing scientific interest in the use of alternative raw materials in ceram-
ics derived from mining wastes (e.g., iron mining wastes, boron mining wastes, kaolin
steriles, granite steriles, coal mining steriles), aiming for the sustainability and symbiosis
of industries in conjunction with environmental protection. However, investigations on
the utilization of mining wastes for the production of energy-efficient ceramic materi-
als should be carried out more intensively in the future. Industry stakeholders would
be less susceptible to adapting such alternative raw materials in industrial established
processes [11,12,23–26].

Coal mining activities represent a high percentage of global material extraction com-
bined with high amounts of different kinds of wastes. Among these wastes, previous
investigations related to the utilization of sterile clayey rocks in different fields of applica-
tion, including ceramic materials, have been conducted [26,27].

The objective of this study was to evaluate the valorization potential of clayey sterile
materials (CSM) from the Prosilio Region in Greece as secondary raw materials for the
formation of bricks and/or roofing tiles. So far, to the best of our knowledge, no similar
work has been officially published with this specific type of sterile, which motivated the
authors to conduct this first-approach investigation. Finally, the viable end-use of these
steriles may be an alternative solution to the disposed volumes in the respective area.

2. Materials and Methods
2.1. Materials

The study area belongs to the NW part of the Hellenic mountain chain where, since
the Miocene, the crust extended to form a complex pattern of basins [28]. These basins
accumulated up to 600 m thick during the late Miocene and late Pliocene age sequence.
This sequence includes a basal conglomerate–sandstone unit followed by lacustrine–fluvial
sand-clays grading upward into lignite horizons [29]. The clayey sterile samples used
for this study were located close to the upper part of the sediments accumulated in the
so-called Servia lignite-bearing basin. In particular, the clayey samples were derived from
the open-pit mine in the Prosilio region, Kozani (western Macedonia, Greece, Figure 1).
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In total, the sterile samples are on average 6–10 m in thickness. The Prosilio open-pit
covers a 2,263,198 m2 area. The borders of the Servia basin comprise Pelagonian terrain
rocks, primarily composed of Paleozoic schists, Carboniferous granites, and Mesozoic lime-
stones [30]. Clay sediments overlay lignite deposits in depths of approximately 40–120 m
and are characterized mainly as xylite. The clayey sterile samples used in this study
represent a high-smectite content material (Figure 1). Though, it should be noted that
other horizons with lower-smectite content also exist in this open-pit mine. However,
the reference clay material, which is replaced by CSM, is a calcium-rich clay-body (W)
from the northwestern Peloponnese (Greece), commercially used for the manufacturing of
white-creamy roofing tiles and supplied from a local ceramic industry.
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Figure 1. Top view of the open-pit mine in Prosilio region (Kozani, NW Greece) with indicative
sampling points (white arrows) of the studied clayey steriles.

2.2. Formation of Ceramic Samples

The raw materials were dried at 110 ◦C for 24 h and milled in a planetary mill to a
particle size <125 µm. Three blends were prepared, consisting of W and CSM in different
proportions. Specifically, CSM was added at 20, 50, and 80 wt%, replacing the respective
amount of the clay-body (W). Thereafter, the produced samples were named as W20, W50,
and W80. Reference samples consisting of 100 wt% W and CSM, respectively, were also
formed for comparison with the blended ones. Homogenization of the dry powders was
carried out in a plastic bag that was hermetically sealed and thoroughly stirred for about
10 min. Afterwards, water was added by spraying in order to ensure a minimum moisture
content of 6–8 wt%, necessary for the shaping method of dry pressing [31]. Compaction
of the rectangular samples (100 mm × 20 mm × 10 mm) was achieved by filling loose
materials in a stainless-steel mold and applying uniaxial pressure at about 225 bar using a
hydraulic piston pump (ENERPAC, XA12G, 720 W JAMES ST, Columbus, WI, USA). The
green bodies were left overnight at room temperature and, afterwards, in a laboratory oven
for drying at 110 ◦C until they were constant in weight. Firing took place with a controlled
temperature gradient in an electrical muffle furnace up to 1000 ◦C following a 36 h thermal
cycle including heating and cooling to room temperature. The soaking time at the peak
temperature lasted 4 h.
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2.3. Characterization of Raw Materials and Ceramics

For both raw materials, several analyses were performed in order to determine their
physico-chemical and thermal properties. Powder X-ray diffraction (XRD) analysis was
applied for the detection of mineralogical phases using a Bruker D8 Advance Diffrac-
tometer (Bruker, Billerica, MA, USA) with CuKα radiation at 40 kV and 30 mA. The 2θ
scanning range was between 2 and 70◦ for bulk composition samples, and 2 and 20◦ for clay
fractions (prepared after air drying and treatment with ethylene glycol). The step size was
0.015◦/0.1 s. For the qualitative identification of the mineralogical phases, DIFFRACplus
EVA v.12® software (Bruker-AXS, Billerica, MA, USA) was used, based on the ICDD Pow-
der Diffraction File of PDF-2 2006. The semi-quantitative analyses of bulk compositions
were based on the peak area method and calculated using the same software (EVA®) and
its “Area tool”. The chemical composition was determined with a RIGAKU ZSX PRIMUS
II wavelength dispersive spectrometer (WD-XRF) equipped with a 4 KW Rh X-ray tube
using pressed pellets. Simultaneous thermal analysis measurements were conducted by
means of Differential Scanning Calorimetry and Thermogravimetry (DSC/TG) using the
NETZSCH STA 449F3 Jupiter® (NETZSCH-Gerätebau GmbH, Selb, Germany) which runs
under the Proteus® software (Version 5.2.1/29 November 2011). Powder samples taken
from the humidified blends (Section 2.2) were placed in alumina crucibles with a pierced
lid and heated over a controlled temperature ramp at 10 ◦K/min from 25 to 1000 ◦C under
a nitrogen atmosphere.

The ceramic samples were evaluated for their physico-mechanical properties accord-
ing to relevant standard methods and techniques. Total linear shrinkage after firing was
determined according to ASTM C 326 [32]. Apparent porosity, water absorption, and bulk
density were measured following the procedures of the ASTM C 373 [33] standard. Investi-
gation of the developed microstructures was carried out by SEM (JSM-6300, Jeol, Tokyo,
Japan) on gold-coated ceramic surfaces. Flexural strength was evaluated using the DILLON
testing machine (model: DTM, Force Measurement Products and Systems, Fairmont, MN,
USA) equipped with a three-point bend attachment. A constant rate of 1 mm/min was
applied for the load displacement until failure of the ceramic beams occurred.

3. Results and Discussion
3.1. Physico-Chemical Properties of Raw Materials
3.1.1. Chemical and Mineralogical Composition

The results of the X-ray fluorescence (XRF) analysis are shown in Table 1. The refer-
ence clay-body presents a typical chemical composition of a Ca-rich clay suitable for the
manufacturing of white-creamy ceramic products (e.g., bricks and/or roofing tiles). The
clayey sterile materials consist mainly of SiO2, Al2O3, Fe2O3, and MgO along with minor
components, such as CaO, K2O, TiO2, and Na2O. The main differences among the two
raw materials are in the content of alkaline earth oxides (CaO and MgO), which for W
is about 15.8% and, for CSM, ~5.9%. These are known as important sintering promoters
in the production of ceramic materials. Additionally, the fluxing oxides (Na2O and K2O)
are higher in the case of W (~3.1%), as in CSM (~1.1%). The higher amount of Fe2O3 in
CSM is noteworthy, at about double that of W (5.3%), which anticipates the formation
of the enhanced liquid phase during firing, but also changes related to the final color of
the samples.

Regarding the mineralogical composition (Figure 2), the clay-body consists of quartz,
albite, calcite, and phyllosilicate minerals of chlorite and illite/muscovite. As for the
studied clayey sterile, differences are observed in the received XRD-pattern compared to
the reference clay-body. It is characterized as bentonite clay since it consists mainly of
smectite (84 wt%) and lower amounts of quartz (6 wt%), calcite (5 wt%), alkali feldspars
(2 wt%), and other phyllosilicates (3 wt%).
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Table 1. Chemical composition (in wt%) of the raw materials W and CSM and their blends W20,
W50, and W80 (calculated).

SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2 L.O.I

W 48.29 13.61 12.72 5.30 3.11 2.49 0.59 bdl 13.64
W20 48.91 14.10 10.42 6.24 3.40 2.19 0.51 0.21 13.42
W50 49.82 14.84 7.01 7.64 3.84 1.73 0.36 0.51 13.15
W80 50.73 15.59 3.60 9.04 4.29 1.26 0.22 0.81 12.88
CSM 51.34 16.09 1.32 9.98 4.58 0.95 0.13 1.03 12.70

bdl = below detection limits.
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3.1.2. Thermal Analysis

A simultaneous TG-DSC analysis was applied to investigate the firing behavior of the
individual raw materials and their mixtures, the results of which are depicted in Figure 3.
The clay-body was also used in other experimental studies [34] and presents a typical
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behavior of a Ca-rich clay-body over the studied temperature range (25–1000 ◦C), with
a total mass loss of about 13.4%, mainly attributed to calcite decomposition occurring
between 700 and 810 ◦C. The CSM sample shows minor variations in dehydration behavior,
with distinct differences in the endothermic peak system (DSC curve) compared to W,
mainly due to the different mineralogical composition. Thus, for heating up to 150 ◦C,
a strong endothermic peak is observed resulting from dehydration reactions of sorbed
moisture, mostly interlayered, typical for smectite group minerals. During this decomposi-
tion, a gradual continuous mass loss of about 18.7% is evident on the respective TG curve
(Figure 3a). This content falls within the humidity range (7.9–18.9%) stated elsewhere [23]
for a similar clayey sterile. In the temperature region of 450–550 ◦C, a small endothermic
deflection appears with a maximum at 500 ◦C, ascribed to the dehydroxylation phenomena,
with a corresponding mass loss of 6.7%, approximately. In some instances, the dehydroxy-
lation of smectite minerals may also be observed in other temperature intervals than the
above described, and this mainly depends on their mineral sub-groups, i.e., dioctahedral
and trioctahedral, which are characterized by different cation-exchange capacities [35].
Generally, throughout the phyllosilicates, the dehydroxylation peak of magnesium species
always appears at higher temperatures (e.g., 770–860 ◦C), whereas for Fe-smectites, it
appears at lower temperatures (e.g., 450–520 ◦C) [36,37]. The latter is also observed in the
case of the studied CSM. With the further increase in temperature, a broad endo-peak in the
600–850 ◦C region can be distinguished, with a maximum at 750 ◦C, followed by a small
exo-peak at about 900 ◦C, associated with structural rearrangements upon dehydroxylation
and recrystallization to new phases. For the three blends, W20, W50, and W80, similar
TG-DSC curves are obtained but with markable displacements of the endo-peak in the
680–800 ◦C region (Figure 3b). The differences may vary up to 80 ◦C with respect to the
maximum peak of the reference clay-body (795 ◦C). Certainly, this behavior may be related
to the CSM content in the raw mix, as for W20, W50, and W80, this peak is given at 762 ◦C,
745 ◦C, and 713 ◦C, respectively. In conjunction with this, the mass losses (Figure 3a) show
no further reduction after heating at 800 ◦C, indicating that all decomposition reactions are
completed at this point. Seemingly, sintering of the ceramic bodies may also be achieved
at 50 ◦C lower than 1000 ◦C, as indicated from the DSC results and the peak representing
crystallization on new phases at about 900 ◦C. Nevertheless, this assumption needs to be
further investigated by testing the additional firing temperatures of the green samples (e.g.,
900 and 950 ◦C).

3.2. Final Properties of Ceramic Samples
3.2.1. Mineralogical Composition

The mineralogical phases detected after firing at 1000 ◦C are presented in Figure 4.
In the case of the reference sample W, it consists mainly of primary quartz and the new
phases of Ca-feldspars (anorthite), and less sanidine, as well as low amounts of diopside,
gehlenite, and hematite formed after the decomposition of phyllosilicate minerals and
calcite contained in the raw material. Despite the similar mineralogy, the W20 sample
presents lower quartz intensities and higher ones in the case of feldspars, diopside, and
hematite compared to W. This is attributed mainly to the decomposition upon the firing
of the clay minerals included in CSM. Besides, higher concentrations of fluxing agents
such as iron oxide further enhance the reaction kinetics. Generally, it is noticed from the
XRD patterns that the increase in clayey steriles in the reference clay-body (W) leads to a
reduction in quartz intensities. Nevertheless, in the sample with 50 wt% of clayey sterile
(W50), diopside or gehlenite are distinguished with difficulty due to the lower calcium
oxide concentrations, while alkali feldspars seem to predominate. Moreover, hematite peak
intensity indicates an increase while spinel group minerals were detected (mainly as solid
solution of hercynite and spinel). The W80 sample consists of lower quartz and feldspars
compared to W50 and higher amounts of hematite and spinels, while the polymorph of
SiO2 cristobalite is clearly detected. Due to the high transformation and high expansion
of cristobalite associated with volume decrease upon cooling, ceramic bodies may suffer
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from this inversion if no sufficient flux is available to produce an adequate glassy phase
in which it can dissolve. This polymorph of silica (cristobalite) presents a volume change
during inversion which is greater than that of quartz. Regarding the fired clayey sterile
sample (CSM), it indicates a more amorphous character with lower peak intensities of
quartz and other crystalline phases (mainly spinel, hematite, and cristobalite). This mineral
composition demonstrates that during firing, the decomposition of predominant smectite
led to a fine amorphous homogeneous matrix, while the crystallization was not favored at
1000 ◦C, despite the higher amounts of liquid phases.
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Figure 4. Powder X-ray diffraction patterns of the fired samples at 1000 ◦C. Abbreviations: Qz—quartz, Crs—cristobalite,
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3.2.2. Physico-Mechanical Properties

The results of the physical and mechanical properties determined on fired samples
are shown in Table 2. It is obvious that the quality of the end products is clearly affected
by the addition of CSM in the reference clay-body. In particular, the increase in CSM
content leads to dimensional changes in the samples, as presented by the increased values
of total linear shrinkage after firing (LS), which is more evident for substitutions over
50 wt%. Accordingly, a compact structure seems to have been formed during firing, as
reflected by the decreased apparent porosity (AP) and the increased bulk density (BD)
values with respect to the reference body. In the case of flexural strength, the samples
W20 and W50 present values of about 23 MPa, close to the bending strength obtained for
W (24.5 MPa). However, a strong decrease of about 47% is observed for samples W80 in
comparison to the reference ones, but still within the specifications of clay bricks (>5 MPa).
Ceramics consisting of 100 wt% CSM present a variety of small cracks on their surface after
firing (Figure 5), mainly attributed to the higher linear shrinkage (11.95%) in comparison
with the other samples. This phenomenon is associated with phase transition and the
crystallization of new phases (~900 ◦C), which is in total agreement with the respective
endo/exo effects observed by the DSC analysis (Figure 3). Consequently, mechanical
testing on representative samples was not possible. However, only one individual sample
that did not present visible defects on its surface underwent bending failure and yielded a
value of about 6 MPa. An important parameter affecting the mechanical durability may be
the brittleness of smectite-rich clay-bodies, which is associated with their higher shrinking–
swelling capacity than other clay minerals [38]. Cracking phenomena and dimensional
stability problems of the fired sample may also arise if, within the increased amount of the
amorphous phase, no appropriate fillers are present (e.g., quartz) in order to stabilize the
final structure (Figure 4).
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Table 2. Technological properties of fired samples. LS: linear shrinkage after firing, AP: apparent
porosity, WA: water absorption, BD: bulk density and 3PBS: three-point bending strength.

LS
(%)

AP
(%)

WA
(%)

BD
(g/cm3)

3PBS
(MPa)

W 1.45 ± 0.06 31.65 ± 0.66 16.9 ± 0.4 1.87 ± 0.01 24.52 ± 1.71
W20 1.95 ± 0.11 30.11 ± 0.43 16.4 ± 0.3 1.84 ± 0.01 23.11 ± 2.16
W50 3.14 ± 0.06 27.34 ± 0.25 14.3 ± 0.2 1.91 ± 0.01 23.02 ± 3.23
W80 8.19 ± 0.06 15.75 ± 0.50 7.3 ± 0.3 2.16 ± 0.01 12.91 ± 2.83
CSM 11.95 ± 0.15 11.60 ± 1.03 5.0 ± 0.5 2.34 ± 0.03 nd

nd = not determined.
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Figure 5. Fired sample consisting only of CSM (100 wt%). Visible cracks appear on the surface.

Moreover, the phase transitions during firing clearly affected the color appearance of
the final specimens, as shown in Figure 6. The increase in CSM in the clay-body gradually
changed the hue of the ceramics from creamy-ochre to reddish. Additionally, the sample
with 100% of CSM presented an intensified red-orange color, mainly due to higher amounts
of iron-bearing phases.
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3.2.3. Microstructural Evolution

Figure 7 shows secondary electron images of polished ceramic surfaces. The reference
sample (Figure 7a) shows a typical microstructure of a ceramic body, characterized by open
and interconnected porosity where quartz grains can be distinguished. With the addition
of the clayey sterile into to the clay-body, alterations are observed in the morphology of the
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ceramic matrix denoted by the different appearance of crystal grains (e.g., their smaller
size) and the irregular development of porosity, mainly in the case of W20 (Figure 7b). For
W50 (Figure 7c), however, a decrease in porosity is observed, along with an increase in
vitrified regions, where quartz grains have been dissolved in agreement with the reduced
peak intensity of quartz, as indicated by XRD results (Figure 4). The ceramic sample with
the highest substitution amount of CSM (W80) consists predominantly of the amorphous
phase, resulting in a denser microstructure than the previous tested blends (W20 and
W50) in accordance with the higher bulk density and the increased linear shrinkage after
firing, as depicted in Table 2. This evolution of microstructure is more pronounced in
the case of the CSM sample (Figure 7d), where porosity is almost diminished due to the
enhanced liquid phase formation. No grains are visible in this micrograph, indicating that
all clay minerals underwent complete transformation or were completely dissolved in the
liquid phase.
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(e) CSM, fired at 1000 ◦C. Scale is 100 µm. Magnification (×400).

4. Conclusions

This preliminary study investigated the potential valorization of a high-smectite
clayey sterile material from the Prosilio region (Kozani, NW Greece) in the application
field of traditional ceramics, e.g., roofing tiles and/or bricks. The samples manufactured at
lab-scale were evaluated in terms of physical and mechanical properties, as well as for their
crystalline phases formation and microstructural evolution after firing at 1000 ◦C. From the
obtained results, it can be concluded that CSM should be considered as a viable substitute
for a calcium-rich clay-body, since additions up to 50 wt% resulted in end products with
technological properties comparable to the reference clay-body. The increase in CSM to
80 wt% led to the reduction in porosity and water absorption values, whereas bulk density
and linear shrinkage increased both, but with no coherent increase in bending strength. For
the latter formulation, increased iron oxide content in CSM in conjunction with the lower
mineralizer oxides (CaO) and fillers (quartz) led to the formation of a weak crystalline
structure and an enhanced liquid phase upon firing.

However, for the manufacturing of qualitative ceramic end products, the above-
stated issues can be regulated starting from the design of the batches with respect to the
raw material’s chemical and mineralogical composition. Under this prism, clayey sterile
materials, along with other characteristics (e.g., lower smectite contents), could improve
the sintering behavior of the tested samples due to the contained clay minerals.
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