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Abstract: The Amazon soils demand high rates of fertilizer application to express high agricultural
potential, making it necessary to carry out frequent monitoring of ecological functions and biogeo-
chemical processes in this important biome. The concentrations of As, Ba, Cd, Co, Cr, Cu, Hg, Ni,
Pb and Zn and contamination indexes were studied in Oxisol and Ultisols cultivated with citrus
(Citrus sinensis (L.) Osbeck), oil palm (Elaeis guineensis Jacq.) and black pepper (Piper nigrum L.), at
26, 10 and 5 years of implantation, respectively. The potential risk of contamination was estimated
by the enrichment (EF) and bioaccumulation (BAF) factors. Moderate enrichment of Ba, Pb and Zn
(2 < EF < 5) and significant enrichment of As and Cu (5 < EF < 20) were observed. In addition, the
following orders of bioaccumulation were found: oil palm—Cu > Zn > Hg > Ni > Ba > Co > As > Cr
> Cd ≈ Pb; black pepper—Zn > Hg > Cu > Ba > Ni > Co > Pb >> As > Cr > Cd; and citrus—Hg >
Ni > Ba > Zn > Co > Cu > As > Pb >> Cr > Cd. However, all elements are in concentrations below
the prevention and investigation values established by Brazilian legislation, that is, the management
practices in the crops studied are not contributing with damage to soil and human health risks.

Keywords: soil chemistry; enrichment factor; soil pollution; risk assessment

1. Introduction

The Brazilian Amazon is a new agricultural frontier and a major food producing area,
exporting soy and beef to global markets [1]. In this biome, there is a pressing challenge to
reconcile food production and conservation of natural ecosystems [2]. The state of Pará is
the second largest Brazilian state, with 1,247,955 km2, of which approximately 57% consists
of indigenous territories and protected areas, representing 29.73% of the Brazilian Amazon
(4,196,943 km2) and 14.65% of the Brazilian territory. The main economic activities in the
state of Pará and in the Amazon include agriculture, mainly livestock, crop production,
and mining [3,4]. In 2017, the state of Pará produced 286,768 tons of citrus, 1,634,476 tons
of oil palm, and 39,577 tons of black pepper, which respectively represents 2.0, 97.0, and
50.0% of the national production [5].

The growing demand for food production and energy generation, associated with
society’s call against the conversion of forests into agricultural areas in the Amazon, has
intensified the use of fertilizers in order to increase crop productivity. The raw materials
used in the production of phosphate and micronutrient fertilizers usually contain several
chemical elements, which depending on the amount and time of application, can become
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an environmental concern [6–10]. In addition, the disposal of waste and the application of
pesticides and fertilizers can increase the concentration of potentially toxic elements (PTEs),
such as Pb, Cd, Cu, Mn, Zn and Hg, in soils and groundwater, which may cause toxicity
risks to the ecosystem and human health [11–17]. Although these elements occur naturally,
anthropogenic sources contribute significantly to increased rates of PTE redistribution
among the compartments of the environment [18,19].

In this way, environmental preservation agencies have used standardization mod-
els and techniques in order to distinguish natural and anthropogenic sources of PTEs in
soils [20–24]. In addition, scientific studies have established background values (natural
source), which can be used to assess the occurrence of changes associated with anthro-
pogenic activities [25–27].

The enrichment factor (EF) obtained from the ratio between the PTE concentration in
the cultivated soil and the concentration under natural conditions (background value) have
been widely used to assess the effects of pedogenetic processes and other non-lithogenic
factors, including the human influence on the concentration of chemical elements in the
environment [24,28–35]. Alagarsamy and Zhang [36] classified the EF of an element as
natural when EF = 1, enriched when EF > 1, and depleted when EF < 1. Rubio et al. [37]
consider EF values between 1 and 3 as moderate, from 3 to 6 as strong, and higher than 6
as severe. EF values > 2 are strongly related to anthropic actions [38]. The ratio between
the concentrations of PTEs in plant tissues and the total concentration in soils, which is
called bioaccumulation factor (BAF), is one of the most important input variables in human
health risk assessments [39,40].

The determination of the PTE concentrations in agricultural soils, as well as the
calculation of indexes based on these levels, with a view to the evaluation of soil quality,
can provide qualitative and quantitative information in environmental risk assessments.
Such studies are scarce in the agricultural frontiers of the Amazon, whose agricultural
areas demand high rates of inputs, especially phosphate fertilizers. Therefore, the present
study aimed to (i) evaluate the PTE concentrations in soils of agroecosystems of citriculture,
pipericulture and oil palm in the Amazon; (ii) determine the contamination indexes, such
as the enrichment and bioaccumulation factor and; (iii) establish/discuss relations with
natural values and safety standards of environmental protection agencies.

2. Material and Methods
2.1. Study Site

The study site is located in the Brazilian Amazon (Figure 1), represented by commercial
plantations of citrus (Citrus sinensis (L.) Osbeck) with 26 years of implantation (1◦48′08′′ S
47◦11′56′′ W); oil palm (Elaeis guineensis Jacq.) with 10 years of implantation (2◦13′18′′ S
48◦47′52′′ W); and black pepper (Piper nigrum L.) with 5 years of implantation (1◦47′07′′ S
47◦04′07′′ W). The predominant soil orders correspond to Oxisols and Ultisols [41], which
are usually characterized by high acidity, low availability of nutrients, and dominance of the
sand fraction in the surface layer, with predominance of kaolinite in the clay fraction [42].

In the implantation of the citrus cultivation, 3 kg of chicken manure and 26.2 g of P
(60 g of P2O5—single superphosphate) were applied per pit, as well as 60 g of N (133.3 g of
urea) and 24.9 g of K (30 g of K2O—potassium chloride) per plant. From the second to the
fifth year, 200 g of N (444.4 g of urea), 39.3 g of P (90 g of P2O5—triple superphosphate),
and 149.4 g of K (180 g of K2O—potassium chloride) were applied per citrus plant. From
the sixth year on, the production fertilization started with 80 kg ha−1 of N (177.8 kg of
urea), 8.7 kg of P (20 kg ha−1 of P2O5—triple superphosphate), and 33.2 kg of K (40 kg ha−1

of K2O—potassium chloride). In the oil palm cultivation area, 2.3 kg ha−1 of P (5.3 kg ha−1

of P2O5—Arad natural reactive phosphate) was applied, in addition the formulation NPK
11-07-23 + 2.5% Mg + 0.5% B, and annual applications of the formulation NPK 10-07-22.
For the implantation of black pepper cultivation, 1.5 kg of chicken manure and 38.2 g of P
(87.5 g of P2O5—thermophosphate Yoorin) were used per pit. In the first and second years,
22.5 g of N (50 g of urea), 8.1 g of P (18.45 g of P2O5—triple superphosphate), and 24.9 g of
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K (30 g of K2O—potassium chloride) were applied per plant. From the third year onwards,
67.5 g of N (150 g of urea), 10.7 g of P (24.6 g of P2O5—triple superphosphate), and 48.1 g
of K (58 g of K2O—potassium chloride) were added per plant. In addition to fertilization,
the cupric fungicide known as Bordeaux mixture (CuSO4 + Ca (OH)2) was also applied in
the cultivations of citrus and black pepper. All plantations were irrigated using water from
wells located on the respective areas.
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2.2. Sampling and Analyzes of Soils and Plants

The soils were sampled in the 0–0.2 m layer. In each crop area, 10 subsamples were
collected to form one composite sample, with three replications, making a total of 30 sub-
samples and 3 composed samples by cultivation area. Soil samples were also collected in
areas adjacent to the plantations, composed of native or naturally recovered vegetation
(regionally called capoeiras), which were considered as reference areas.

Plant samples were collected at the same points of soil collection, to verify the bioac-
cumulation potential of PTEs by cultivation. Leaf sampling in black pepper and citrus
plantations consisted of collecting freshly ripe leaves, in the middle third portion of the
crown per useful plant, in the order north, south, east and west [43,44]. For oil palm, from
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the third or fourth year of cultivation, the leaf sampling was performed on leaf No. 17
(from apex to base), considered as the best expression or the ideal physiological state for
the oil palm [45].

Chemical and granulometric analyses of soil samples were carried out according to
Silva [46]: pH in H2O and 1 mol L−1 KCl solution (1:2.5); Ca2+ and Mg2+ in 1 mol L−1

KCl solution, quantified by atomic absorption spectrophotometry; K+ extracted with
0.05 mol L−1 HCl solution, quantified by flame photometry; available P extracted with
0.05 mol L−1 HCl + 0.0125 mol L−1 H2SO4 (Mehlich-1) and determined by colorimetry; the
organic carbon was determined by the Walkley & Black method (wet combustion) with
potassium dichromate; the total Al2O3 was found by sulfuric attack; and the clay content
was determined by the pipette method [47].

The concentrations of PTEs in soils from each cultivation area were extracted using
acid digestion in a microwave oven (Mars Xpress, CEM Corporation, Matthews, NC,
USA) [48]. For this purpose, 0.5 g soil samples (100 mesh) were weighed and placed in
Teflon tubes, followed by the addition of the acid solution (HCl: HNO3 3:1). The extracts
were diluted with ultrapure water to a final volume of 50 mL and filtered (PTFE 0.45 mm).

To quantify the concentrations of PTEs in plants, the dry matter was powdered in a
Willey-type knife mill and processed in a 20-mesh sieve. After that, 2 mL of HNO3, 2 mL
of H2O2 and 5 mL of ultrapure water were applied in 250 mg of the plant material in
Teflon tubes, followed by digestion in a microwave oven (Mars Xpress, CEM Corporation,
Matthews, NC, USA) [49].

The concentrations of As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in all samples
were quantified by inductively coupled plasma mass spectrometry (ICP-MS), in triplicate,
including certified reference materials for soils (ERM® CC-141) and plants (ERM® CD281)
and blank samples.

2.3. Enrichment and Bioaccumulation Factors

The enrichment factor (EF) was calculated to verify the degree of contamination by
PTEs in the areas used for cultivation, in relation to the area without significant anthro-
pogenic effects (reference area—forest soil), whose concentrations of PTEs are mainly
associated with the parent material. Several elements are used for geochemical normaliza-
tion, such as Al, Ca, Fe, Mn, Ti and V [29]. In this study, the element used was Al2O3, which
guarantees more robustness and reliability to the results obtained, since its concentration
tends to be more uniform [36,37,50,51], following Equation (1) [29]:

EF = (Cn/Cr)/(Bn/Br) (1)

where Cn is the concentration of the PTE in sample n, Cr is the concentration of Al2O3 in
the same sample, Bn is the concentration of the PTE in the reference area, and Br is the
concentration of Al2O3 in the reference area. The EF values were classified according to
Sutherland [52], who divided this index into five classes: EF < 2, deficient to minimal enrich-
ment; 2 ≤ EF < 5, moderate enrichment; 5 ≤ EF < 20, significant enrichment; 20 ≤ EF < 40,
very high enrichment; EF ≥ 40, extremely high enrichment.

The bioaccumulation factor (BAF) has been widely used to understand the degree
of accumulation of a given contaminant in plant tissue [53–55]. In this study, BAF was
obtained using Equation (2) [56].

BAF = [Cp/Cs] (2)

where Cp is the concentration of PTE in plant tissue and Cs is the concentration of PTE in
the soil.

2.4. Statistical Analyses

The results were submitted to descriptive statistical analysis and the Shapiro–Wilk
normality test (p < 0.05). Data that did not follow the normal distribution were transformed.
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To understand the degree of the relationship between soil attributes and PTEs in soils and
plants, Pearson’s correlation analysis was carried out (p < 0.05). All statistical analyses
were performed using the software Statgraphics Centurion 18 (v. 18.1.14).

3. Results
3.1. Soil Attributes

According to the United States Soil Taxonomy [41], the soil of oil palm cultivation
is classified as Typic Hapludox, while the soils of black pepper and citrus cultivation are
classified as Typic Hapludult (Table 1). The soils of areas cultivated with oil palm and
citrus showed values of pH H2O equal to 4.6 and 4.7, respectively (Table 1), and the soil
cultivated with black pepper presented a pH H2O of 5.2. The ∆pH (pH KCl–pH H2O)
values of the soils in this study were −0.3, −0.5 and −0.6 for oil palm, black pepper and
citrus, respectively.

Table 1. Classification, chemical attributes and granulometry of the soils studied (n = 3).

Crops Oil Palm Black Pepper Citrus

Areas Cultivation Reference Cultivation Reference Cultivation Reference

Soil Order Typic Hapludox Oxisol Typic Hapludult Ultisol Typic Hapludult Ultisol

pH (in H2O) 4.6 ± 0.32 4 ± 0.26 5.2 ± 0.80 4.1 ± 0.06 4.7 ± 0.21 4.4 ± 0.25
pH (in KCl) 4.3 ± 0.29 3.7 ± 0.15 4.7 ± 0.62 3.7 ± 0.15 4.1 ± 0.49 3.8 ± 0.24

Ca2+ (mmolc kg−1) 9.6 ± 0.38 1.3 ± 3.01 34 ± 1.97 11.3 ± 0.42 13.7 ± 0.72 5.1 ± 1.0
Mg2+ (mmolc kg−1) 2.5 ± 0.1 1.7 ± 1.82 15 ± 0.57 10 ± 0.1 9 ± 0.17 1.2 ± 0.57

K+ (mmolc kg−1) 0.9 ± 0.09 0.6 ± 0.25 4.2 ± 0.36 0.5 ± 0.02 0.5 ± 0.05 0.1 ± 0.28
P (mg kg−1) 5 ± 4.8 2.6 ± 2.94 234 ± 194.32 1 ± 0.0 8 ± 7 1.5 ± 0.3

Al2O3 (g kg−1) 54.1 ± 9.11 54 ± 10.82 71.7 ± 31.55 52.9 ± 36.98 53.6 ± 12.82 48.8 ± 10.31
Organic carbon (g kg−1) 11.6 ± 3.5 13.5 ± 2.54 16 ± 7.46 11 ± 3.05 6.9 ± 3.16 9.7 ± 2.05

Clay (g kg−1) 277 ± 78.11 303 ± 102.39 171 ± 76.51 168 ± 50.86 60 ± 11.55 63 ± 49.65
Sand (g kg−1) 590 ± 115.36 599 ± 155.88 712 ± 58.51 758 ± 60.35 919 ± 16.65 879 ± 92.86
Silt (g kg−1) 133 ± 40.25 98 ± 40.41 117 ± 24.68 74 ± 9.87 21 ± 6.11 58 ± 43.89

The concentration of Ca2+ was 9.6 mmolc kg−1 in the oil palm areas, while it was
equal to 13.7 and 34 mmolc kg−1 for citrus and black pepper areas. The concentrations
of Mg2+ were 2.5, 15 and 9 mmolc kg−1 in the areas of oil palm, black pepper and citrus,
respectively. The level of K+ was lower in soils cultivated with oil palm and citrus (0.9
and 0.5 mmolc kg−1, respectively) when compared to the black pepper cultivation area
(4.2 mmolc kg−1).

The available P concentrations were 5, 234 and 8 mg kg−1 in oil palm, black pepper
and citrus soils, respectively. The organic carbon content was lower in soils cultivated with
oil palm (11.6 g kg−1) and citrus (6.9 g kg−1) in relation to the black pepper cultivation area
(16 g kg−1). The predominant particle size fraction in all studied soils was sand (Table 1).

3.2. Concentrations, Enrichment and Bioaccumulation of PTEs

The average PTE concentrations obtained for the studied soils, both in the cultivation
areas and in the natural forest (reference area), are shown in Table 2. In general, the soil
cultivated with oil palm exceeded the values found in the native area for As, Ba, Cr and Pb.
The soil cultivated with black pepper showed concentrations of Ba, Cr, Cu, Ni, Pb and Zn,
higher than the values found in the native area. In the soil cultivated with citrus, in turn,
this behavior was observed only for Cu and Zn. The Cd values were similar in all sampled
areas and small variations were observed for Co and Hg. In soils cultivated with oil palm
and black pepper, there was enrichment by As, Ba and Pb (Figure 2). The soils cultivated
with black pepper and citrus showed enrichment by Cu, and only the soil cultivated with
citrus presented enrichment by Zn (Figure 2).
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Table 2. Concentrations of potentially toxic elements in soils and quality guidelines.

Area
As Ba Cd Co Cr Cu Hg Ni Pb Zn

mg kg−1

Oil palm 1.3 ± 3.06 24.8 ± 4.04 0.4 ± 2.82 1.0 ± 0.56 50.0 ± 0.41 2.0 ± 0.82 0.05 ± 12.88 2.0 ± 0.34 7.0 ± 0.43 8.0 ± 0.98
Reference 0.1 ± 0.09 10.3 ± 4.97 0.4 ± 2.00 2.0 ± 0.06 40.0 ± 0.38 2.0 ± 0.80 0.06 ± 12.00 6.0 ± 0.86 2.0 ± 0.66 11.0 ± 1.48

Black Pepper 2.0 ± 1.53 32.3 ± 0.87 0.4 ± 3.41 2.0 ± 0.43 70.0 ± 6.02 16.0 ± 1.78 0.05 ± 12.01 4.0 ± 0.47 6.0 ± 0.18 19.0 ± 1.23
Reference 0.2 ± 1.06 10.3 ± 0.69 0.4 ± 2.89 2.0 ± 0.24 50.0 ± 8.00 2.0 ± 0.89 0.07 ± 11.98 2.0 ± 0.55 1.0 ± 0.07 8.0 ± 2.00

Citrus 0.6 ± 2.89 17.0 ± 0.25 0.4 ± 3.10 2.0 ± 0.60 40.0 ± 0.52 36.0 ± 1.70 0.05 ± 13.01 2.0 ± 1.83 4.0 ± 0.29 21.0 ± 2.65
Reference 0.9 ± 1.91 18.9 ± 0.91 0.4 ± 3.00 2.0 ± 0.10 50.0 ± 0.28 5.0 ± 1.49 0.05 ± 12.57 3.0 ± 1.38 5.0 ± 0.38 9.0 ± 2.12

QRV- Pará 75th a 1.4 14.3 0.4 - 24.1 9.9 0.26 1.4 4.8 7.2
QRV- Pará 90th a 2.6 33.4 0.9 - 35.5 18.2 0.45 6.1 7.5 21.0

QRV- Brazil b 3.5 75.0 <0.5 13.0 40.0 35.0 0.05 13.0 17.0 60.0
PV- Brazil b 15.0 150.0 1.3 25.0 75.0 60.0 0.50 30.0 72.0 300.0
RV- Brazil b 35.0 300.0 3.0 35.0 150.0 200.0 12.0 70.0 180.0 450.0

a Quality reference values established for soils from the state of Pará [25]; b Quality criteria established for soils of Brazil (QRV = Quality
reference value; PV = Prevention value; RV = Research value) [23].
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Figure 2. Enrichment factors of PTEs in areas cultivated with oil palm (Typic Hapludox), black pepper (Typic Hapludult-1)
and citrus (Typic Hapludult-2).

The PTEs in plant tissues showed great variation between crops (except Cd, which
remained constant) and, in general, the highest levels were observed for the citrus, with
the exception of Zn, which was higher in black pepper (Table 3).

Table 3. Concentrations of potentially toxic elements in plant tissues.

Crops As Ba Cd Co Cr Cu Hg Ni Pb Zn

mg kg−1

Oil palm 0.09 ± 0.00 9.00 ± 0.01 0.01 ± 0.00 0.10 ± 0.00 3.00 ± 1.73 4.10 ± 1.34 0.03 ± 0.01 1.03 ± 0.15 0.23 ± 0.06 13.33 ± 3.21
Black pepper 0.09 ± 0.00 23.33 ± 5.17 0.01 ± 0.01 0.57 ± 0.21 2.67 ± 0.57 13.50 ± 0.62 0.04 ± 0.01 2.70 ± 0.52 0.70 ± 0.35 25.00 ± 1.73

Citrus 0.16 ± 0.12 23.33 ± 5.77 0.01 ± 0.01 0.97 ± 0.64 3.33 ± 0.58 16.57 ± 0.40 0.08 ± 0.03 2.83 ± 0.93 1.03 ± 0.84 20.67 ± 1.16
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High Cu and Zn bioaccumulation factors (BAF) were obtained for oil palm (Figure 3).
In black pepper, a high bioaccumulation factor was obtained only for Zn. The elements Ba,
Hg, and Ni showed high bioaccumulation in citrus cultivation (Figure 3). In general, the
following bioaccumulation orders were obtained: BAF oil palm: Cu > Zn > Hg > Ni > Ba >
Co > As > Cr > Cd ≈ Pb; BAF black pepper: Zn > Hg > Cu > Ba > Ni > Co > Pb >> As > Cr
> Cd; BAF citrus: Hg > Ni > Ba > Zn > Co > Cu > As > Pb >> Cr > Cd.
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Figure 3. Bioaccumulation factors based on the average concentration of PTEs in plant tissues of the
citrus, black pepper and oil palm cultivation areas.

3.3. Correlation Study

Pearson’s correlation coefficients indicated that the PTEs were significantly correlated
in both soils and plants (Figure 4). In plants, significant and positive correlation coefficients
were observed between As–Co, As–Hg, As–Pb, Ba–Cd, Ba–Pb, Cd–Pb, Co–Pb, Co–Hg, as
well as and significant and negative coefficients between Cu–Zn (p < 0.05). Additionally,
the PTEs in the soils studied were also significantly correlated with the values of pH, Ca, K,
P, Al2O3, OC and granulometry (Figure 4).



Minerals 2021, 11, 990 8 of 15

Minerals 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

3.3. Correlation Study 

Pearson’s correlation coefficients indicated that the PTEs were significantly corre-

lated in both soils and plants (Figure 4). In plants, significant and positive correlation co-

efficients were observed between As–Co, As–Hg, As–Pb, Ba–Cd, Ba–Pb, Cd–Pb, Co–Pb, 

Co–Hg, as well as and significant and negative coefficients between Cu–Zn (p < 0.05). Ad-

ditionally, the PTEs in the soils studied were also significantly correlated with the values 

of pH, Ca, K, P, Al2O3, OC and granulometry (Figure 4). 

 

Figure 4. Heatmap of Pearson’s correlation coefficients between soil attributes and potentially toxic elements in soils and 

plants. *p = plant; *s = soil. 

4. Discussion 

4.1. Soil Attributes 

Even following the criteria and recommendations for the use of limestone and ferti-

lizers, all the studied soils have a high acidity (pH H2O < 5), with the exception of the black 

pepper cultivation, which presented a medium acidity [57]. In tropical regions, the cli-

matic conditions favor the leaching of bases, increasing acidity, including areas that have 

received liming. A study in the Eastern Amazon showed that Oxisols and Ultisols have a 

high acidity [42,58]. In the Western Amazon, Moreira and Fageria [59] studied 3340 soil 

samples collected in primary forest, secondary forest, native forest, fallow area, polycul-

ture and monoculture areas, and observed that more than 94% of the samples had acidity 

values in ranges considered high to very high, according to the classification by Venegas 

et al. [57]. 

The concentration of Ca2+ was considered low in the oil palm areas, while it was me-

dium and high for citrus and black pepper areas, respectively, according to the classifica-

tion by Venegas et al. [57]. The values of Mg2+ were classified as low in the oil palm areas, 

high in the black pepper area, and medium in the citrus area [57]. The concentration of K+, 

Figure 4. Heatmap of Pearson’s correlation coefficients between soil attributes and potentially toxic elements in soils and
plants. * p = plant; * s = soil.

4. Discussion
4.1. Soil Attributes

Even following the criteria and recommendations for the use of limestone and fer-
tilizers, all the studied soils have a high acidity (pH H2O < 5), with the exception of the
black pepper cultivation, which presented a medium acidity [57]. In tropical regions, the
climatic conditions favor the leaching of bases, increasing acidity, including areas that have
received liming. A study in the Eastern Amazon showed that Oxisols and Ultisols have a
high acidity [42,58]. In the Western Amazon, Moreira and Fageria [59] studied 3340 soil
samples collected in primary forest, secondary forest, native forest, fallow area, polyculture
and monoculture areas, and observed that more than 94% of the samples had acidity values
in ranges considered high to very high, according to the classification by Venegas et al. [57].

The concentration of Ca2+ was considered low in the oil palm areas, while it was
medium and high for citrus and black pepper areas, respectively, according to the classifica-
tion by Venegas et al. [57]. The values of Mg2+ were classified as low in the oil palm areas,
high in the black pepper area, and medium in the citrus area [57]. The concentration of K+,
in turn, was considered low in soils with oil palm and citrus, while the soil cultivated with
black pepper showed a high concentration.

The available concentration of P in oil palm, black pepper and citrus soils were, respec-
tively, very low, very high, and low, according to the classification by Venegas et al. [57].
Frazão et al. [60] evaluated oil palm plantations with 4, 8 and 25 years of implantation in
Amazon soils, and observed soil P contents equal to 4.3, 3.9 and 4.2 mg kg−1, respectively.
The higher P content in the soil of the area cultivated with black pepper may be related to
the residual effect of fertilization with thermophosphate [61].

The total organic carbon (TOC) was low in soils with oil palm and citrus when
compared to black pepper cultivation, due to the longer time of implantation of these crops
and the strong rainfall and high temperatures that prevail in this part of the Amazon, which
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contribute to the fast decomposition of organic matter [42]. In addition, in the area of black
pepper cultivation, the higher contents of organic carbon may be related to the greater
frequency of organic fertilization in relation to the other crops. Bayer and Mielniczuk [62]
observed that the organic matter content in Ultisol was reduced from 31 g kg−1, under
natural conditions, to 18 g kg−1, as a result of successive crops. Bowman et al. [63] observed
reductions from 55 to 63% in the TOC of the soil (0–15 cm) in sixty years of cultivation.
De Souza Braz et al. [64] found decrease in organic carbon of a Typic Hapludox from the
Eastern Amazon, after 15 years of pasture.

The clay contents of the studied soils were within the range observed by Birani et al. [58]
in Typic Hapludox (38 to 931 g kg−1) and Typic Hapludult (53 to 719 g kg−1), from the
Eastern Amazon. The results obtained indicate the predominance of the sand fraction,
which is a characteristic observed in most soils in the state of Pará [42].

4.2. Concentrations, Enrichment and Bioaccumulation

The average concentrations of PTEs, compared with the respective reference areas
(control), were higher for As, Ba, Cr and Pb in the oil palm cultivation; As, Ba, Cr, Cu, Ni,
Pb and Zn in the black pepper cultivation; and Cu and Zn in the citrus cultivation. The
use of mineral and organic fertilizers in the studied areas may have contributed directly to
increased concentrations of PTEs, since agricultural inputs are carriers of several chemical
elements [65]. Soils subjected to intensive cultivation for long periods tend to have higher
concentrations of PTEs [66].

However, in the soil with oil palm cultivation, Ni and Zn concentrations decreased
from 6.0 to 2.0 mg kg−1 and from 11 to 8.0 mg kg−1, respectively, indicating accumula-
tion/exportation by the crop. The bioaccumulation of Zn by the oil palm obtained in the
present study corroborates the results of Aini Azura et al. [67], who found increasing values
of Zn in oil palm leaves with different implantation ages (<10, >15 and >20 years), due to
phosphate fertilizer application.

The enrichment of Cu in areas cultivated with black pepper and citrus is associated
with the use of fungicides, such as Bordeaux mixture (CuSO4 + Ca (OH)2), which is com-
monly applied in these crops, resulting in increased concentrations of Cu in the soils [68–70].
Increased concentrations of Cu were also observed in soils of grape cultivation, resulting
from the application of fungicides [71–73].

The average concentration of Cd (0.4 mg kg−1) in the studied soils was not modified
by the cultivation and use of inputs. The soils showed values below 1 mg kg−1 of Cd, which
are expected in uncontaminated soils [74]. Under natural conditions, according to Kabata-
Pendias and Pendias [65], the average Cd value in soils is 0.53 mg kg−1. Campos et al. [75]
observed an average Cd concentration of 0.66 mg kg−1 in Oxisols from Brazil.

The concentration of As (0.1–2.0 mg kg−1) in this study was well below the average of
5.2 mg kg−1 (natural conditions) observed by Campos et al. [76] for 17 Brazilian Oxisols. In
Oxisol from the second largest Brazilian biome (Cerrado), Marques [77] obtained an average
As concentration of 38 mg kg−1. An average value of 10 mg kg−1 of As is considered
normal in uncontaminated soils [78,79]. The World Health Organization considers the
range from 1.0 to 40 mg kg−1 as natural in uncontaminated soils [80].

The Co concentrations from1.0 to 2.0 mg kg−1 in the soils with oil palm, citrus and
black pepper cultivation are below the background average (20.3 mg kg−1) observed by Dos
Santos and Alleoni [81] in soils from the Southwestern Amazon. The highest concentration
of Zn (21 mg kg−1) observed in soil with citrus cultivation was less than the average of
22.52 mg kg−1, obtained by Biondi et al. [82] in soils from the Northeastern Brazil. The
low concentrations of PTEs in the studied soils may be related to the sedimentary origin of
Amazon soils [42,83]. Other processes may have been preponderant for the results found
in the present study, such as the low adsorption capacity of the soils, increasing leaching,
followed by the absorption by plants [84,85].

Sandy soils, as those assessed in this study, have low adsorption capacity and allow
greater leaching of PTEs [86]. Tume et al. [87] observed positive correlations of the clay
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fraction with the concentration and mobility of PTEs in soils. However, EF values show
moderate enrichment of Ba, Pb and Zn (2 < EF < 5), and significant enrichment of As and
Cu (5 < FE < 20), indicating anthropogenic source.

The high BAF of Hg in citrus cultivation may be related to the low organic carbon
content in the soil. Yu et al. [88], studying the accumulation of Hg in plants, observed
an inverse relationship between the organic carbon and the concentration of Hg in plant
tissues, and the lower the organic carbon in the soil, the greater the concentration of Hg in
plants. In the plant tissues of black pepper, Duressa and Leta [89] observed concentrations
of As, Cd, Cr, Hg and Pb in the ranges of 0.43–0.81, 0.87–1.45, 0.55–2.25, 0.29–0.77, and
0.53–0.84 mg kg−1, respectively. Sebastian and Godwin [90] evaluated the concentrations
of Cd, Cu, Pb and Zn in two species of citrus and obtained average values of 0.45, 0.55,
1.34, and 6.27 mg kg−1 in C. reticulata and 0.84, 1.14, 1.75, and 4.41 mg kg−1 in C. sinensis,
respectively. In the present study, results of BAF higher than 1 were found for Cu and
Zn in oil palm cultivation; Ba, Hg and Ni in citrus cultivation; and Zn in black pepper
cultivation. Values of BAF above 1 indicate that the plant can be used in phytoremediation
programs [53].

In this study, the PTEs under agricultural conditions were in concentrations lower
than the quality reference values established by the Brazilian environmental protection
agency CETESB [20], with the exception of Cr in black pepper cultivation, indicating low
risk of environmental contamination and hazard to human health. It is convergent with
the results obtained by Fernandes et al. [25] for soils in the Eastern Amazon.

The concentrations of PTEs found in cultivated soils in this study were also lower
compared to the averages mentioned in previous studies. Mirzaei [91], studying the
ecological and human health risks of soil and grape heavy metals in long-term fertilized
vineyards in Iran, found average values of 51.82, 71.27, 22.50, and 1.09 mg kg−1 for Cu,
Zn, Pb, and Cd. Rehman [92] studied the occurrence and risks of PTEs in soil and water
from the Chitral urban environment, in Pakistan, and observed average concentrations
of Cd, Co, Fe, Mn, Ni, Pb, Zn and Mo corresponding to 1.99, 23.5, 45,791, 490, 17.8, 14.8,
86, and 16.6 mg kg−1. The lower concentrations that were observed in the present study
may be related to the lower capacity of most soils from the Eastern Amazon for retaining
these elements, due to their high natural acidity and to the high rainfall rates in the region,
which leads to the removal of elements by weathering [42].

4.3. Comprehensive Correlation of PTEs in Soil–Crop Systems

The correlation study was carried out to identify the degree of relationship between
soil attributes and PTEs in soils and plants. The significant correlations observed are
probably due to the multi-contamination from the frequent anthropogenic inputs [93,94].
In addition, no correlations were found for the same element in soil and plant (p < 0.05),
which is in agreement with previous studies [95,96] and indicates that PTEs in crops are
mainly from anthropogenic inputs, such as pesticides and vehicles powered by diesel or
gasoline that are used in harvesting and applying pesticides. For example, As, Hg and Pb
are common constituents of many pesticides (e.g., Chlorothalonil) [97]. In this study, the
high correlations between Cu–Zn, Cu–OC and Zn–OC suggest that the accumulation of Cu
and Zn may be associated with fertilizer application, especially organic fertilizers [98,99].

Furthermore, the correlation results suggest that Cd and Cu have a similar origin,
while As and Ba are from other similar sources, since positive correlations between different
PTEs imply similar origin [100]. The correlation coefficient between Pb and Hg was
significantly negative, indicating that these elements are probably from different sources.
In addition, the relationship between PTEs in soils and plants was varied for each element,
which suggests complex correlations of PTEs in soil and crops that may be caused by
competition between elements or plant selectivity, and pollution source [101,102].
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5. Conclusions

The soil cultivated with black pepper has better fertility when compared to the soils
cultivated with oil palm and citrus, which have higher acidity and lower concentrations of
exchangeable bases. The concentrations of As, Ba, Cr and Pb are higher in soils cultivated
with oil palm in relation to the respective reference area, as well as the concentrations of
As, Ba Cr, Cu, Ni, Pb and Zn in the black pepper cultivation, and Cu and Zn in the citrus
cultivation. Soil enrichment factors ranged from 0.3 to 13, indicating minimal to significant
enrichment. Despite this, all elements are in concentrations below the prevention and
investigation values established by Brazilian legislation. Bioaccumulation factors above 1
were observed only for Cu in oil palm cultivation (2.05), Zn in black pepper cultivation
(1.32), and Ba, Hg and Ni in citrus cultivation (1.37, 1.53 and 1.42, respectively). Pearson’s
correlation study revealed that PTEs are mainly derived from anthropogenic activities, such
as the use of machinery and application of pesticides. The results found in this study are
pioneering and indicate that the management practices of oil palm, black pepper and citrus
crops in the Eastern Amazon are not causing damage to the soil and risks to human health.
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