Deep Gold Exploration with SQUID TEM in the Qingchengzi Orefield, Eastern Liaoning, Northeast China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
5. Discussion
6. Conclusions
- The stratigraphic structure below the TEM section is generally a syncline structure, and there are secondary crumpled structures at the marble stratigraphic interface of the Dashiqiao Formation, with a depth of about 1500 m in the section 90–230 on the south side of the section, which is characterized by high resistivity. The 90–230 section is a high-conductivity area below 1500 m, which reflects the graphite-bearing marble and fracture zone of the Dashiqiao Formation, and is speculated to be a favorable area for deep gold mineralization. Negative values appear in the SQUID data of some stations, to varying degrees. This polarization phenomenon may be related to deep mineralization.
- The deep prospecting test carried out in the Qingchengzi ore concentration area shows that the SQUID TEM system has the advantages of the direct measurement of B-field, a long effective observation time, a high signal-to-noise ratio, and a significant exploration depth, especially in the conductive area. In the shallow detection of the high-resistance region, the dB/dt data are more sensitive to the conductive layer than the B-field data. The dB/dt data inversion results show the conductive layer more clearly than the B-field data in the high-resistivity region.
- Due to the obvious electrical difference in each lithology and stratum in the Qingchengzi ore concentration area, TEM has good application preconditions, and its inversion results can clearly reflect the fold shape of the stratum interface and the developed faults. Applying a large emission magnetic moment, a long time base, and a SQUID sensor has achieved good exploration outcomes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di, Q.Y.; Xue, G.Q.; Lei, D.; Zeng, Q.D.; Fu, C.M.; An, Z.G. Summary of technology for a comprehensive geophysical exploration of gold mine in North China. Sci. China Earth Sci. 2021, 64, 1524–1536. [Google Scholar] [CrossRef]
- Zhu, R.X.; Xu, Y.G.; Zhu, G.; Zhang, H.F.; Xia, Q.K.; Zheng, T.Y. Destruction of the North China Craton. Sci. China Earth Sci. 2012, 42, 1135–1159. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zheng, Y.C.; Geng, Y.S. Metallic refertilization of lishosphere along cratonic edges and its control on Au, Mo and REE ore systems. Miner. Depos. 2015, 34, 641–674. [Google Scholar]
- Zhang, S.H.; Hu, G.H.; Li, J.F.; Xiao, C.H.; Liu, X.C.; Zhang, Q.Q.; Yao, X.F.; Liu, F.X.; Wang, W.; Chen, Z.L.; et al. Ore-Controlling Structures and Metallogenic Favorable Area Prediction in Baiyun-Xiaotongjiabuzi Ore Concentration Area, Eastern Liaoning Province. Earth Sci. 2020, 45, 3885–3899. [Google Scholar]
- Yu, G.; Chen, J.F.; Xue, C.J.; Chen, Y.C.; Chen, F.K.; Du, X.Y. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb–Zn–Ag–Au orefield, Northeastern China. Ore Geol. Rev. 2009, 2009, 367–382. [Google Scholar] [CrossRef]
- Zhao, W.J.; Sha, D.M.; Huan, H.F.; Gao, T. Preliminary structure framework and concealed intrusive rocks in the Qingchengzi ore field in northeast China disclosed by large-scale two-dimensional audio-magnetotelluric sounding. In The Society of Exploration Geophysicist and the Chinese Geophysical Society GEM Xi’an; Society of Exploration Geophysicists: Xi’an, China, 2019; pp. 19–22. [Google Scholar]
- Sun, G.Q.; Wang, S.J.; Sun, H.Y.; Sun, Q.M. Controlled Source Audio Magnetotelluric Survey in the Liaodong Linjiapu Lead-Zinc Mine Prospecting on the Application. Gansu Metall. 2009, 31, 46–47, 106. [Google Scholar]
- Zhang, Z.H.; Liu, F.X. Discussion on the Significance of the Newly Discovered Mineralization Alteration Zone in the Baiyun Gold Deposit, Fengcheng City, Liaoning Province. Acta Geol. Sin. 2015, 89 (Suppl. S1), 251–253. [Google Scholar]
- Liu, Z.Y.; Xu, X.C. Synthetic Information Models and Analyses of Prospecting Perspective of the Qingchengzi Polymetal Metallogenic Mine in Eastern Liaoning Province. J. Jilin Univ. Earth Sci. Ed. 2007, 37, 437–443. [Google Scholar]
- Cheng, S.S.; Peng, L.H.; Sun, D.H.; Sun, D.H.; Wang, Z.H.; Chen, W. The exploration of deep geological structure in the Qingchengzi ore concentration area and its prospecting significance. Geophys. Geochem. Explor. 2021, 45, 859–868. [Google Scholar]
- Floyd, F.S. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar]
- Zhao, P.D.; Chen, Q.M.; Xia, Q.L. Quantitative Prediction for Deep Mineral Exploration. J. China Univ. Geosci. 2008, 19, 309–318. [Google Scholar]
- Xue, G.Q.; Chen, W.Y.; Yan, S. Research study on the short offset time-domain electromagnetic method for deep exploration. J. Appl. Geophys. 2018, 2018, 131–137. [Google Scholar]
- Ahmed, M.E.; Reda, A.Y.E.; Amin, B.P.; Hassan, M.; Milad, S. Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv. Space Res. 2021, 68, 3641–3662. [Google Scholar]
- Di, Q.Y.; Xue, G.Q.; Zeng, Q.D.; Wang, Z.X.; An, Z.G.; Lei, D. Magnetotelluric exploration of deep-seated gold deposits in the qingchengzi orefield, Eastern Liaoning (China), using a SEP system. Ore Geol. Rev. 2020, 122, 103501. [Google Scholar] [CrossRef]
- Guo, Z.W.; Xue, G.Q.; Liu, J.X.; Wu, X. Electromagnetic methods for mineral exploration in China: A review. Ore Geol. Rev. 2020, 118, 103357. [Google Scholar] [CrossRef]
- He, J.S.; Xue, G.Q. Review of the key techniques on short-offset electromagnetic detection. Chin. J. Geophys. 2018, 60, 1–8. [Google Scholar]
- Zeng, Q.D.; Chen, R.Y.; Yang, J.H.; Sun, G.T.; Yu, B.; Wang, Y.B.; Chen, P.W. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrol. Sin. 2019, 35, 1939–1963. [Google Scholar]
- Li, D.D.; Wang, Y.W.; Zhang, Z.C.; Tian, Y.; Zhou, G.C.; Xie, H.J.; Shi, Y. Characteristics of metallotectonics and ore-forming structural plane in Baiyun gold deposit, Liaoning. J. Geomech. 2019, 25, 10–20. [Google Scholar]
- Geng, G.J.; Ma, B.J.; Cong, Y.; Guo, L.L. Discussion on the Thrust Nappe Structure Deformation of Qingchengzi and Gold Ore-controlling, Liaoning Province. Gold Sci. Technol. 2016, 24, 26–31. [Google Scholar]
- Zhang, P.; Li, B.; Li, J.; Chai, P.; Wang, X.J.; Sha, D.M.; Shi, J.M. Re-Os Isotopic Dating and its Geological Implication of Gold Bearing Pyrite from the Baiyun Gold Deposit in Liaodong Rift. Geotecton. Metallog. 2016, 40, 731–738. [Google Scholar]
- Duan, X.X.; Zeng, Q.D.; Yang, J.H.; Liu, J.M.; Wang, Y.B.; Zhou, L.L. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong peninsula, Northeast China. J. Asian Earth Sci. 2014, 91, 107–124. [Google Scholar] [CrossRef]
- Liu, G.P.; Ai, Y.F. Studies on the mineralization age of Baiyun gold deposit in Liaoning. Acta Petrol. Sin. 2000, 16, 627–632. [Google Scholar]
- Wu, J.J.; Zhi, Q.Q.; Deng, X.H.; Wang, X.C.; Yang, Y.; Zhang, J.; Dai, P. Exploration of Deep Geological Structure of Baiyun Gold Deposit in Eastern Liaoning Province with TEM. Earth Sci. 2020, 45, 4027–4037. [Google Scholar]
- Chen, X.D.; Zhao, Y.; Wang, C.J.; Lv, G.Y.; Li, R.C.; Zhang, J. The Development of HTc RF SQUID Magnetometer and Its Field Test in TEM. Acta Geosci. Sin. 2002, 23, 179–182. [Google Scholar]
- Wang, C.J.; Chen, X.D.; Zhao, Y.; Wang, B.Z. Application of 77K SQUID magnetometer in TEM. Chin. J. Geophys. 1999, 42, 161–166. [Google Scholar]
- Wu, J.J.; Chen, X.D.; Yang, Y.; Zhi, Q.Q.; Wang, X.C.; Zhang, J.; Deng, X.H.; Zhao, Y.; Huang, Y. Application of TEM Based on HTS SQUID Magnetometer in deep Geological Structure Exploration in the Baiyun Gold Deposit, NE China. J. Earth Sci. 2021, 32, 1–7. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhao, Y.; Zhang, J.; Lv, G.Y.; Ma, P.; Dai, Y.D. The Applications of HTc SQUID Magnetometer to TEM. Chin. J. Geophys. 2012, 55, 702–708. [Google Scholar]
- Chen, X.D.; Zhao, Y.; Lin, T.L.; Yang, T.; Dai, Y.D. The Applications of HTc SQUID Magnetometer to LOTEM. Geophys. Geochem. Explor. 2012, 36, 65–68. [Google Scholar]
- Chen, X.D.; Zhao, Y.; Zhang, J.; Wu, J.J.; Zhao, J.X.; Xing, T.Z. Influence of Frequency Characteristics of Nonmagnetic Dewar on High Temperature Superconducting Magnetometer. Comput. Tech. Geophys. Geochem. Explor. 2007, 29, 292–303. [Google Scholar]
- Chen, X.D.; Zhao, Y.; Deng, X.H.; Lv, G.Y.; Zhang, J.; Zhao, J.X. The Development of the HTc SQUID Magnetometer and Its Application to TEM. Geophys. Geochem. Explor. 2006, 30, 229–232. [Google Scholar]
- Zhao, Y.; Chen, X.D.; Wang, C.J. The Intelligence Control System of Rf SQUID Magnetometer. Geol. Prospect. 2002, 38, 22–24. [Google Scholar]
- Zhi, Q.Q.; Wu, J.J.; Yang, Y.; Wang, X.C.; Chen, X.D.; Zhao, Y.; Deng, X.H.; Zhang, J. Superiority of BZ-based transient electromagnetic method and verification test in coastal tidal regions. Prog. Geophys. 2020, 35, 379–385. [Google Scholar]
- Le Roux, C.; Macnae, J. SQUID sensors for EM systems. In Exploration in the New Millennium: Proceedings of the Fifth Decennial International Conference on Mineral Exploration; Decennial Mineral Exploration Conferences: Toronto, ON, Canada, 2007; pp. 417–423. [Google Scholar]
- Chwala, A.; Stolz, R.; IJsselsteijn, R.; Bauer, F.; Zakosarenko, V.; Hübner, U.; Georg Meyer, H. “JESSY DEEP”: Jena SQUID Systems for Deep Earth Exploration. In 80th Annual International Meeting, SEG, Expanded Abstracts; Society of Exploration Geophysicists: Denver, CO, USA, 2010; pp. 779–783. [Google Scholar]
- Chwala, A.; Stolz, R.; Schmelz, M.; Zakosarenko; Meyeyr, M.; Georg Meyer, H. SQUID Systems for Geophysical Time Domain Electromagnetics (TEM) at IPHT Jena. IEICE Trans. Electron. 2015, 98, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Arai, E.; Katamama, H.; Hart, J. Application of a new TEM data acquisition system based on a HTS SQUID magnetometer (SQUITEM) to metal exploration in Broken Hill area. ASEG Ext. Abstr. 2007, 1, 1–5. [Google Scholar] [CrossRef]
- Smith, R.; Annan, P. The Use of B-Field Measurements in an Airborne Time-Domain System: Part I. Benefits of B-Field Versus dB/dt data. Explor. Geophys. 1998, 29, 24–29. [Google Scholar] [CrossRef]
- Foley, C.P.; Leslie, K.E.; Binks, R. A history of the CSIRO’s development of high temperature superconducting RF SQUIDs for TEM prospecting. In 18th Geophysical Conference and Exhibition of the ASEG, Extended Abstracts; Taylor & Francis: Melbourne, Australia, 2006; pp. 1–5. [Google Scholar]
- Zhang, J.; Lü, G.Y.; Guo, B.L.; Chen, X.D.; Wu, J.J.; Wang, X.C. The High Temperature Superconductivity TEM Transient Magnetic Field Pseudo-2D Inversion and Its Application Effect. Geophys. Geochem. Explor. 2010, 34, 205–208. [Google Scholar]
- Yin, C.C.; Miao, J.J.; Liu, Y.H.; Qiu, C.K.; Cai, J. The effect of induced polarization on time-domain airborne EM diffusion. Chin. J. Geophys. 2016, 59, 4710–4719. [Google Scholar]
- Spies, B.R. Discussion on “Peculiarities of SQUID Magnetometer Application in TEM”. Geophysics 2004, 69, 624–628. [Google Scholar] [CrossRef]
- Panaitov, G.; Bick, M.; Zhang, Y.; Krausem, H.J. Peculiarities of SQUID Magnetometer Application in TEM. Geophysics 2002, 67, 739–745. [Google Scholar] [CrossRef]
Parameters | Layer 1 | Layer 2 | Layer 3 |
---|---|---|---|
H (m) | 300 | 100 | - |
ρ (Ω·m) | 100 | 10 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhi, Q.; Deng, X.; Wang, X.; Chen, X.; Zhao, Y.; Huang, Y. Deep Gold Exploration with SQUID TEM in the Qingchengzi Orefield, Eastern Liaoning, Northeast China. Minerals 2022, 12, 102. https://doi.org/10.3390/min12010102
Wu J, Zhi Q, Deng X, Wang X, Chen X, Zhao Y, Huang Y. Deep Gold Exploration with SQUID TEM in the Qingchengzi Orefield, Eastern Liaoning, Northeast China. Minerals. 2022; 12(1):102. https://doi.org/10.3390/min12010102
Chicago/Turabian StyleWu, Junjie, Qingquan Zhi, Xiaohong Deng, Xingchun Wang, Xiaodong Chen, Yi Zhao, and Yue Huang. 2022. "Deep Gold Exploration with SQUID TEM in the Qingchengzi Orefield, Eastern Liaoning, Northeast China" Minerals 12, no. 1: 102. https://doi.org/10.3390/min12010102
APA StyleWu, J., Zhi, Q., Deng, X., Wang, X., Chen, X., Zhao, Y., & Huang, Y. (2022). Deep Gold Exploration with SQUID TEM in the Qingchengzi Orefield, Eastern Liaoning, Northeast China. Minerals, 12(1), 102. https://doi.org/10.3390/min12010102