Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores
Abstract
:1. Introduction
1.1. Importance of Ore Mineralogy
1.2. Infrared Technology
2. Materials and Methods
2.1. Material
2.2. Fourier Transformed Infrared (FTIR) Spectroscopy
2.2.1. FTIR Measurements
2.2.2. Spectra Pre-Processing
2.3. QEMSCAN
2.4. Multivariate Regression Methods
- I.
- A first PLS-R is applied to the full spectrum. The absolute values of regression coefficients of the obtained PLS model are calculated and used as an index for evaluating the importance of each variable.
- II.
- CARS sequentially select N subsets of wavelengths from N Monte Carlo sampling runs in an iterative and competitive manner based on the importance level of each variable. In each sampling run, a fixed ratio of samples is first randomly selected to establish a calibration model.
- III.
- A two-step procedure, including exponentially decreasing function (EDF)-based enforced wavelength selection and adaptive reweighted sampling-based competitive wavelength selection, is then adopted to select the key variables based on the regression coefficients.
- IV.
- Finally, a 10-fold cross validation is applied to choose the optimal subset of variables with the lowest RMSECV.
3. Results
3.1. Feature Identification
3.2. Multivariate Analysis for Modal Mineralogy
3.2.1. Optimal Pre-Processing Sequence Selection
3.2.2. Competitive Adaptive Reweighted Sampling (CARS) Partial Least Squares Regression (PLS-R) on Average Spectra
4. Discussion on the Potential Application to Geometallurgical Ore-Type Classification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pell, R.; Tijsseling, L.; Goodenough, K.; Wall, F.; Dehaine, Q.; Grant, A.; Deak, D.; Yan, X.; Whattoff, P. Towards sustainable extraction of technology materials through integrated approaches. Nat. Rev. Earth Environ. 2021, 2, 665–679. [Google Scholar] [CrossRef]
- Glass, H.J. Geometallurgy—Driving Innovation in the Mining Value Chain. In Proceedings of the Third AusIMM International Geometallurgy Conference (GeoMet) 2016, Perth, Australia, 15–16 June 2016; AusIMM: Melbourne, Australia, 2016; pp. 15–16. [Google Scholar]
- Ashley, K.L.; Callow, M.I. Ore variability: Exercises in geometallurgy. Eng. Min. J. 2000, 201, 24–28. [Google Scholar]
- Williams, S.R.; Richardson, J.M. Geometallurgical mapping: A new approach that reduces technical risks. In Proceedings of the Proceedings of 36th Annual Meeting of the Canadian Mineral Processors Conference, Ottawa, ON, Canada, 20–22 January 2004; CIM: Ottawa, ON, Canada, 2004; pp. 241–268. [Google Scholar]
- Dehaine, Q.; Filippov, L.O.; Glass, H.J.; Rollinson, G.K. Rare-metal granites as a potential source of critical metals: A geometallurgical case study. Ore Geol. Rev. 2019, 104, 384–402. [Google Scholar] [CrossRef] [Green Version]
- Dunham, S.; Vann, J.; Coward, S. Beyond Geometallurgy–Gaining Competitive Advantage by Exploiting the Broad View of Geometallurgy. In Proceedings of the The Firt AUSIMM International Geometallurgy Conference, Brisbane, Australia, 5–7 September 2011; pp. 5–7. [Google Scholar]
- Dehaine, Q.; Michaux, S.P.; Pokki, J.; Kivinen, M.; Butcher, A.R. Battery minerals from Finland: Improving the supply chain for the EU battery industry using a geometallurgical approach. Eur. Geol. J. 2020, 5–11. [Google Scholar] [CrossRef]
- Michaux, S.P.; O’Connor, L. How to Set Up and Develop a Geometallurgical Program—GTK Open Work File Report 72/2019; Geological Survey of Finland, Bulletin: Vuorimiehentie, Finland, 2020. [Google Scholar]
- Dominy, S.C.; O’connor, L.; Parbhakar-Fox, A.; Glass, H.J.; Purevgerel, S. Geometallurgy—A route to more resilient mine operations. Minerals 2018, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Lamberg, P. Particles—The bridge between geology and metallurgy. In Proceedings of the Conference in Mineral Engineering, Luleå, Sweden, 8–9 February 2011; pp. 1–16. [Google Scholar]
- Lund, C.; Lamberg, P.; Lindberg, T. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16. [Google Scholar] [CrossRef]
- Dehaine, Q.; Tijsseling, L.T.; Glass, H.J.; Törmänen, T.; Butcher, A.R. Geometallurgy of cobalt ores: A review. Miner. Eng. 2021, 160, 106656. [Google Scholar] [CrossRef]
- Crundwell, F.K.; du Preez, N.B.; Knights, B.D.H. Production of cobalt from copper-cobalt ores on the African Copperbelt—An overview. Miner. Eng. 2020, 156, 106450. [Google Scholar] [CrossRef]
- Shengo, M.L.; Kime, M.-B.; Mambwe, M.P.; Nyembo, T.K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 2019, 18, 226–246. [Google Scholar] [CrossRef]
- Macfarlane, A.S.; Williams, T.P. Optimizing value on a copper mine by adopting a geometallurgical solution. J. S. Afr. Inst. Min. Metall. 2014, 114, 929–936. [Google Scholar]
- Cailteux, J.L.H.; Kampunzu, A.B.H.; Batumike, M.J. Lithostratigraphic position and petrographic characteristics of R.A.T. (“Roches Argilo-Talqueuses”) Subgroup, Neoproterozoic Katangan Belt (Congo). J. Afr. Earth Sci. 2005, 42, 82–94. [Google Scholar] [CrossRef]
- Dewaele, S.; Muchez, P.; Vets, J.; Fernandez-Alonzo, M.; Tack, L. Multiphase origin of the Cu-Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J. Afr. Earth Sci. 2006, 46, 455–469. [Google Scholar] [CrossRef]
- Van Langendonck, S.; Muchez, P.; Dewaele, S.; Kaputo Kalubi, A.; Cailteux, J.L.H. Petrographic and mineralogical study of the sediment-hosted Cu-Co ore deposit at Kambove West in the central part of the Katanga Copperbelt (DRC). Geol. Belg. 2013, 16, 91–104. [Google Scholar]
- Jansen, M.; Taylor, A. Overview of gangue mineralogy issues in oxide copper heap leaching. In Proceedings of the ALTA 2003 Conference, Perth, Australia, 22–23 May 2003; pp. 701–714. [Google Scholar]
- Bulatovic, S.M. Flotation of Oxide Copper and Copper Cobalt Ores. In Handbook of Flotation Reagents: Chemistry, Theory and Practice, Volume 2—Flotation of Gold, PGM and Oxide Minerals; Elsevier: Amsterdam, The Netherlands, 2010; pp. 47–65. ISBN 0444530290. [Google Scholar]
- Shungu, T.; Vermaut, N.; Ferron, C.J. Recent trends in the Gecamines Copper-Cobalt flotation plants. Miner. Metall. Processing 1988, 163–170. [Google Scholar] [CrossRef]
- Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Miner. Eng. 2019, 138, 246–256. [Google Scholar] [CrossRef]
- Dehaine, Q.; Filippov, L.O.; Filippova, I.V.; Tijsseling, L.T.; Glass, H.J. Novel approach for processing complex carbonate-rich copper-cobalt mixed ores via reverse flotation. Miner. Eng. 2021, 161, 106710. [Google Scholar] [CrossRef]
- Baum, W.; Ausburn, K. Daily process mineralogy: A metallurgical tool for optimized copper leaching. In Proceedings of the 5th international Seminar on Process Hydrometallurgy, Santiago, Chile, 10–12 July 2013; pp. 49–56. [Google Scholar]
- Silvester, E.J.; Bruckard, W.J.; Woodcock, J.T. Surface and chemical properties of chlorite in relation to its flotation and depression. Miner. Processing Extr. Metall. 2011, 120, 65–70. [Google Scholar] [CrossRef]
- Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J. Mineralogical Prediction of Flotation Performance for a Sediment-Hosted Copper–Cobalt Sulphide Ore. Minerals 2020, 10, 474. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Pirard, E. Multispectral imaging of ore minerals in optical microscopy. Mineral. Mag. 2004, 68, 323–333. [Google Scholar] [CrossRef]
- Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25. [Google Scholar] [CrossRef]
- Sutherland, D.N.; Gottlieb, P. Application of automated quantitative mineralogy in mineral processing. Miner. Eng. 1991, 4, 753–762. [Google Scholar] [CrossRef]
- Gu, Y. Automated Scanning Electron Microscope Based Mineral Liberation Analysis An Introduction to JKMRC/FEI Mineral Liberation Analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Liipo, J.; Lang, C.; Burgess, S.; Otterstrom, H.; Person, H.; Lamberg, P. Automated mineral liberation analysis using INCAMineral. Process Mineral. 2012, 12, 1–7. [Google Scholar]
- Hrstka, T.; Gottlieb, P.; Skála, R.; Breiter, K.; Motl, D. Automated mineralogy and petrology—Applications of TESCAN integrated mineral analyzer (TIMA). J. Geosci. 2018, 63, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Lund, C.; Lamberg, P. Geometallurgy—A tool for better resource efficiency. Eur. Geol. 2014, 37, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Yang, X.; Guo, Y.; Wu, S.; Li, W.; Liu, Y.; Chen, Y. The absorption spectra of H2O+and D2O+in the visible and near infrared region. Mol. Phys. 2004, 102, 611–621. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA, 1999; pp. 3–58. [Google Scholar]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of near-infrared spectroscopy to sensor based sorting of a porphyry copper ore. Miner. Eng. 2014, 58, 7–16. [Google Scholar] [CrossRef]
- Iyakwari, S.; Glass, H.J.; Rollinson, G.K.; Kowalczuk, P.B. Application of near infrared sensors to preconcentration of hydrothermally-formed copper ore. Miner. Eng. 2016, 85, 148–167. [Google Scholar] [CrossRef] [Green Version]
- Tuşa, L.; Kern, M.; Khodadadzadeh, M.; Blannin, R.; Gloaguen, R.; Gutzmer, J. Evaluating the performance of hyperspectral short-wave infrared sensors for the pre-sorting of complex ores using machine learning methods. Miner. Eng. 2020, 146, 106150. [Google Scholar] [CrossRef]
- Gaydon, J.W.; Glass, H.J.; Pascoe, R.D. Method for near infrared sensor-based sorting of a copper ore. J. Near Infrared Spectrosc. 2009, 17, 177–194. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Thomson, J.L.; Salisbury, J.W. The mid-infrared reflectance of mineral mixtures (7–14 μm). Remote Sens. Environ. 1993, 45, 1–13. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Walter, L.S.; Vergo, N. Mid-InfraRed (2.1–25 um) Spectra of Minerals: First Edition, 1st ed.; United States Geological Survey: Reston, VI, USA, 1986.
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library 06. Available online: http://speclab.cr.usgs.gov/spectral.lib06 (accessed on 10 September 2020).
- Clark, R.N. Spectral Properties of Mixtures of Montmorillonite and Dark Carbon Grains’ Implications for Remote Sensing Minerals Containing Chemically and Physically Adsorbed Water. J. Geophys. Res. 1983, 88, 635–645. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Christensen, P.R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. J. Geophys. Res. Solid Earth 1998, 103, 577–596. [Google Scholar] [CrossRef]
- Cooper, B.L.; Salisbury, J.W.; Killen, R.M.; Potter, E. Midinfrared spectral features of rocks and their powders. J. Geophys. Res. 2002, 107, 1–17. [Google Scholar] [CrossRef]
- Henry, D.G.; Watson, J.S.; John, C.M. Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool. Sediment. Geol. 2017, 347, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Herres, W.; Gronholz, J.; Gronholtz, J.; Herres, W. Understanding FT-IR Data Processing—Part 1: Data Acquisition and Fourier Transformation. Comp. App. Lab 1984, 2, 216. [Google Scholar]
- Harville, D.G.; Freeman, D.L.; Benefits, T.; Transform, F.; Spectroscopy, I. The Benefits and Application of Rapid Mineral Analysis Provided by Fourrier Transform Infrared Spectroscopy. In Proceedings of the SPE Annual Technical Conference and Exhibition—Society of Petroleum Engineers, Houston, TX, USA, 2–5 October 1988; pp. 141–151. [Google Scholar]
- Ballard, B.D. Quantitative Mineralogy of Reservoir Rocks Using Fourier Transform Infrared Spectroscopy. In Proceedings of the SPE Annual Technical Conference and Exhibition—Society of Petroleum Engineers, Anaheim, CA, USA, 11–14 November 2007; pp. 1–8. [Google Scholar]
- Ruessink, B.H.; Harville, D.G. Quantitative Analysis of Bulk Mineralogy: The Applicability and Performance of XRD and FTIR. In Proceedings of the SPE Formation Damage Control Symposium—Society of Petroleum Engineers, Lafayette, Louisiana, 26–27 February 1992; pp. 533–546. [Google Scholar]
- Woods, J.; Gaafar, G.R. Application of Fourier Transform Infra-Red Spectroscopy in determination of reservoir properties. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12 December 2014. [Google Scholar]
- Craddock, P.R.; Herron, M.M.; Herron, S.L. Comparison of Quantitative Mineral Analysis By X-Ray Diffraction and Fourier Transform Infrared Spectroscopy. J. Sediment. Res. 2017, 87, 630–652. [Google Scholar] [CrossRef]
- Woods, J. Application of Fourier Transform Infra-Red Spectroscopy (FTIR) for Mineral Quantification. Explore 2019, 1–6. Available online: https://www.appliedgeochemists.org/sites/default/files/documents/Explore%20issues/EXPLORE182%20March%202019.pdf.pdf (accessed on 10 September 2020).
- Joassin, M.; Pirard, E. Application of Mid-infrared Reflectance Spectroscopy for the Identification of Minerals Present in Oil & Gas/Mining Exploration. In Proceedings of the Society Society of Geology Applied to Mineral Deposits (SGA) Conference, Québec City, QC, Canada, 20–23 August 2017. [Google Scholar]
- Desta, F.S.; Buxton, M.W.N. The use of RGB Imaging and FTIR Sensors for Mineral mapping in the Reiche Zeche underground test mine, Freiberg. In Proceedings of the Real-Time Mining International Raw Materials Extraction Innovation Conference, Amsterdam, The Netherlands, 10–11 October 2017; van Gerwe, T., Hößelbarth, D., Eds.; Benndorf, Jorg: Amsterdam, The Netherlands, 2017; pp. 103–127. [Google Scholar]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC—Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Goodall, W.R.; Scales, P.J. An overview of the advantages and disadvantages of the determination of gold mineralogy by automated mineralogy. Miner. Eng. 2007, 20, 506–517. [Google Scholar] [CrossRef]
- Rollinson, G. Automated Mineralogy by SEM-EDS. In Encyclopedia of Geology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 546–553. [Google Scholar]
- Rollinson, G.K.; Andersen, J.C.Ø.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN®. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Høskuldsson, A. Prediction Methods in Science and Technology; Thor Publishing: Copenhagen, Denmark, 1996. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Guyot, D.; Westad, F.; Houmoller, L.P. Multivariate Data Analysis—In Practice: An Introduction to Multivariate Data Analysis and Experimental Design, 5th ed.; CAMO AS: Oslo, Norway, 2002; ISBN 8299333032. [Google Scholar]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Fan, W.; Shan, Y.; Li, G.; Lv, H.; Li, H.; Liang, Y. Application of Competitive Adaptive Reweighted Sampling Method to Determine Effective Wavelengths for Prediction of Total Acid of Vinegar. Food Anal. Methods 2012, 5, 585–590. [Google Scholar] [CrossRef]
- Luo, Q.; Yun, Y.; Fan, W.; Huang, J.; Zhang, L.; Deng, B.; Lu, H. Application of near infrared spectroscopy for the rapid determination of epimedin A, B, C and icariin in Epimedium. RSC Adv. 2015, 5, 5046–5052. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Geladi, P. Principles of proper validation: Use and abuse of re-sampling for validation. J. Chemom. 2010, 24, 168–187. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Hu, L.; Jia, Z.; Xia, T.; Fang, C.; Li, H.; Hu, L.H.; Lu, Y.; Li, H. SPXYE: An improved method for partitioning training and validation sets. Clust. Comput. 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Li, H.D.; Xu, Q.S.; Liang, Y.Z. libPLS: An integrated library for partial least squares regression and linear discriminant analysis. Chemom. Intell. Lab. Syst. 2018, 176, 34–43. [Google Scholar] [CrossRef]
- Huang, C.K.; Kerr, P.F. Infrared study of the carbonate minerals. Am. Mineral. 1960, 45, 311–324. [Google Scholar]
- Stoilova, D.; Koleva, V.; Vassileva, V. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2002, 58, 2051–2059. [Google Scholar] [CrossRef]
- Leppinen, J.O.; Basilio, C.I.; Yoon, R.H. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential. Int. J. Miner. Processing 1989, 26, 259–274. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter (O): Berlin, Germany, 2015; pp. 1–29. ISBN 9783110417104. [Google Scholar]
- Tappert, M.C.; Rivard, B.; Giles, D.; Tappert, R.; Mauger, A. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geol. Rev. 2013, 53, 26–38. [Google Scholar] [CrossRef]
- Blanco, M.; Cruz, J.; Bautista, M. Development of a univariate calibration model for pharmaceutical analysis based on NIR spectra. Anal. Bioanal. Chem. 2008, 392, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, F.; Gupta, B.B.; Rho, S.; Liu, Q.; Hou, H.; Jing, D.; Shen, W. Variable Selection and Optimization in Rapid Detection of Soybean Straw Biomass Based on CARS. IEEE Access 2018, 6, 5290–5299. [Google Scholar] [CrossRef]
- Scheffel, R.E. Copper Heap Leach Design and Practice. In Mineral Processing Plant Design, Practice, and Control; Mular, A.L., Halbe, D.N., Barratt, D.J., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Littleton, CO, USA, 1971; pp. 1571–1587. ISBN 978-0-87335-223-9. [Google Scholar]
- Santoro, L.; Tshipeng, S.; Pirard, E.; Bouzahzah, H.; Kaniki, A.; Herrington, R. Mineralogical reconciliation of cobalt recovery from the acid leaching of oxide ores from five deposits in Katanga (DRC). Miner. Eng. 2019, 137, 277–289. [Google Scholar] [CrossRef]
- Lasillo, E.; Schlittt, W.J. Practical Aspects Associated with Evaluation of a Copper Heap Leach Project. In Copper Leaching, Solvent Extraction, and Electrowinning Technology; Jergensen, I., Gerald, V., Eds.; Society for Mining, Metallurgy, and Exploration (SME): Littleton, CO, USA, 1999; pp. 123–138. ISBN 978-0-87335-183-6. [Google Scholar]
- Kalichini, M.S. A Study of the Flotation Characteristics of a Complex Copper Ore. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Pitard, F.F. Pierre Gy’s Sampling Theory and Sampling Practice, Second Edition: Heterogeneity, Sampling Correctness, and Statistical Process Control; CRC Press: Boca Raton, FL, USA, 1993; ISBN 0849389178. [Google Scholar]
- Leigh, G.M.; Sutherland, D.N.; Gottlieb, P. Confidence limits for liberation measurements. Miner. Eng. 1993. [Google Scholar] [CrossRef]
- Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geol. Soc. Lond. Spec. Publ. 2004, 232, 123–136. [Google Scholar] [CrossRef]
- Parian, M.; Lamberg, P.; Möckel, R.; Rosenkranz, J. Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction. Miner. Eng. 2015, 82, 25–35. [Google Scholar] [CrossRef]
- Chen, Y.; Furmann, A.; Mastalerz, M.; Schimmelmann, A. Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel 2014, 116, 538–549. [Google Scholar] [CrossRef]
Mineral | Smooth | SG 1d | SNV + SG 1d | MSC + SG 1d |
---|---|---|---|---|
Carrollite | 29 | 7 | 53 | 19 |
Chalcopyrite | 75 | 7 | 9 | 3 |
Malachite | 77 | 29 | 95 | 21 |
Dolomite | 63 | 7 | 95 | 93 |
Quartz | 75 | 19 | 17 | 13 |
Mg-chlorite | 77 | 99 | 95 | 95 |
Mineral | Index | Raw | S * | SNV | S + SNV | MSC | S + MSC | SG 1d * | SNV + SG 1d * | MSC + SG 1d * |
---|---|---|---|---|---|---|---|---|---|---|
Carrollite | RMSECV | 8.864 | 8.863 | 10.269 | 10.706 | 12.926 | 9.694 | 14.064 | 9.685 | 12.875 |
RMSEC | 8.456 | 8.457 | 5.871 | 6.150 | 9.429 | 1.249 | 11.818 | 0.880 | 5.039 | |
RMSEP | 13.069 | 13.068 | 13.062 | 13.159 | 13.777 | 15.434 | 4.435 | 4.372 | 14.454 | |
Chalcopyrite | RMSECV | 5.713 | 5.684 | 7.634 | 7.851 | 7.646 | 4.171 | 6.624 | 7.603 | 8.730 |
RMSEC | 2.634 | 2.729 | 0.818 | 0.771 | 6.302 | 0.721 | 4.085 | 0.002 | 1.168 | |
RMSEP | 6.130 | 4.330 | 2.228 | 4.859 | 6.685 | 67.132 | 1.763 | 1.674 | 1.801 | |
Malachite | RMSECV | 2.266 | 3.758 | 3.656 | 4.029 | 38.395 | 44.748 | 2.300 | 3.643 | 2.707 |
RMSEC | 0.830 | 0.782 | 2.823 | 2.075 | 9.432 | 9.068 | 0.805 | 2.313 | 0.577 | |
RMSEP | 12.871 | 6.488 | 6.579 | 4.088 | 5.083 | 7.480 | 1.120 | 2.080 | 131.531 | |
Dolomite | RMSECV | 5.994 | 6.491 | 7.032 | 7.213 | 5.156 | 7.360 | 5.447 | 7.010 | 9.211 |
RMSEC | 3.537 | 3.306 | 3.624 | 4.550 | 0.471 | 1.041 | 1.688 | 2.530 | 7.505 | |
RMSEP | 7.134 | 7.328 | 9.640 | 24.575 | 42.731 | 10.085 | 5.426 | 4.851 | 11.432 | |
Quartz | RMSECV | 5.267 | 6.118 | 7.105 | 7.836 | 6.600 | 7.895 | 7.582 | 8.403 | 8.563 |
RMSEC | 3.008 | 3.232 | 1.289 | 3.377 | 4.014 | 4.688 | 2.399 | 0.203 | 3.809 | |
RMSEP | 11.996 | 11.647 | 10.275 | 9.971 | 14.001 | 11.382 | 10.878 | 9.863 | 11.793 | |
Mg-chlorite | RMSECV | 5.387 | 5.292 | 2.900 | 2.561 | 4.364 | 4.467 | 3.450 | 2.487 | 4.026 |
RMSEC | 1.927 | 0.870 | 1.079 | 0.740 | 3.043 | 2.867 | 0.279 | 0.090 | 1.927 | |
RMSEP | 15.637 | 12.523 | 13.625 | 16.757 | 12.305 | 3.991 | 0.974 | 2.189 | 4.088 |
Minerals | Pre-Processing Procedure | nVAR * | nLVs * | Calibration Set (n = 28) | Validation Set (n = 6) | |||
---|---|---|---|---|---|---|---|---|
RMSECV | RMSEC | RMSEP | ||||||
Full spectrum PLS-R | ||||||||
Carrollite | SNV + SG 1d | 2750 | 12 | 9.685 | 0.999 | 0.880 | 0.922 | 4.372 |
Chalcopyrite | SNV + SG 1d | 2750 | 17 | 7.603 | 1.000 | 0.002 | 0.979 | 1.674 |
Malachite | SG 1d | 2750 | 5 | 2.300 | 0.997 | 0.805 | 0.989 | 1.120 |
Dolomite | SG 1d | 2750 | 7 | 5.447 | 0.993 | 1.688 | 0.975 | 5.426 |
Quartz | SNV + SG 1d | 2750 | 13 | 8.403 | 1.000 | 0.203 | 0.947 | 9.863 |
Mg-chlorite | SG 1d | 2750 | 18 | 3.450 | 0.999 | 0.279 | 0.859 | 0.974 |
CARS PLS-R | ||||||||
Carrollite | SNV + SG 1d | 83 | 8 | 1.610 | 0.999 | 0.672 | 0.937 | 3.094 |
Chalcopyrite | SNV + SG 1d | 40 | 13 | 0.312 | 1.000 | 0.054 | 0.976 | 3.378 |
Malachite | SG 1d | 148 | 4 | 0.906 | 0.999 | 0.527 | 0.961 | 2.093 |
Dolomite | SG 1d | 17 | 3 | 2.183 | 0.986 | 2.392 | 0.982 | 5.146 |
Quartz | SNV + SG 1d | 72 | 10 | 1.159 | 1.000 | 0.405 | 0.961 | 9.002 |
Mg-chlorite | SG 1d | 77 | 15 | 0.375 | 1.000 | 0.133 | 0.898 | 0.806 |
Method | Quantitative X-ray Diffraction (QXRD) | Automated Mineralogy (AM) | Element to Mineral Conversion (EMC) | FTIR-CARS-PLS-R |
---|---|---|---|---|
Required data | Phase ID by XRD or other methods: crystal structure information of the phases | Mineralogy inferred from chemistry | Samples chemistry, Minerals chemistry Optional: approx. mineral grades (XRD) | - |
Cost per sample (approx. US$) | 100–200 | 200–500 | ~0 1 | ~0 |
Turnaround time (approx. hours) | 3–7 2 | 16–32 | ~0 1 | ~0 |
Preparation time | 1–3 2 | 8–20 | - | - |
Analytical time | 1–3 2 | 4–8 | ~0 1 | ~0 |
Processing time | 1–2 | 4 | ~0 | ~0 |
Experienced operator needed | Yes | Yes | No | No |
Analysis | Bulk | Surface | Bulk | Surface/Bulk |
Typical Precision (wt.%) 3 | ~2 | ≤1 | ~5 | 1–5 |
Typical closeness against AM (wt.%) 3 | ~3 | - | 1–10 4 | 5–10 |
Detection limit (wt.%) 3 | 0.2–5 | ≤0.01 | 0.01–0.14 | 1–5 |
Problem minerals | Amorphous phases, solid solution series | Polymorphs, nanocrystalline materials | Polymorphs | Ionic (e.g., halides) |
Portable | Possible but less accurate | No | N/A | Yes |
Calibration | No, internal standards can be used | Beam current (every 30 min), greyscale, EDS, beam alignment | Complex | Easy |
Additional information obtained | Lattice parameters, <200 nm crystallite size, crystal structure details, amorphous content | Textural information, liberation, associations, grainsizes | Mineral chemistry | - |
References | [54] | [29,89,90] | [11,91] | [53,54,92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehaine, Q.; Tijsseling, L.T.; Rollinson, G.K.; Buxton, M.W.N.; Glass, H.J. Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores. Minerals 2022, 12, 15. https://doi.org/10.3390/min12010015
Dehaine Q, Tijsseling LT, Rollinson GK, Buxton MWN, Glass HJ. Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores. Minerals. 2022; 12(1):15. https://doi.org/10.3390/min12010015
Chicago/Turabian StyleDehaine, Quentin, Laurens T. Tijsseling, Gavyn K. Rollinson, Mike W. N. Buxton, and Hylke J. Glass. 2022. "Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores" Minerals 12, no. 1: 15. https://doi.org/10.3390/min12010015
APA StyleDehaine, Q., Tijsseling, L. T., Rollinson, G. K., Buxton, M. W. N., & Glass, H. J. (2022). Geometallurgical Characterisation with Portable FTIR: Application to Sediment-Hosted Cu-Co Ores. Minerals, 12(1), 15. https://doi.org/10.3390/min12010015