Elemental Concentrations of Major and Trace Elements in the Spring Waters of the Arctic Region of Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
№ | Type | Location | Coordinates | T Air, °C | T Water, °C | Yield of Water, L/s |
---|---|---|---|---|---|---|
Murmansk and Kola district (Figure 2a) | ||||||
1 | Descending | On the city outskirts, 50 m east of the Chapel | 68°58′19.2″ N 33°07′10.7″ E | 9.0 | 5.6 | * |
2 | Descending | 200 m west of the roads’ junction to Abram-Mys, Murmansk and Nikel | 68°58′42.4″ N 32°59′10.9″ E | 7.0 | 6.1 | 0.04 |
3 | Descending | Between 24 and 25 km of the Murmansk-Verkhnetulomsky highway, on the right, 15 m north of the road | 68°47′18.6″ N 32°31′01.3″ E | 8.7 | 2.9 | 0.27 |
4 | Ascending | On the village outskirts, 150 m north of the Murmansk-Verkhnetulomsky highway | 68°49′53.3″ N 32°45′15.7″ E | 6.8 | 3.1 | 0.65 |
5 | Descending | Between 2 and 3 km of the Kola-Zverosovkhoz highway, 50 m west of the road | 68°51′43.4″ N 33°05′01.0″ E | 5.0 | 4.3 | 0.10 |
6 | Descending | Between 7 and 8 km of the upper airport street, 10 m north of the road | 68°48′55.4″ N 32°57′53.2″ E | 4.2 | 3.3 | 0.11 |
7 | Descending | In the lowland, 40 m east of residential buildings | 68°48′43.4″ N 32°48′50.9″ E | 3.9 | 3.0 | 0.21 |
8 | Descending | Between 7 and 8 km of the ring road around Murmansk, 50 m west of the road bridge | 68°53′46.0″ N 33°07′23.5″ E | 2.2 | 4.9 | 0.05 |
Monchegorsk district (Figure 2b) | ||||||
9 | Descending | Southeastern city outskirts, 150 m southeast of the sports school building | 67°55′20.9″ N 32°57′28.6″ E | 6.9 | 5.0 | 0.33 |
10 | Self-flowing well | 8 km of the Monchegorsk-Rizh-Guba highway, 200 m north-east of the bus stop | 67°52′59.8″ N 33°02′53.8″ E | 7.6 | 5.1 | 0.40 |
11 | Self-flowing well | 8 km of the Monchegorsk-Rizh-Guba highway, 250 m north-east of the bus stop | 67°53′01.3″ N 33°02′59.5″ E | 8.2 | 2.9 | 0.35 |
12 | Ascending | Between 1271 and 1272 km of the E105 highway, 50 m southeast of the highway | 68°01′02.7″ N 32°57′19.1″ E | 7.4 | 2.6 | ** |
13 | Self-flowing exploration well | 250 m east of the roads’ junction to the Laplandia station along the E105 highway | 68°16′09.4″ N 33°20′28.8″ E | 9.2 | 3.6 | 0.20 |
14 | Ascending | Near 1253 km of the E105 highway, 120 m south-west of the highway | 67°52′22.7″ N 32°47′13.4″ E | 6.3 | 3.8 | ** |
Kandalaksha district (Figure 2c) | ||||||
15 | Descending | Between 1179 and 1180 km of the E105 highway, 5 m north-west of the highway | 67°23′42.8″ N 32°28′54.8″ E | 12.2 | 4.1 | 0.018 |
16 | Descending | The near-channel part of the left bank of the Niva River, 100 m downstream of the bridge | 67°11′15.2″ N 32°28′11.8″ E | 11.1 | 4.4 | 0.020 |
17 | Descending | Between 6 and 7 km of the Kandalaksha-Umba highway, 5 m north of the highway | 67°07′28.6″ N 32°32′36.6″ E | 13.2 | 4.0 | 0.14 |
18 | Ascending | Between 71 and 72 km of the Kandalaksha-Umba highway, 15 m east of the highway | 66°55′58.0″ N 33°49′02.4″ E | 12.5 | 5.4 | ** |
19 | Descending | The territory of the farm fellowship | 66°42′38.4″ N 34°21′26.8″ E | 11.7 | 3.8 | 0.26 |
Apatity-Kirovsk district (Figure 2c) | ||||||
20 | Self-flowing exploration well | 150 m south-west of the nunnery in the foothills of the Khibiny mountains | 67°38′11.1″ N 33°43′20.8″ E | 12.3 | 3.4 | ** |
21 | Self-flowing exploration well | 25 m west of the road in the foothills of the Khibiny mountains | 67°38′10.2″ N 33°42′45.3″ E | 11.5 | 3.4 | ** |
22 | Mixed | Between 8 and 9 km of the Apatity-Kirovsk highway, 30 m south of the highway | 67°34′56.4″ N 33°33′26.9″ E | 11.8 | 3.3 | ** |
23 | Self-flowing well | The eastern outskirts of Apatity, in the area of a garage cooperative | 67°33′12.5″ N 33°26′09.9″ E | 11.1 | 3.7 | 0.27 |
24 | Ascending | Southeast of the city of Apatity, between 7 and 8 km of the Apatity-Khibiny airport highway, 1.5 km to the left of the road | 67°29′55.6″ N 33°29′17.3″ E | 10.0 | 8.4 | ** |
2.2. Sample Collection and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elpiner, L.I.; Bear, S.A.; Zektser, I.S.; Klige, R.K.; Shapovalov, A.E. The effect of water abundance in a territory on the population health. Water Resour. 2007, 34, 340–349. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Halder, J.; Islam, N. Water Pollution and its Impact on the Human Health. J. Environ. Hum. 2015, 2, 36–46. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Megorskii, V.V.; Gashkina, N.A.; Kudryavtseva, L.P. Water pollution effect on population health in an industrial northern region. Water Resour. 2010, 37, 194–203. [Google Scholar] [CrossRef]
- Trofimovich, E.M.; Aizman, R.I. System of metabolism of drinking water as a methodological basis for the estimation of its mineral composition. Hyg. Sanit. 2019, 98, 555–562. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Khan, A.F.; Srinivasamoorthy, K.; Prakash, R.; Gopinath, S.; Saravanan, K.; Vinnarasi, F.; Babu, C.; Rabina, C. Human health risk assessment for fluoride and nitrate contamination in the groundwater: A case study from the east coast of Tamil Nadu and Puducherry, India. Environ. Earth Sci. 2021, 80, 724. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H.; Gao, Y. Assessing Nitrate and Fluoride Contaminants in Drinking Water and Their Health Risk of Rural Residents Living in a Semiarid Region of Northwest China. Expo. Health 2017, 9, 183–195. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking—Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Mejía, F.; Medina, C.; Cornejo, E.; Morello, E.; Vásquez, S.; Alave, J.; Schwalb, A.; Málaga, G. Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru. PLoS ONE 2020, 15, e0244171. [Google Scholar] [CrossRef]
- Akhavan, A.R.; Habboushe, J.P.; Gulati, R.; Iheagwara, O.; Watterson, J.; Thomas, S.; Swartz, J.L.; Koziatek, C.A.; Lee, D.C. Risk Stratification of COVID-19 Patients Using Ambulatory Oxygen Saturation in the Emergency Department. West. J. Emerg. Med. 2020, 21, 5–14. [Google Scholar] [CrossRef]
- Rubin, S.J.S.; Falkson, S.R.; Degner, N.R.; Blish, C. Clinical characteristics associated with COVID-19 severity in California. J. Clin. Transl. Sci. 2021, 5, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappaport, S.M.; Smith, M.T. Environment and Disease Risks. Science 2010, 330, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Yokel, R.A. The toxicology of aluminum in the brain: A review. Neurotoxicology 2000, 21, 813–828. [Google Scholar]
- Seiler, H.; Sigel, A.; Sigel, H. (Eds.) Handbook on Metals in Clinical and Analytical Chemistry; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- Kolubaeva, Y.V. Chemical Composition of Underground Water Sources of Non-Centralized Water Supply in the Tomsk Region of the Tomsk Oblast and Its Possible Impact on Human Health. In Water-Rock Interaction: Geological Evolution; Buryat Scientific Center SB RAS: Ulan-Ude, Russian, 2020; pp. 159–162. [Google Scholar]
- Boyd, C.E. Water Quality; Springer International Publishing: Cham, Swizerlands, 2020; ISBN 978-3-030-23334-1. [Google Scholar]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef] [Green Version]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.A. Chromium as an Essential Nutrient for Humans. Regul. Toxicol. Pharmacol. 1997, 26, S35–S41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iskra, R.; Antonyak, H. Chromium in Health and Longevity; Springer: Cham, Swizerlands, 2018; pp. 133–162. [Google Scholar]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Yamada, K. Cobalt: Its Role in Health and Disease. Met. Ions Life Sci. 2013, 13, 295–320. [Google Scholar] [CrossRef]
- Spears, J.W. Nickel as a “Newer Trace Element” in the Nutrition of Domestic Animals. J. Anim. Sci. 1984, 59, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- Araya, M.; Pizarro, F.; Olivares, M.; Arredondo, M.; González, M.; Méndez, M. Understanding copper homeostasis in humans and copper effects on health. Biol. Res. 2006, 39, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, S.J. Review of selenium toxicity in the aquatic food chain. Sci. Total Environ. 2004, 326, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Belaidi, A.A. Molybdenum in Human Health and Disease. Met. Ions Life Sci. 2013, 13, 415–450. [Google Scholar] [CrossRef]
- Byrne, C.; Divekar, S.D.; Storchan, G.B.; Parodi, D.A.; Martin, M.B. Cadmium—A metallohormone? Toxicol. Appl. Pharmacol. 2009, 238, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Adewoyin, O.O.; Kayode, O.T.; Omeje, O.; Odetunmibi, O.A. Risk assessment of heavy metal and trace elements contamination in groundwater in some parts of Ogun state. Cogent Eng. 2019, 6, 1632555. [Google Scholar] [CrossRef]
- Kurt, M.A.; Yıldırım, Ü.; Güler, C.; Güven, O. Antimony and arsenic contamination in water from antimonite mineralization: A case study from Turhal (Tokat, Northern Turkey). Environ. Forensics 2021, 1–13. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Verma, R.; Dwivedi, P. Heavy Metal Water Pollution-A Case Study. Sci. Technol. 2013, 5, 98–99. [Google Scholar]
- Belkhiri, L.; Tiri, A.; Mouni, L. Assessment of Heavy Metals Contamination in Groundwater: A Case Study of the South of Setif Area, East Algeria. In Achievements and Challenges of Integrated River Basin Management; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- United Nations Children’s Fund (UNICEF); World Health Organization (WHO). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; United Nations Children’s Fund (UNICEF); World Health Organization (WHO): Geneva, Switzerland, 2017; ISBN 9789241512893. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Rosinger, A.Y.; Patel, A.I.; Weaks, F. Examining recent trends in the racial disparity gap in tap water consumption: NHANES 2011–2018. Public Health Nutr. 2021, 1–7. [Google Scholar] [CrossRef]
- Rozhkov, V.P.; Belisheva, N.K.; Martynova, A.A.; Soroko, S.I. Psychophysiological and cardiohemodynamic effects of solar, geomagnetic, and meteorological factors in humans under the conditions of the arctic region. Hum. Physiol. 2014, 40, 397–409. [Google Scholar] [CrossRef]
- Statdata. Ru—Site about Countries and Cities. Available online: http://www.statdata.ru/naselenie/murmanskoj-oblasti (accessed on 30 November 2021).
- Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Dolgikh, A.V.; Novikov, A.I.; Kremenetskaya, I.P.; Ivanova, L.A.; Gubin, S.V. Organic matter accumulation by alkaline-constructed soils in heavily metal-polluted area of Subarctic zone. J. Soils Sediments 2021, 21, 2071–2088. [Google Scholar] [CrossRef]
- Saltan, N.; Slukovskaya, M.; Mikhaylova, I.; Zarov, E.; Skripnikov, P.; Gorbov, S.; Khvostova, A.; Drogobuzhskaya, S.; Shirokaya, A.; Kremenetskaya, I. Assessment of Soil Heavy Metal Pollution by Land Use Zones in Small Towns of the Industrialized Arctic Region, Russia; Springer: Singapore, 2021; pp. 100–110. [Google Scholar] [CrossRef]
- Mosendz, I.A.; Kremenetskaya, I.P.; Novikov, A.I.; Tereshchenko, S.V. Removing copper and nickel from contaminated water with vermiculite-sungulite materials. Tsvetnye Met. 2021, 2021, 36–41. [Google Scholar] [CrossRef]
- Postevaya, M.A.; Slukovskii, Z.I. Assessment of the Concentration of Heavy Metals in the Water of the Lakes of the City of Murmansk. In Geography: Development of Science and Education; Herzen, A.I., Ed.; Russian State Pedagogical University: Saint Petersburg, Russian, 2021; pp. 111–115. (In Russian) [Google Scholar]
- Guzeva, A.; Slukovskii, Z.; Dauvalter, V.; Denisov, D. Trace element fractions in sediments of urbanised lakes of the arctic zone of Russia. Environ. Monit. Assess. 2021, 193, 378. [Google Scholar] [CrossRef]
- Dauvalter, V.A.; Kashulin, N.A. Assessment of the Ecological State of the Arctic Freshwater System Based on Concentrations of Heavy Metals in the Bottom Sediments. Geochem. Int. 2018, 56, 842–856. [Google Scholar] [CrossRef]
- Slukovskii, Z.; Medvedev, M.; Mitsukov, A.; Dauvalter, V.; Grigoriev, V.; Kudryavtzeva, L.; Elizarova, I. Recent sediments of Arctic small lakes (Russia): Geochemistry features and age. Environ. Earth Sci. 2021, 80, 302. [Google Scholar] [CrossRef]
- Slukovskii, Z.; Dauvalter, V.; Guzeva, A.; Denisov, D.; Cherepanov, A.; Siroezhko, E. The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Dauvalter, V.A.; Dauvalter, M.V. Groundwater Condition in Monchegorsk Region; Bulletin of the Kola Science Center RAS, KSC RAS: Apatity, Russian, 2010; pp. 26–33. (In Russian) [Google Scholar]
- Ayras, M.; de Caritat, P.; Chekushin, V.A.; Niskavaara, H.; Reimann, C. Ecogeochemical investigation, kola peninsula: Sulphur and trace element content in snow. Water Air Soil Pollut. 1995, 85, 749–754. [Google Scholar] [CrossRef]
- Gregurek, D.; Melcher, E.; Pavlov, V.A.; Reimann, C.; Stumpfl, E.F. Mineralogy and Petrology Mineralogy and Mineral Chemistry of Snow Filter Residues in the Vicinity of the Nickel-Copper Processing Industry, Kola Peninsula, NW Russia. Mineral. Petrol. 1999, 65, 87–111. [Google Scholar] [CrossRef]
- Council of the European Union. [Internet]. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities 1998. Available online: https://agris.fao.org/agris-search/search.do?recordID=CS2005000008 (accessed on 23 November 2021).
- National Primary Drinking Water Regulations|US EPA. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 23 November 2021).
- SanPiN 2.1.4.1116-02 Drinking Water. Hygienic Requirements for the Quality of Water Packaged in Containers. Quality Control. Available online: https://docs.cntd.ru/document/902225826 (accessed on 28 November 2021). (In Russian).
- SanPiN 1.2.3685-21 Hygienic Standards and Requirements to Ensure Safety and (or) Harmful for Human Environmental Factors. Available online: https://docs.cntd.ru/document/573500115 (accessed on 28 November 2021). (In Russian).
- Department of Natural Resources, Ecology and Fisheries of the Murmansk Region Report on the State and Protection of the Environment of the Murmansk Region in 2020. Murmansk 2021. Available online: https://Gov-Murman.Ru/Bitrix/Components/B1team/Govmurman.Element.File/Download.Php?ID=409632&FID=573553 (accessed on 23 November 2021). (In Rassian).
- Selection Map. Available online: https://www.google.com/mymaps/viewer?mid=10ubQEJJWf2SghqpQMtgcljh6YI8t5hso&hl=en (accessed on 21 December 2021). (In Russian).
- Springs of the Kola Land. Available online: https://helion-ltd.ru/springs-kola-earth/ (accessed on 25 November 2021). (In Russian).
- Gunnarsdóttir, M.J.; Gardarsson, S.M.; Jonsson, G.S.; Ármannsson, H.; Bartram, J. Natural background levels for chemicals in Icelandic aquifers. Hydrol. Res. 2014, 46, 647–660. [Google Scholar] [CrossRef]
- Kousa, A.; Komulainen, H.; Hatakka, T.; Backman, B.; Hartikainen, S. Variation in groundwater manganese in Finland. Environ. Geochem. Health 2021, 43, 1193–1211. [Google Scholar] [CrossRef]
- Gunnarsdottir, M.J.; Gardarsson, S.M.; Jonsson, G.S.; Bartram, J. Chemical quality and regulatory compliance of drinking water in Iceland. Int. J. Hyg. Environ. Health 2016, 219, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheuer, C.; Boot, E.; Carse, N.; Clardy, A.; Gallagher, J.; Heck, S.; Marron, S.; Martinez-Alvarez, L.; Masarykova, D.; Mcmillan, P.; et al. Physical/Geographical Characteristics of the Artic. In AMAP Assessment Report: Arctic Pollution Issues; Arctic Monitoring and Assessment Programme (AMAP), AMAP: Oslo, Norway, 1998; pp. 9–24. [Google Scholar]
Element | Function | Reference |
---|---|---|
Ca | Included in the skeleton and teeth in the form of phosphates; participates in the processes of blood clotting and muscle and neuronal reactions | [18,19] |
Cr | Essential for the metabolism of sugars and fats | [17,20,21] |
Mn | Part of enzymes, an enzyme activator, important in antioxidant action | [17,22] |
Fe | Contained in hemoglobin in the enzymes peroxidase, catalase, and cytochrome oxidase; participates in the transformation of cellular energy | [17,23] |
Co | A cofactor of several enzymes, such as vitamin B12, which controls the production of red blood cells | [17,24] |
Ni | A cofactor in certain enzyme metal functions | [25] |
Cu, Zn | Participates in the composition of metalloenzymes | [17,26,27] |
Se | Part of the selenocysteine and selenomethionine amino acids | [28] |
Mo | A cofactor of enzymes that affect the oxidation of purines and aldehydes, protein synthesis, and the metabolism of certain nutrients | [17,29] |
Cd | Probably a metalohormone | [17,30] |
pH | Hardness, mmol/L | HCO3−, mg/L | NO3−, mg/L | Cl−, mg/L | Na, mg/L | Mg, mg/L | K, mg/L | Ca, mg/L | |
---|---|---|---|---|---|---|---|---|---|
USEPA | 6.5–8.5 | - | - | 44 | 250 | - | - | - | - |
EC | 6.5–8.5 | - | - | 50 | 250 | - | - | 12 | - |
WOH | 6.5–8.5 | 1,2 | 30–400 | 50 | 250 | - | - | - | - |
MPC * | 6–9 | 5 | - | 45 | 350 | 200 | 50 | - | - |
First category ** | 6.5–8.5 | <3.5 | <400 | <20 | <250 | <200 | <65 | <20 | <130 |
Highest category ** | 6.5–8.5 | 0.75–3.5 | 30–400 | <5 | <150 | <20 | 5–50 | 2–20 | 25–80 |
1 | 5.28 | 0.16 | <10 | 0.97 | <12 | 4.2 | 1.4 | 0.6 | 3.8 |
2 | 5.99 | 0.16 | 18.61 | 0.47 | <12 | 4.0 | 1.4 | 0.7 | 4.1 |
3 | 6.28 | 0.16 | 23.92 | 0.58 | <12 | 3.0 | 1.3 | 0.9 | 4.3 |
4 | 6.91 | 0.47 | 68.40 | 1.09 | <12 | 5.3 | 4.1 | 2.6 | 12.0 |
5 | 6.02 | 0.29 | 20.87 | 0.52 | <12 | 4.4 | 2.3 | 0.9 | 7.8 |
6 | 5.88 | 0.15 | 15.29 | 0.65 | <12 | 2.5 | 1.4 | 0.8 | 3.6 |
7 | 7.40 | 0.43 | 47.87 | 9.17 | <12 | 5.1 | 4.2 | 2.0 | 10.4 |
8 | 6.28 | 0.25 | 20.87 | 0.88 | 35.5 | 21.8 | 2.0 | 1.6 | 6.6 |
9 | 7.07 | 0.44 | 44.27 | 0.54 | <12 | 3.0 | 4.3 | 1.1 | 10.6 |
10 | 7.59 | 1.51 | 69.15 | 2.14 | <12 | 3.3 | 5.0 | 2.3 | 52.1 |
11 | 7.42 | 1.22 | 71.33 | 0.81 | <12 | 3.4 | 4.5 | 1.9 | 41.3 |
12 | 7.03 | 0.27 | 22.94 | 0.48 | <12 | 2.7 | 2.7 | 1.1 | 6.6 |
13 | 6.30 | 0.16 | 10.88 | 0.49 | <12 | 3.0 | 1.0 | 0.6 | 4.7 |
14 | 6.67 | 0.19 | <10 | 1.30 | <12 | 1.5 | 1.0 | 0.3 | 5.9 |
15 | 6.06 | 1.15 | 42.56 | 3.32 | 156 | 61.6 | 6.9 | 2.8 | 34.8 |
16 | 7.03 | 0.31 | 51.64 | 0.51 | <12 | 4.8 | 2.6 | 1.6 | 8.3 |
17 | 6.43 | 0.20 | 19.89 | 1.10 | <12 | 2.4 | 0.9 | 0.5 | 6.5 |
18 | 6.97 | 0.37 | 52.39 | 2.10 | <12 | 4.0 | 3.4 | 1.6 | 9.1 |
19 | 8.96 | 0.89 | 136.2 | 0.91 | 36.1 | 44.0 | 7.4 | 4.6 | 23.4 |
20 | 9.26 | 0.16 | 59.16 | 7.19 | <12 | 21.5 | 0.3 | 7.1 | 5.8 |
21 | 8.26 | 0.27 | 60.66 | 8.39 | <12 | 20.4 | 0.8 | 7.3 | 9.4 |
22 | 7.52 | 0.39 | 54.64 | 1.41 | 14.4 | 8.8 | 1.8 | 4.6 | 12.8 |
23 | 7.71 | 1.39 | 173.3 | 6.20 | 16.2 | 13.5 | 2.2 | 3.2 | 52.2 |
24 | 7.79 | 0.36 | 47.09 | 0.23 | <12 | 2.3 | 1.5 | 1.8 | 12.1 |
Li, µg/L | B, µg/L | Al, µg/L | V, µg/L | Mn, µg/L | Fe, µg/L | Ni, µg/L | Cu, µg/L | Zn, µg/L | Rb, µg/L | Sr, µg/L | Mo, µg/L | Ba, µg/L | Pb, µg/L | Bi, µg/L | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USEPA | - | - | 200 | - | 50 | 300 | - | 1000 | - | - | - | - | 2000 | 15 | - |
EC | - | - | 200 | - | 50 | 200 | - | - | - | - | - | - | 100 | - | - |
WOH | - | 2400 | 200 | - | 400 | 300 | 70 | 2000 | - | - | - | 70 | 1300 | 10 | 100 |
MPC * | 30 | 500 | 200 | 100 | 100 | 300 | 20 | 1000 | 5000 | 100 | 7000 | 70 | 700 | 10 | 100 |
First category ** | <30 | <500 | <200 | - | <50 | <300 | <20 | <1000 | <5000 | - | <7000 | <70 | <700 | <10 | - |
Highest category ** | <30 | <300 | <100 | - | <50 | <300 | <20 | <1000 | <3000 | - | <7000 | <70 | <100 | <5 | - |
1 | 3.5 | <10 | 459.0 | <1 | 14.3 | 74.3 | 13.2 | 5.0 | 10.4 | 2.3 | 65.2 | <0.3 | 18.9 | 0.16 | <0.5 |
2 | 2.6 | <10 | 34.0 | <1 | <3 | <20 | 1.6 | <1 | 1.5 | 1.3 | 38.5 | 0.5 | 13.9 | <0.1 | 2.4 |
3 | 3.1 | <10 | 24.2 | <1 | <3 | <20 | 1.9 | 1.3 | 5.1 | 3.0 | 34.9 | 0.5 | 10.7 | 0.70 | 2.0 |
4 | 4.2 | <10 | 5.0 | <1 | <3 | 31.3 | 1.8 | <1 | 2.3 | 0.2 | 121.2 | 1.9 | 17.3 | 0.10 | 1.7 |
5 | 1.6 | 13.3 | 46.6 | <1 | <3 | 45.3 | 2.7 | 1.3 | 2.2 | 2.2 | 53.0 | 0.4 | 37.8 | 0.12 | 1.9 |
6 | 1.7 | <10 | 26.4 | <1 | <3 | <20 | <1 | <1 | 2.9 | 2.6 | 33.2 | 0.3 | 16.2 | <0.1 | <0.5 |
7 | 2.4 | <10 | 112.6 | 2.3 | <3 | 213.2 | <1 | <1 | 2.8 | 0.8 | 139.1 | 0.8 | 25.5 | <0.1 | 2.5 |
8 | 1.2 | <10 | 12.5 | <1 | <3 | 25.8 | 8.0 | 1.9 | 16.9 | 4.8 | 63.0 | 0.5 | 26.5 | <0.1 | 2.1 |
9 | 1.7 | <10 | 30.8 | 1.2 | <3 | 51.8 | 1.1 | 1.0 | 3.3 | 0.3 | 40.7 | 0.5 | 5.9 | 0.20 | 1.8 |
10 | 2.5 | <10 | 6.8 | <1 | <3 | 153.2 | 2.0 | <1 | 2.9 | 0.2 | 169.1 | 0.8 | 53.2 | <0.1 | 1.8 |
11 | 3.2 | <10 | 6.8 | <1 | <3 | 110.4 | 1.8 | <1 | 5.7 | 0.2 | 140.1 | 0.5 | 40.2 | <0.1 | <0.5 |
12 | 2.2 | <10 | 5.8 | <1 | <3 | 21.8 | <1 | <1 | 11.0 | 0.1 | 33.0 | 1.7 | 17.9 | 0.13 | 2.3 |
13 | 1.4 | <10 | 9.7 | <1 | <3 | <20 | <1 | <1 | 2.4 | 0.3 | 38.4 | 0.4 | 4.9 | <0.1 | 2.2 |
14 | <1 | <10 | 10.7 | <1 | <3 | 27.0 | 4.4 | <1 | 4.0 | 0.6 | 17.1 | 0.5 | 2.2 | 0.26 | 3.0 |
15 | 11.6 | <10 | 43.7 | 1.6 | 295.7 | 186.2 | 24.3 | 2.4 | 5.6 | 0.6 | 195.0 | 0.3 | 103.1 | 0.41 | 1.9 |
16 | 5.5 | <10 | 8.2 | 1.5 | <3 | <20 | <1 | <1 | 1.3 | 0.2 | 64.1 | 0.4 | 9.6 | <0.1 | <0.5 |
17 | 1.0 | <10 | 95.6 | 1.0 | <3 | 49.0 | <1 | 1.6 | 5.5 | 0.6 | 21.5 | 0.5 | 4.2 | 0.17 | 2.6 |
18 | 2.9 | <10 | 6.1 | 1.1 | <3 | 81.7 | 1.1 | <1 | 6.7 | 0.2 | 46.2 | 0.6 | 8.1 | <0.1 | 2.2 |
19 | 2.6 | 38.6 | 6.4 | <1 | 10.7 | 59.7 | 1.1 | <1 | 2.9 | 0.9 | 196.3 | 1.5 | 21.5 | <0.1 | 2.0 |
20 | 1.0 | <10 | 298.6 | 5.0 | <3 | 73.1 | <1 | 1.3 | 8.1 | 3.0 | 24.7 | 14.3 | 1.7 | 0.15 | 2.0 |
21 | 1.2 | <10 | 24.3 | <1 | <3 | 20.7 | <1 | <1 | 3.8 | 8.7 | 62.9 | 19.5 | 0.9 | 0.15 | <0.5 |
22 | <1 | <10 | 5.4 | <1 | <3 | 35.1 | <1 | <1 | 6.7 | 2.2 | 10.1 | 0.5 | 0.5 | <0.1 | 2.6 |
23 | <1 | 18.1 | 7.2 | 2.2 | <3 | 124.7 | 1.7 | 1.6 | 5.0 | 1.0 | 202.6 | 0.8 | 68.5 | <0.1 | 2.2 |
24 | <1 | <10 | 10.2 | <1 | <3 | 29.9 | <1 | <1 | 3.5 | 0.3 | 71.2 | 1.8 | 8.7 | <0.1 | 1.9 |
Be | Cr | Co | As | Se | Ag | Cd | Sb | Te | Re | Tl | |
---|---|---|---|---|---|---|---|---|---|---|---|
LOD, µg/L | 0.2 | 1 | 0.2 | 1 | 10 | 1 | 0.1 | 0.2 | 2 | 0.1 | 0.1 |
WHO | 12 | 50 | - | 10 | 40 | - | 3 | 20 | - | - | |
MPC * | 0.2 | 50 | 100 | 10 | 10 | 50 | 1 | 5 | 10 | - | 0.1 |
Highest category ** | <0.2 | <30 | <100 | <6 | <10 | <25 | <1 | <5 | - | - | - |
Area | MPC | Drinking Water of the First Category | Drinking Water of the Highest Category |
---|---|---|---|
Murmansk and Kola district | 4, 7 | 4, 7 | - |
Monchegork district | 9, 10, 11, 12, 14 | 9, 10, 11, 12, 14 | 10 (11 *) |
Kandalaksha district | 16, 18 | 16, 18 | - |
Apatity-Kirovsk district | 21, 22, 23, 24 | 21, 22, 23, 24 | - |
Totally (24 springs) | 13 | 13 | 1 (2 *) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikov, A.I.; Shirokaya, A.A.; Slukovskaya, M.V. Elemental Concentrations of Major and Trace Elements in the Spring Waters of the Arctic Region of Russia. Minerals 2022, 12, 8. https://doi.org/10.3390/min12010008
Novikov AI, Shirokaya AA, Slukovskaya MV. Elemental Concentrations of Major and Trace Elements in the Spring Waters of the Arctic Region of Russia. Minerals. 2022; 12(1):8. https://doi.org/10.3390/min12010008
Chicago/Turabian StyleNovikov, Andrey I., Anna A. Shirokaya, and Marina V. Slukovskaya. 2022. "Elemental Concentrations of Major and Trace Elements in the Spring Waters of the Arctic Region of Russia" Minerals 12, no. 1: 8. https://doi.org/10.3390/min12010008
APA StyleNovikov, A. I., Shirokaya, A. A., & Slukovskaya, M. V. (2022). Elemental Concentrations of Major and Trace Elements in the Spring Waters of the Arctic Region of Russia. Minerals, 12(1), 8. https://doi.org/10.3390/min12010008