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Abstract: Fluidized roasting is an efficient method to promote vanadium extraction from V-bearing
mica in shale. In this study, the transformation behavior of V-bearing sericite during fluidized roasting
was explored by combining experimental detections and density functional theory (DFT) calculations.
TG-MS, XRD, FTIR, and SEM-EDS were used to investigate the characteristics of the roasted sericite
samples. The crystal parameters of V-bearing sericite were calculated with Materials Studio. The
results showed that dehydroxylation was the main reaction during roasting, which occurred between
650 ◦C and 960 ◦C. After being roasted at 900 ◦C for 2 h, hydroxyls were completely removed. The
calculation results show that −OH was removed between the metal ions in the sericite O-layer,
which turned the hexa-coordinate of V3+, Al3+, and Fe3+ into pentacoordinate. Through electronic
rearrangement, the bond lengths between two ions connected by −OH were shortened from 0.18~0.20
nm to 0.17 nm. However, some chemical bonds were grown, which indicates that they are weaker
and easier to transform. In addition, twisted six-membered rings were formed with obvious angle
changes on the (0 0 1) surface. Furthermore, Mulliken’s overlap populations of some V-O, Al-O, and
Fe-O were decreased. Therefore, dehydroxylation is a determining factor in the destruction of sericite
crystals during fluidized roasting, which also promotes vanadium release from shale.

Keywords: sericite; crystal; DFT; fluidized roasting; dehydroxylation

1. Introduction

Vanadium is a significant rare-metal element and strategic resource [1,2]. It has been
extensively applied to the steel industry, special alloy, chemical industry, superconducting
materials, vanadium batteries, and more [3–5]. There is a huge consumption of vanadium
in China, but 87% of vanadium is stored in shale, which amounts to 118 million tons
(estimated by V2O5) [6–8]. Shale is a type of carbonaceous shale with a low calorific
value [9,10]. The low grade of V2O5 (0.13%~1.2%), complex minerals composition, and
various occurrence states of vanadium are characteristics of shale [11,12]. In addition,
V3+ often replaces the Al3+ in mica crystal with isomorphism. However, V2O3 has little
solubility in acid [13], meaning vanadium is difficult to directly leach from shale. This
results in low recovery, waste medicine, difficult purification, and high cost in current
processes [14–16].

Common vanadium extraction processes include sodium roasting-water leaching,
sodium roasting-acid leaching, calcification roasting-acid/alkali leaching, and direct acid
leaching [17–20]. At present, many additives have been developed, including NaCl,
Na2CO3, Na2SO4, CaO, CaCO3, CaF2, etc. [18,21,22]. The vanadium leaching rate reached
86.74% under the conditions of CaF2:CaO = 2:3, an additive amount of 10 wt%, and roasting
at 850 ◦C for 90 min. Additives could react with minerals to destroy crystal structures
under lower temperatures, shorter time, or less acid solution [18]. Molten NaCl would
rather react with silicate rocks, which results in crystal transformation and promotes vana-
dium dissociation. Studies confirmed that the key point of enhancing leaching efficiency
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is to destroy the crystal structure of V-bearing minerals before the leaching process [23].
However, roasting with additives will cause serious pollution and consume lots of acidic or
alkaline agents.

At present, blank roasting is being considered as a better choice to replace original
technologies [23–25] because of its advantages, such as containing no additives, a low
reagent consumption, and less pollution. The vanadium leaching efficiency in a blank
roasting–acid leaching process reached 85.43% under the comparative leaching condition
of 15% H2SO4 (v/v), 1 mL/g, 4 h, 95 ± 1 ◦C, and 5% CaF2 (w/w) [19]. Previous studies
have shown that the crystal structure of V-bearing muscovite was effectively destroyed
by fluidized roasting, which promotes the release of vanadium [26]. However, the micro-
damage mechanism of V-bearing muscovite by high-temperature fluidized roasting was
lacking. Muscovite is the most widely distributed V-bearing mineral in shale, which leads to
difficulty with leaching. Thus, some researchers studied the crystal parameters of V-bearing
muscovite based on density functional theory (DFT) [27]. The results showed that the most
plausible site of V was the octahedral structure in the O-layer of muscovite, and destroying
this octahedral structure was key to enhancing the leaching rate of vanadium. Moreover,
the bond parameters, bond angles, bond length, populations, and electron distribution were
analyzed in substituted V-bearing muscovite [27–30]. During acid dissolution, the removal
process of structural atoms in muscovite during acid leaching [31], and the removal of
structural O and Al in the octahedron were also researched [32]. The structure and relative
potential energy of the intermediate products were carefully calculated and described,
which was valuable work.

In this study, experimental studies and density functional theory (DFT) calculations
were innovatively combined to study the transformation of V-bearing sericite, which is a
kind of fine V-bearing muscovite, and its crystal during fluidized roasting. TG-MS, XRD,
FTIR, and SEM-EDS were used to analyze the thermolysis, chemical bonds, phase transi-
tion, and microstructure of sericite samples, respectively. Furthermore, V-bearing sericite
crystals before and after dehydroxylation were constructed to intuitively demonstrate the
transformation of crystal parameters, bond angle, bond length, and populations. It also
explained the promoting effect of fluidized roasting from the perspective of crystal damage.

2. Materials and Methods
2.1. Materials

The sericite was obtained from Shijiazhuang Country, Hebei Province of China. In this
research, pure sericite was used to substitute pure V-bearing sericite because it is difficult
to obtain pure V-bearing sericite in nature. Although there are slight differences between
them, their properties and structures are rather similar, which meets the requirements
of this research. Figure 1 shows the results of particle size analyzed by a laser particle
sizer, in which the content at −45 µm was more than 73%. The chemical compositions of
sericite are presented in Table 1, which were determined by chemical analysis. As the main
components of sericite, the contents of Al2O3, K2O, and SiO2 are 30.82 wt%, 10.54 wt%,
and 49.25 wt%, respectively. The mineral composition of the ore sample was defined by
XRD. Figure 2 shows that the characteristic peaks of sericite correspond well with that of
sericite, as there are no other minerals’ peaks. It indicates that this sericite is of high purity
and meets the requirement of this research.

Table 1. The chemical multi-elemental analysis of sericite.

Composition Al2O3 K2O SiO2 Fe2O3 CaO MgO TiO2

Content (wt%) 30.82 10.54 49.25 5.21 0.14 1.30 0.70
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Figure 2. The XRD pattern of raw sericite.

2.2. Methods and Equipment

Figure 3 shows the schematic of the sericite fluidized roasting system. The samples
were heated by vertical furnace equipment (OTF-1200X-S-VT, HF-Kejing, Hefei, China) from
25 ◦C to 1050 ◦C. A furnace tube (Φ 50 mm) with an internal breathable quartz plate was
the core reactor. O2 and N2 gas (purity of 99.99%) supplied a flowing oxidation atmosphere
controlled by rotary flowmeters (LZB-3WB, Shengzhiyuan, China). First, 20.00 g sericite
was charged onto the quartz plate inside the reactor. Then, the connected furnace tube was
put into the furnace cavity, which reached a set temperature. O2 (126 mL/min) and N2
(474 mL/min) were injected into furnace tubes. Under this condition, fluidized roasting
would last for 2 h. Raw ore and roasted products were analyzed by TG-MS, XRD, FTIR, and
SEM-EDS. In addition, the crystal calculation would illustrate the crystal transformation
before and after roasting. Calculation parameters of the CASTAP module of Material
Studio were as follows (DFT): the exchange-correlation functional selected GGA-PBE, the
pseudopotential selected Ultra-soft, the cut-off energy was 400 eV, and the K-point was
the Gamma point (1 × 1 × 1). This crystal structure of sericite was downloaded from
the American Mineralogist Crystal Structure Database (AMCSD). Crystals of V-bearing
sericite and dehydroxylated V-bearing sericite were clearly compared and analyzed in
crystal parameters (bond angle, length, population, and bond strength).
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Figure 3. Schematic of sericite fluidized roasting system.

2.3. Analytical Methods

The particle size of sericite powder was determined by a laser particle sizer (Malvern
Panalytical Mastersizer 3000, Malvern, UK). The phase composition of roasted products was
studied by X-ray diffraction analysis (XRD, Panalytical X Pertpro, Almelo, The Netherlands).
Samples were scanned within a 2θ range of 5~75◦; then, the patterns were analyzed by
JADE software (version 6.0, Materials Data, Newtown Square, PA, USA). Thermogravime-
try combined with mass spectrometry (TG-MS, NETZSCH STA 449F3, Selb, Germany)
was used to analyze the thermal decomposition process of sericite [33]. Furthermore,
Fourier transforms infrared spectroscopy (FTIR, Nicolet 380, Scientific, Masyland, USA)
was employed to investigate the transformations in the chemical bonds. Based on the first
principle, the crystal structure of sericite was calculated using Materials Studio software
(version 2019). Microstructures and elements distribution of samples were observed by
scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS, Zeiss Ultra
Plus, Germany, and OXFORD X-MAXN, Oxford, UK).

3. Results and Discussion
3.1. Thermal Decomposition Analysis

Thermogravimetry-mass spectrometry (TG-MS) was used to investigate the pyrolysis
behavior of the sericite [34,35]. The heating rate of TG-MS is 15 ◦C/min under in air. As
shown in Figure 4, the pyrolysis process can be divided into three stages. The first stage
was from room temperature to 650 ◦C. The mass loss of this stage was 0.81%, which is
due to the removal of some adsorbed water and crystal water [34]. Because the water
content was low, changes to the TG curve and ion intensity of H2O were small. In the
second stage, from 650 ◦C to 960 ◦C, the mass loss reached 3.20%. It was demonstrated
that a violent dehydroxylation reaction began at 650 ◦C and completely ended at 960 ◦C.
The ion intensity of H2O had an obvious peak in this range, revealing that the hydroxyls
inside sericite crystal were removed between 650 ◦C and 960 ◦C in the form of H2O [34,36].
Furthermore, the peak values of the DTG curve and H2O curve were located at 850 ◦C
and 855 ◦C, respectively, indicating that the maximum reaction rate occurred at 850 ◦C.
Therefore, the effective roasting temperature for crystal damage should be above 850 ◦C.
In contrast, the weight loss was only 0.18% at the third stage (i.e., from 960 ◦C to 1200 ◦C)
because the decomposition reaction was very weak.
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3.2. Transformation Behaviors of Sericite
3.2.1. Transformation of Chemical Bonds

Figure 5 shows the FTIR spectra of raw ore and roasted products (800 ◦C, 850 ◦C,
900 ◦C, 950 ◦C, and 1050 ◦C). Bands at 3623.23 cm−1 and 825.93 cm−1 were attributed
to stretching vibrations and oscillating absorption of -OH, respectively [37,38]. Bands at
3623.23 cm−1 and 825.93 cm−1 disappeared completely when the roasting temperature
reached 900 ◦C, indicating that the -OH in the crystal was completely removed. It was
consistent with the analysis results of the TG-MS in Figure 4. In addition, Si(AlIV)-O and
Si-O-Si(AlIV) were also changed (absorption bands at 798 cm−1, 748 cm−1, 693 cm−1, and
1027 cm−1, and shoulder absorption band at 1068 cm−1 [37]). As shown in Figure 5b, bands
at 798 cm−1, 748 cm−1, and 693 cm−1 gradually weakened and disappeared at 900 ◦C with
the increase in temperature. The bands at 1027 cm−1 and 1050 cm−1 also moved to low
and high frequency, respectively. Then, the FTIR spectra basically remained unchanged
when the temperature was above 900 ◦C. Figure 5 illustrates the main changes in this
spectrum related to -OH, Si(AlIV)-O, and Si-O-Si(AlIV), indicating that dehydroxylation
was accompanied by significant changes in Si(AlIV)-O and Si-O-Si(AlIV) during roasting.
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3.2.2. Phase Transformation

The XRD patterns of sericite samples are shown in Figure 6. During fluidized roasting,
the mineralogical phase changed from sericite to dehydroxylated sericite. With the increase
in roasting temperature, the characteristic peaks of raw sericite at 36.1◦, 45.5◦, 69.6◦, and
70.2◦ gradually weakened and then finally disappeared at 850 ◦C. Meanwhile, new peaks
located at 35.6◦, 45.0◦, 64.7◦, and 68.7◦ were attributed to the generation of dehydroxylated
sericite. On the one hand, it was confirmed that the dehydroxylation reaction led to phase
transformation during roasting. On the other hand, the roasting temperature should be
higher than 850 ◦C to cause sericite crystal damage.
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Figure 6. XRD analysis of roasted products at different temperatures (raw ore (a), 700 ◦C (b),
850 ◦C (c), 900 ◦C (d), 950 ◦C (e), and 1050 ◦C (f)).

To further analyze the variation in crystal planes of roasted products, the interplanar
spacings of diffraction peaks were measured, and the results are shown in Table 2. The
interplanar spacings of (006), (002), (004), (008), and (025) increased continuously from raw
ore to 850 ◦C. Among them, (006), (002), and (004) were changed at 850 ◦C, which were
the three strongest peaks of sericite located at 26.8◦, 17.8◦, and 8.8◦ along the crystal c-axis.
The interplanar spacings of (006), (002), and (004) increased from 0.3323 nm, 0.9973 nm,
and 0.4984 nm to 0.3354 nm, 1.0040 nm, and 0.5029 nm, respectively, indicating that the
sericite crystal was stretched and deformed along the c-axis. Because the ionic bond is the
interlayer force between the layers of sericite crystal, deformation is most prone along with
the c-axis. Hence, the crystal deformation of sericite along the c-axis was also accompanied
by dehydroxylation.

3.2.3. Microstructure Analysis

Raw sericite and roasted products at 850 ◦C, 950 ◦C, and 1050 ◦C were imaged under
SEM to analyze the microstructure at different temperatures. Figure 7 illustrates that
sericite was composed of several thin layers with obvious flaky structures. Fine flake debris
adhered to the sample surface, and the diameter of most debris was less than 2 µm. It could
be observed that the edge and fracture of particles were sharp. When the temperature
increased from 850 ◦C to 1050 ◦C, the scaly particles on the surface melted, and the sharp
fracture gradually became smooth. Figure 7c shows the small spherical particles formed at
950 ◦C. Sintering phenomena occurred at 1050 ◦C, and the flake particles were fused to the
bump structure and closely attached to the surface. Meanwhile, metal ions were wrapped
inside the molten silicate formed by sintering.
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Table 2. The interplanar spacings of diffraction peaks of roasted products.

Crystal
Planes

Interplanar Spacings/nm

Raw Sericite 700 ◦C 850 ◦C 900 ◦C 950 ◦C

(0 0 2) 0.9950 0.9973 1.0041 1.0041 1.0063
(0 0 4) 0.4982 0.4985 0.5029 0.5029 0.5035
(1 1 0) 0.4471 0.4505 0.4503 0.4498 0.4501

(−1 1 4) 0.3494 0.3500 0.3521 0.3517 0.3520
(0 0 6) 0.3323 0.3324 0.3355 0.3355 0.3357
(1 1 4) 0.3202 0.3205 0.3228 0.3227 0.3229
(0 2 5) 0.2992 0.2995 0.3028 0.3027 0.3031
(1 1 5) 0.2862 0.2865 0.2885 0.2886 0.2889

(−1 1 6) 0.2791 0.2794 0.2814 0.2814 0.2816
(0 0 8) 0.2493 0.2493 0.2516 0.2517 0.2518
(2 2 4) 0.1994 0.1994 0.2013 0.2013 0.2014
(1 3 9) 0.1647 0.1648 0.1666 0.1666 0.1666Minerals 2022, 12, 1223 8 of 15 
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Figure 7. SEM images of sericite samples at different temperatures (raw ore (a), 850 ◦C (b), 950 ◦C (c),
and 1050 ◦C (d)).

Taking the raw ore and roasted product at the highest temperature, Figure 8 shows
the element distribution at 1050 ◦C. Si, O, Al, K, and Fe were the main constituent ele-
ments of sericite (the chemical formula is K0.5–1(Al,Fe,Mg)2(SiAl)4O10(OH)2·nH2O) [39,40].
Figure 8a illustrates those elements had a good correlation with particles. Figure 8b shows
that Si, O, Al, K, and Fe also had good correlations. This showed there was no element loss
before and after dehydroxylation. The inclusion of V elements in the melt leads to a poor
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leaching effect of the sample [6,41]. Hence, too high a temperature should be avoided in
the fluidized roasting process of shale.
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3.3. DFT Calculation of Sericite Crystal

The DFT calculation could provide microcosmic and quantitative evidence for the
analysis at an atomic scale [42]. Materials Studio software was used to estimate the
microstructural transformation of V-bearing sericite during fluidized roasting [43].

3.3.1. Crystal Transformation during Dehydroxylation

Based on previous research, the best substitution position of the V3+ in the O-layer was
determined [27]. Then, the crystal of V-bearing sericite was obtained as shown in Figure 9.
An octahedral sheet with Al, V, Fe, and O is pinned between two tetrahedron sheets with
Si and O, which formed a T-O-T layer structure. The T-layer is connected by the silica
six-membered ring, and the O-layer is connected by the alumina six-membered ring [44].
Meanwhile, V3+ and Fe3+ usually replaced Al3+ by isomorphism in the O-layer [45,46].
Figure 10 shows the changes in sericite crystal before and after dehydroxylation. The
calculated crystal parameters of raw ore were a = 0.8980 nm, b = 0.5177 nm, c = 2.1086 nm,
α = 84.84◦, β = 90.10◦, and γ = 90.10◦. In addition, the parameters of dehydroxylated sericite
were a = 0.9116 nm, b = 0.5201 nm, c = 2.1181 nm, α = 85.78◦, β = 90.49◦, and γ = 89.86◦.
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The values of a and c elongated were found to be 0.0136 nm and 0.0095 nm, respectively.
The expansion along the c-axis was due to the weak force between the crystal layers [47].
Moreover, the expansion along the a-axis and the change in a, b, and c were mainly due to
the crystal transformation inside the crystal cell.
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Figure 10. Structural change in sericite O-layer during dehydroxylation.

The sericite O-layer could be regarded as the repeated arrangement of two types of
six-membered rings. In the sericite (0 0 1) surface, the crystal change in the O-layer before
and after dehydroxylation is shown in Figure 11. This reaction occurred between adjacent
metal ions (V3+ and Al3+, and Fe3+ and Al3+) [38]. An H2O molecule was generated by the
reaction of two −OH. Firstly, two connected O atoms were reduced to one between V3+ and
Al3+, and Fe3+ and Al3+. Second, the coordination number of central ions decreased from
6 to 5, and the polyhedron pile model changed from hexa-coordinate to pentacoordinate.
Finally, this reaction led to the rearrangement of electrons, the transformation of atomic sites,
and the change in crystal parameters (a, b, c, α, β, and γ). These changes in microstructure
correspond to the transformation of macro properties.
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3.3.2. Analysis of Bond Parameters and Electron Population

Observed from the sericite (0 0 1) surface, the O-layer was composed of two kinds
of six-membered rings with infinite repetition. Figure 11a illustrates the changes in bond
length and bond angle, and Table 3 lists the distance between adjacent atoms. When
-OH was removed between adjacent center atoms, two intermediate oxygen atoms be-
came one. Near this position, the bond lengths of V-O, Al-O, and Fe-O (red mark) were
shortened. However, other chemical bonds were increased from 0.1907~0.2037 nm to
0.1987~0.2097 nm, indicating that the strength of these chemical bonds decreased. Weak-
ened chemical bonds make them easier to break when they react with acids. This is also
one of the reasons why roasted samples are easier to leach [40,48].

Table 3. Distance between adjacent center atoms before and after dehydroxylation.

Distance/nm V1-Al1 Al1-Al2 Al2-Fe1 Fe1-Al3 Al3-Al4 Al4-V1

Before 3.11 3.00 2.98 3.06 3.00 3.13
After 3.04 2.96 3.44 2.98 2.96 3.48

Distance/nm V1-Al1 V1-Fe2 Fe2-Al5 Al5-Fe3 Fe3-V2 V2-Al1

Before 3.11 2.68 2.98 3.06 2.68 3.13
After 3.04 2.36 3.44 2.98 2.36 3.48

The distance between central atoms increased obviously, which increased to 0.35 nm
and 0.46 nm for Al-V and Al-Fe, respectively. In contrast, the distance for V-Fe decreased to
0.32 nm. Moreover, in the ring, the bond angles near -OH pointing inside (with white mark
in Figure 11a) expanded from 87.07~95.89◦ to 109.41~128.08◦. However, the bond angles
near −OH pointing outside (yellow mark) reduced from 91.10~100.19◦ to 88.07~98.80◦. The
other angles changed only by a little. The results above suggest that the original hexagonal
structure has been seriously distorted and that two kinds of twisted six-membered rings
were formed.

Mulliken’s overlap population provides intuitive chemical information transformed
from the wave function obtained by Molecular Orbital Theory. By distributing electronic
charges to atoms, atomic orbitals, and chemical bonds, it is used to study the transfer of
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electrons in molecules, the polarity of molecules, as well as the type and strength of chemical
bonds, etc. [49,50]. Additionally, it is dimensionless and has no physical meaning [51].
According to Mulliken's overlap populations of bonds and atoms, as well as atomic net
charges (Figure 11b), electronic structures and bonding characters were discussed to clarify
the transformation between sericite and dehydroxylated products. Mulliken’s overlap
populations in the raw ore were all about 0.3, indicating that each bond presented the
nature of the ionic bond and has similar strengths. The most obvious change occurred at
the dehydroxylation site. When two O atoms were connected between the V and Al atoms—
V-O and Al-O—Mulliken’s overlap populations were 0.26 and 0.32. After roasting, there
was only one O atom between two atoms, and the populations of V-O and Al-O increased
to 0.58 and 0.47, respectively. The law between Al and Fe was the same. This indicated
that newly generated bonds tend to be covalent bonds with stronger strength. It should be
noted that Mulliken’s overlap populations of some V-O, Al-O, and Fe-O decreased from
0.30, 0.35, and 0.27 to 0.27, 0.25, and 0.18, respectively. This indicated that their covalency
was weakened and that they were easier to destroy. Furthermore, Mulliken’s overlap
populations of atoms before and after dehydroxylation are presented in Table 4. V3+, Fe3+,
and Al3+ in the O-layer were electron deficiency sites and the O atoms were multi-electron
sites. After fluidized roasting, the electrons of the V3+ increased from 11.72 to 11.81, and
Fe3+ increased from 7.04 to 7.13, while the electrons of the Al3+ decreased from 1.31~1.33 to
1.25. These results indicated electron transfer from Al3+ to O atoms rather than to V3+ and
Fe3+ ions.

Table 4. Mulliken population of atoms before and after dehydroxylation.

Ions State s Orbital p Orbital d Orbital Total Charge/e

V1
Before 2.25 6.17 3.31 11.72 1.28
After 2.20 6.21 3.40 11.81 1.19

Al1
Before 0.50 0.81 - 1.31 1.69
After 0.47 0.78 - 1.25 1.75

Al2
Before 0.51 0.81 - 1.33 1.67
After 0.46 0.79 - 1.25 1.75

Fe1
Before 0.25 0.24 6.54 7.04 0.96
After 0.26 0.35 6.52 7.13 0.87

In summary, raw ore has a stable structure in which each parameter—bond angle,
length, and population—is pretty close, and the O-layer is composed of an approximate
hexagonal structure. However, after fluidized roasting, the metal ions in the sericite
O-layer changed from hexa-coordinate to pentacoordinate. With the rearrangement of
electrons, some bond lengths increased or decreased, and the bond strength also increased
or decreased. This indicated that roasting would lead to forming more unstable chemical
bonds and reducing crystal stability inside sericite crystals. This should be the reason
vanadium and other metal ions are easier to leach out in the roasted product.

4. Conclusions

The transformation of sericite to dehydroxylated sericite was the main reaction during
fluidized roasting. TG-MS revealed that this reaction could occur at 650~960 ◦C. When
sericite was roasted at 900 ◦C for 2 h, their hydroxyls were completely removed. The
calculations showed that -OHs were removed between V3+ and Al3+, and between Fe3+

and Al3+ in the sericite O-layer, which turned the hexa-coordinate structure of V3+, Al3+,
and Fe3+ into pentacoordinate. It showed that their stable octahedron structure was
destroyed into an unstable hexahedron structure. Meanwhile, the electrons were rearranged.
Mulliken’s overlap populations were increased from 0.26~0.36 to 0.47~0.59. On the sericite
(0 0 1) surface, the angles changed from 87.04~100.19◦ to 84.53~128.08◦. In addition,
Mulliken’s overlap populations of some other V-O, Al-O, and Fe-O decreased from 0.30 to
0.27, from 0.35 to 0.25, and from 0.27 to 0.18, respectively, indicating that their ionicities
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were weakened. Some bond lengths were increased; therefore, the strength of the chemical
bonds was reduced and the bonds were fragile. The distorted hexahedron structure with
fragile chemical bonds in the O-layer explained the destructive effect of fluidized roasting
on the stability of V-bearing sericite.
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