Rodingites in the Darbut Ophiolitic Mélange, West Junggar: New Insights into Rodingitization and Tectonic Evolution
Abstract
:1. Introduction
2. Geological Background and Field Geology
2.1. Tectonic Framework of West Junggar
2.2. Brief Summary of the Darbut Ophiolitic Mélange
2.3. Field Relationships of the Rodingites
2.4. Sampling and Petrography
3. Geochemistry
3.1. Analytical Methods
3.2. Results
3.3. Isocon Analysis
4. Discussions
4.1. Rodingite Protolith
4.2. Metasomatic Process and Element Mobility
4.3. Implications for the Tectonic Setting
5. Conclusions
- (1)
- The protoliths of rodingites and blackwalls in the Darbut ophiolitic mélange are gabbros; they were derived from a depleted mantle source that had been metasomatized by slab-derived fluids.
- (2)
- Two stages of metasomatic processes (i.e., rodingitization and derodingitization) were recognized. Rodingitization of gabbroic protolith was characterized by the input of Ca and the release of Si, K, Na, and LILEs. Derodingitization of rodingites led to the replacement of Ca-rich minerals by chlorite and to the Mg increase and Ca and REE depletions.
- (3)
- The rodingitization process was related to the diapiric emplacement of the Darbut ophiolitic mélange in the Late Carboniferous; the derodingitization process occurred in the Early Permian and was likely associated with regional postcollision volcanism.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, J.M.; Clarke, E.C.; Marshall, P. The Geology of the Sun Mountain Subdivision, Nelson; New Zealand Geological Survey Bulletin 12 New Series; Mackay, Government Printer: Wellington, New Zealand, 1911. [Google Scholar]
- Coleman, R.G. Serpentinites, rodingites, and tectonic inclusions in Alpine-type Mountain chains. Geol. Soc. Am. Spec. Pap. 1963, 73, 130–131. [Google Scholar]
- Frost, B.R. Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J. Petrol. 1975, 16, 272–313. [Google Scholar] [CrossRef]
- O’Hanley, D.S.; Schandl, E.S.; Wicks, F.J. The origin of rodingites from Cassiar, British-Columbia, and their use to estimate T and P (H2O) during serpentinization. Geochim. Cosmochim. Acta 1992, 56, 97–108. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, L.; Wei, C.; Ai, Y.; Chen, J. Petrology of rodingite derived from eclogite in western Tianshan, China. J. Metamorph. Petrol. 2007, 25, 363–382. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, L.F.; Wilde, S.A.; Song, B.; Liu, X.M. Zircons from rodingite in the Western Tianshan serpentinite complex: Mineral chemistry and U-Pb ages define nature and timing of rodingitization. Lithos 2010, 118, 17–34. [Google Scholar] [CrossRef]
- Bach, W.; Klein, F. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos 2009, 112, 103–117. [Google Scholar] [CrossRef]
- Laborda- López, C.; López-Sánchez-Vizcaíno, V.; Marchesi, C.; Gómez-Pugnaire, M.T.; Garrido, C.J.; Jabaloy-Sánchez, A.; Padrón-Navarta, J.A.; Hidas, K. High-P metamorphism of rodingites during serpentinite dehydration (Cerro del Almirez, Southern Spain): Implications for the redox state in subduction zones. J. Metamorph. Geol. 2018, 36, 1141–1173. [Google Scholar] [CrossRef]
- Shen, T.T.; Wu, F.T.; Zhang, L.F.; Hermann, J.; Li, X.P.; Du, J.X. In-situ U-Pb dating and Nd isotopic analysis of perovskite from a rodingite blackwall associated with UHP serpentinite from southwestern. Chem. Geol. 2016, 431, 67–82. [Google Scholar] [CrossRef]
- Tang, Y.; Zhai, Q.G.; Hu, P.Y.; Wang, J.; Xiao, X.C.; Wang, H.T.; Tang, S.H.; Lei, M. Rodingite from the Beila ophiolite in the Bangong–Nujiang suture zone, northern Tibet: New insights into the formation of ophiolite-related rodingite. Lithos 2018, 316–317, 33–47. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Koutsovitis, P.; Giannakopoulou, P.P.; Pomonis, P.; Lampropoulou, P.; Hatzipanagiotou, K. Rodingites from the Veria-Naousa ophiolite (Greece): Mineralogical evolution, metasomatism and petrogenetic processes. Geochemistry 2022, 82, 125860. [Google Scholar] [CrossRef]
- Schandl, E.S.; O’Hanley, D.S.; Wicks, F.J. Rodingites in serpentinized ultramafic rocks of the Abitibi Greenstone Belt, Ontario. Can. Mineral. 1989, 27, 579–591. [Google Scholar]
- Schandl, E.S.; O’Hanley, D.S.; Wicks, F.J. Fluid inclusions in rodingite: A geothermometer for serpentinization. Econ. Geol. 1990, 85, 1273–1276. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S.; McCaig, A.; Condliffe, E. The formation of micro-rodingites from IODP Hole U1309D: Key to understanding the process of serpentinization. J. Petrol. 2008, 49, 1579–1588. [Google Scholar] [CrossRef]
- Li, X.P.; Duan, W.Y.; Zhao, L.Q.; Schertl, H.P.; Kong, F.M.; Shi, T.Q.; Zhang, X. Rodingites from the Xigaze ophiolite, southern Tibet: New insights into the processes of rodingitization. Eur. J. Mineral. 2017, 29, 821–837. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Rigopoulos, I.; Perraki, M.; Pomonis, P.; Hatzipanagiotou, K. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 2009, 113, 540–554. [Google Scholar] [CrossRef]
- Ferrando, S.; Frezzotti, M.L.; Orione, P.; Conte, R.C.; Compagnoni, R. Late-Alpine rodingitization in the Bellecombe meta-ophiolites (Aosta Valley, Italian Western Alps): Evidence from mineral assemblages and serpentinization-derived H2-bearing brine. Int. Geol. Rev. 2010, 52, 1220–1243. [Google Scholar] [CrossRef]
- Koutsovitis, P.; Magganas, A.; Pomonis, P.; Ntaflos, T. Subduction-related rodingites from East Othris, Greece: Mineral reactions and physicochemical conditions of formation. Lithos 2013, 172–173, 139–157. [Google Scholar] [CrossRef]
- Dai, J.G.; Wang, C.S.; Liu, S.A.; Zhu, D.C.; Ke, S. Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite. Geophys. Res. Lett. 2016, 43, 11635–11643. [Google Scholar] [CrossRef]
- Gussone, N.; Austrheim, H.; Westhues, A.; Mezger, K. Origin of Rodingite Forming Fluids Constrained by Calcium and Strontium Isotope Ratios in the Leka Ophiolite Complex. Chem. Geol. 2020, 542, 119598. [Google Scholar] [CrossRef]
- Mubarak, H.S.; Azer, M.K.; Surour, A.A.; Moussa, H.E.; Asimow, P.D.; Kabesh, M.M. Mineralogical and geochemical study of rodingites and associated serpentinized peridotite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos 2020, 374–375, 105720. [Google Scholar] [CrossRef]
- Duan, W.Y.; Li, X.P.; Schertl, H.P.; Willner, A.P.; Wang, S.J.; Chen, S.; Sun, G.M. Rodingitization records from ocean-floor to high pressure metamorphism in the Xigaze ophiolite 5720, southern Tibet. Gondwana Res. 2022, 104, 126–153. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, G.C.; Polat, A.; Zhu, C.Y.; Shen, T.Y.; Chen, Y.; Chen, C.; Guo, J.S.; Wu, G.L.; Liu, Y.T. Emplacement of the ophiolitic mélanges in the west Karamay area: Implications for the Late Paleozoic tectonic evolution of West Junggar, northwestern China. Tectonophysics 2018, 747–748, 259–280. [Google Scholar] [CrossRef]
- Yang, G.X.; Li, Y.J.; Santosh, M.; Yang, B.K.; Yan, J.; Zhang, B.; Tong, L.L. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean. J. Asian Earth Sci. 2012, 59, 141–155. [Google Scholar] [CrossRef]
- Yang, G.X.; Li, Y.J.; Gu, P.Y.; Yang, B.K.; Tong, L.L.; Zhang, H.W. Geochronological and geochemical study of the Darbut Ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution. Gondwana Res. 2012, 21, 1037–1049. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, G.C.; Polat, A.; Shen, T.Y.; Chen, Y.; Zhu, C.Y.; Wu, G.L. Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwestern China: Evidence for a Late Silurian to Devonian back-arc basin system. Tectonophysics 2018, 745, 395–411. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A.; Sunal, G.; van der Voo, R. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ∼750 and ∼130 Ma ago. Annu. Rev. Earth Planet. Sci. 2018, 46, 439–494. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, G.C.; Shen, T.Y.; Polat, A.; Zhu, C.Y. Paleozoic convergence processes in the southwestern Central Asian Orogenic Belt: Insights from U-Pb dating of detrital zircons from West Junggar, northwestern China. Geosci. Front. 2021, 12, 531–548. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Chen, S.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Paleozoic tectonic evolution in West Junggar, China. Tectonics 2014, 33, 2419–2443. [Google Scholar] [CrossRef]
- Ren, R.; Han, B.F.; Xu, Z.; Zhou, Y.Z.; Liu, B.; Zhang, L.; Chen, J.F.; Su, L.; Li, J.; Li, X.H.; et al. When did the subduction first initiate in the southern Paleo-Asian Ocean: New constraints from a Cambrian intra-oceanic arc system in West Junggar, NW China. Earth Planet. Sci. Lett. 2014, 388, 222–236. [Google Scholar] [CrossRef]
- Liu, B.; Han, B.F.; Chen, J.F.; Ren, R.; Zheng, B.; Wang, Z.Z.; Feng, L.X. Closure time of the Junggar-Balkhash Ocean: Constraints from Late Paleozoic volcano-sedimentary sequences in the Barleik Mountains, West Junggar, NW China. Tectonics 2017, 36, 2823–2845. [Google Scholar] [CrossRef]
- Choulet, F.; Faure, M.; Cluzel, D.; Chen, Y.; Lin, W.; Wang, B.; Jahn, B.M. Architecture and evolution of accretionary orogens in the Altaics collage: The early Paleozoic west junggar (NW China). Am. J. Sci. 2012, 312, 1098–1145. [Google Scholar] [CrossRef]
- Choulet, F.; Faure, M.; Cluzel, D.; Chen, Y.; Lin, W.; Wang, B. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China. Gondwana Res. 2012, 21, 530–547. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Zhao, L.; Zheng, R.G.; Xu, Q.Q. Evolution of the early Paleozoic Hongguleleng-Balkybey Ocean: Evidence from the Hebukesaier ophiolitic mélange in the northern West Junggar, NW China. Lithos 2019, 324–325, 519–536. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, G.C.; Shen, T.Y.; Zhu, C.Y. Late Paleozoic back-arc basin in West Junggar (northwestern China): New geochronological and petrogenetic constraints from basalts and cherts in the western Karamay area. J. Geodyn. 2019, 126, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.E.; Xiao, W.J.; Luo, J.; Chen, Y.C.; Windley, B.F.; Song, D.F.; Han, C.M.; Safonova, I. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in western Junggar, NW China: Implication for early middle Paleozoic architecture of the western Altaids. J. Asian Earth Sci. 2018, 159, 259–278. [Google Scholar] [CrossRef]
- Zheng, B.; Han, B.F.; Liu, B.; Wang, Z.Z. Ediacaran to paleozoic magmatism in west Junggar orogenic belt, NW China, and implications for evolution of central Asian orogenic belt. Lithos 2019, 338–339, 111–127. [Google Scholar] [CrossRef]
- Yin, J.Y.; Chen, W.; Yuan, C.; Yu, S.; Xiao, W.J.; Long, X.P.; Li, J.; Sun, J.B. Petrogenesis of early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: Implications for geodynamic evolution. Gondwana Res. 2015, 27, 1630–1645. [Google Scholar] [CrossRef]
- Yin, J.Y.; Chen, W.; Xiao, W.J.; Yuan, C.; Windley, B.F.; Yu, S.; Cai, K.D. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Res. 2017, 43, 55–73. [Google Scholar] [CrossRef]
- Zhang, C.; Santosh, M.; Liu, L.F.; Luo, Q.; Zhang, X.; Liu, D.D. Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites. Lithos 2017, 300–301, 314–329. [Google Scholar] [CrossRef]
- Zheng, R.G.; Zhao, L.; Yang, Y.Q. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China. Gondwana Res. 2019, 74, 237–250. [Google Scholar] [CrossRef]
- Ren, R.; Han, B.; Guan, S.; Liu, B.; Wang, Z. Linking the southern West Junggar terrane to the Yili block: Insights from the oldest accretionary complexes in west Junggar, NW China. J. Asian Earth Sci. 2018, 159, 279–293. [Google Scholar] [CrossRef]
- Zhao, L.; He, G.Q. Geochronology and geochemistry of the Cambrian (~518 Ma) Chagantaolegai ophiolite in northern West Junggar (NW China): Constraints on spatiotemporal characteristics of the Chingiz-Tarbagatai megazone. Int. Geol. Rev. 2014, 56, 1181–1196. [Google Scholar] [CrossRef]
- Han, B.F.; Ji, J.Q.; Song, B.; Chen, L.H.; Zhang, L. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrol. Sin. 2006, 22, 1077–1086, (In Chinese with English Abstract). [Google Scholar]
- Geng, H.Y.; Sun, M.; Yuan, C.; Xiao, W.J.; Xian, W.S.; Zhao, G.C.; Zhang, L.F.; Wong, K.N.; Wu, F.Y. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem. Geol. 2009, 266, 373–398. [Google Scholar] [CrossRef]
- Gao, R.; Xiao, L.; Pirajno, F.; Wang, G.C.; He, X.X.; Yang, G.; Yan, S.W. Carboniferous-Permian extensive magmatism in the West Junggar, Xinjiang, north-western China: Its geochemistry, geochronology, and petrogenesis. Lithos 2014, 204, 125–143. [Google Scholar] [CrossRef]
- Zong, R.W.; Fan, R.Y.; Gong, Y.M. Advances in the research on Carboniferous deep-water marine deposits in western Junggar, northwestern China. Geol. J. 2015, 50, 111–121. [Google Scholar] [CrossRef]
- Qiu, T.; Zhu, Y.F. Geology and geochemistry of listwaenite-related gold mineralization in the Sayi gold deposit, Xinjiang, NW China. Ore Geol. Rev. 2015, 70, 61–79. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, Y. Chromitite genesis based on chrome-spinels and their inclusions in the Sartohay podiform chromitites in west Junggar of northwest China. Ore Geol. Rev. 2020, 119, 103401. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Güntherc, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle compositions and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Grant, J.A. The Isocon diagram: A simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Pearce, J.A. Statistical analysis of major element patterns in basalts. J. Petrol. 1976, 17, 15–43. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Cabanis, B.; Lecolle, M. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des processys de mélange et/ou de contamination crustale. Comptes Rendus Acad. Sci. II 1989, 309, 2023–2029. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile element fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Karkalis, C.; Magganas, A.; Koutsovitis, P.; Pomonis, P.; Ntaflos, T. Multiple rodingitization stages in alkaline, tholeiitic, and calc-alkaline basaltic dikes intruding exhumed serpentinized Tethyan mantle from Evia Island, Greece. Lithosphere 2022, 2022, 9507697. [Google Scholar] [CrossRef]
- Bach, W.; Jöns, N.; Klein, F. Metasomatism within the ocean crust. In Metasomatism and Chemical Transformation of Rocks: The Role of Fluids in Terrestrial and Extraterrestrial Processes; Lecture Notes in Earth Systems Sciences; Harlov, D., Austrheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 253–288. [Google Scholar]
- Coleman, R.G. Low-temperature reaction zones and alpine ultramafic rocks of California Oregon and Washington. U.S. Geol. Surv. Bull. 1967, 1247, 1–49. [Google Scholar]
- Hatzipanagiotou, K.; Tsikouras, B.; Migiros, G.; Gartzos, E.; Serelis, K. Origin of rodingites in ultramafic rocks from Lesvos Island (NE Aegean, Greece). Ofioliti 2003, 28, 13–23. [Google Scholar]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef]
- Pomonis, P.; Tsikouras, B.; Karipi, S.; Hatzipanagiotou, K. Rodingite formation in ultramafic rocks from the Koziakas ophiolite, western Thessaly, Greece: Conditions of metasomatic alteration, geochemical exchanges and T-X(CO) evolutionary path. Can. Mineral. 2008, 46, 569–581. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Hatzipanagiotou, K. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (Central Greece). Lithos 2013, 175, 16–29. [Google Scholar] [CrossRef]
- Qiu, T.; Zhu, Y.F. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry. Lithos 2018, 302–303, 427–446. [Google Scholar] [CrossRef]
- Li, D.; He, D.F.; Qi, X.F.; Zhang, N.N. How was the Carboniferous Balkhash-West Junggar remnant ocean filled and closed? Insights from the well Tacan-1 strata in the Tacheng basin, NW China. Gondwana Res. 2015, 27, 342–362. [Google Scholar] [CrossRef]
Sample | H9645-7-2 | H9645-7-1 | H9645-22-2 | H9645-22-1 | H9645-25-2 | H9645-25-1 | H9645-14-2 | |
Rock Type | Rodingite | Blackwall | Rodingite | Blackwall | Rodingite | Blackwall | Rodingite | |
SiO2 | 39.80 | 30.30 | 43.60 | 27.55 | 36.99 | 31.01 | 35.45 | |
TiO2 | 0.59 | 1.29 | 0.87 | 3.04 | 0.98 | 1.48 | 1.02 | |
Al2O3 | 12.03 | 14.75 | 14.05 | 14.63 | 14.23 | 13.66 | 12.44 | |
Fe2O3 | 9.42 | 14.69 | 8.58 | 21.85 | 9.57 | 12.35 | 13.01 | |
MnO | 0.17 | 0.55 | 0.15 | 1.28 | 0.20 | 0.95 | 0.42 | |
MgO | 5.14 | 26.62 | 7.61 | 21.22 | 6.29 | 28.29 | 14.49 | |
CaO | 29.85 | 0.32 | 21.36 | 0.98 | 27.99 | 0.27 | 16.87 | |
Na2O | 0.04 | 0.04 | 0.18 | 0.01 | 0.06 | 0.02 | 0.04 | |
K2O | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | |
P2O5 | 0.10 | 0.11 | 0.09 | 0.20 | 0.11 | 0.10 | 0.09 | |
LOI | 2.06 | 10.80 | 3.27 | 9.26 | 3.37 | 11.40 | 5.76 | |
SUM | 99.22 | 99.48 | 99.76 | 100.00 | 99.79 | 99.53 | 99.60 | |
Li | 3.99 | 10.3 | 19.3 | 18.2 | 6.63 | 13.3 | 18.6 | |
Be | 0.26 | 0.011 | 0.37 | 0.017 | 0.29 | 0.017 | 0.13 | |
Sc | 31.9 | 37.5 | 32.8 | 49.0 | 35.3 | 28.8 | 48.8 | |
V | 294 | 386 | 217 | 600 | 293 | 352 | 321 | |
Cr | 14.0 | 263 | 264 | 119 | 40.4 | 53.1 | 297 | |
Co | 31.0 | 80.2 | 37.3 | 101 | 31.8 | 84.9 | 51.9 | |
Ni | 19.5 | 114 | 96.3 | 90.7 | 30.5 | 40.9 | 98.8 | |
Cu | 74.9 | 5.10 | 36.3 | 151 | 55.6 | 5.33 | 24.7 | |
Zn | 58.6 | 97.3 | 57.5 | 116 | 69.9 | 122 | 96.1 | |
Ga | 10.0 | 5.72 | 11.1 | 6.63 | 12.2 | 6.72 | 4.65 | |
Rb | 0.11 | 0.18 | 0.12 | 0.11 | 0.12 | 0.13 | 0.15 | |
Sr | 11.5 | 3.82 | 285 | 21.7 | 13.3 | 2.90 | 12.2 | |
Y | 16.9 | 22.8 | 23.0 | 58.8 | 27.2 | 21.3 | 25.6 | |
Zr | 37.6 | 85.2 | 66.4 | 196 | 69.6 | 89.7 | 60.7 | |
Nb | 0.74 | 1.54 | 1.15 | 2.85 | 0.92 | 1.20 | 0.79 | |
Sn | 0.32 | 0.030 | 0.56 | 0.18 | 0.62 | 0.055 | 0.16 | |
Cs | 0.010 | 0.016 | 0.039 | 0.062 | 0.10 | 0.060 | 0.13 | |
Ba | 3.93 | 1.29 | 16.1 | 1.60 | 3.87 | 1.57 | 2.12 | |
La | 3.29 | 2.02 | 2.24 | 3.77 | 2.18 | 1.62 | 2.15 | |
Ce | 8.33 | 6.45 | 6.94 | 14.5 | 7.13 | 5.64 | 6.56 | |
Pr | 1.34 | 1.20 | 1.23 | 2.92 | 1.27 | 1.08 | 1.14 | |
Nd | 6.83 | 7.34 | 6.66 | 17.2 | 7.27 | 6.48 | 6.48 | |
Sm | 2.07 | 2.94 | 2.42 | 6.60 | 2.63 | 2.37 | 2.53 | |
Eu | 0.73 | 0.18 | 0.79 | 0.77 | 1.05 | 0.25 | 1.45 | |
Gd | 2.57 | 4.12 | 3.26 | 8.58 | 3.79 | 3.52 | 3.53 | |
Tb | 0.45 | 0.74 | 0.60 | 1.57 | 0.67 | 0.60 | 0.63 | |
Dy | 2.84 | 4.87 | 4.04 | 10.6 | 4.58 | 4.12 | 4.38 | |
Ho | 0.59 | 0.99 | 0.86 | 2.23 | 1.00 | 0.88 | 0.92 | |
Er | 1.70 | 2.70 | 2.49 | 6.28 | 2.86 | 2.47 | 2.61 | |
Tm | 0.28 | 0.41 | 0.38 | 0.98 | 0.45 | 0.37 | 0.41 | |
Yb | 1.74 | 2.39 | 2.34 | 5.80 | 2.94 | 2.26 | 2.60 | |
Lu | 0.28 | 0.36 | 0.36 | 0.88 | 0.44 | 0.35 | 0.41 | |
Hf | 1.18 | 2.27 | 1.80 | 5.40 | 2.02 | 2.45 | 1.79 | |
Ta | 0.054 | 0.12 | 0.088 | 0.20 | 0.077 | 0.090 | 0.070 | |
Tl | 0.0049 | 0.0058 | 0.0048 | 0.0058 | 0.0047 | 0.0027 | 0.0052 | |
Pb | 0.16 | 0.065 | 0.39 | 0.094 | 0.61 | 0.19 | 0.30 | |
Th | 0.29 | 0.23 | 0.081 | 0.33 | 0.087 | 0.093 | 0.076 | |
U | 0.17 | 0.12 | 0.035 | 0.18 | 0.049 | 0.052 | 0.041 | |
Sample | H9645-14-1 | H9645-13-2 | H9645-13-1 | H9645-12-2 | H9645-12-1 | H9645-7-3 | H9645-22-3 | H9645-20 |
Rock Type | Blackwall | Rodingite | Blackwall | Rodingite | Blackwall | Fresh Gabbro | Fresh Gabbro | Fresh Gabbro |
SiO2 | 30.98 | 43.84 | 31.54 | 31.30 | 29.27 | 48.18 | 48.74 | 50.88 |
TiO2 | 0.98 | 1.12 | 1.26 | 0.76 | 1.36 | 1.21 | 0.79 | 0.74 |
Al2O3 | 14.60 | 12.91 | 13.78 | 14.15 | 14.33 | 15.33 | 15.90 | 15.23 |
Fe2O3 | 13.48 | 10.85 | 11.73 | 16.28 | 19.01 | 10.95 | 7.96 | 10.17 |
MnO | 0.51 | 0.16 | 0.81 | 0.59 | 0.79 | 0.18 | 0.14 | 0.17 |
MgO | 27.13 | 4.00 | 28.79 | 11.38 | 24.30 | 7.13 | 7.94 | 5.92 |
CaO | 0.23 | 23.51 | 0.27 | 17.97 | 0.39 | 9.73 | 11.97 | 9.15 |
Na2O | 0.02 | 0.25 | 0.02 | 0.04 | 0.01 | 3.54 | 3.13 | 4.44 |
K2O | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 | 1.23 | 0.62 | 1.13 |
P2O5 | 0.07 | 0.15 | 0.10 | 0.15 | 0.17 | 0.10 | 0.10 | 0.09 |
LOI | 11.12 | 2.46 | 11.37 | 6.40 | 10.17 | 2.18 | 2.76 | 1.36 |
SUM | 99.12 | 99.30 | 99.67 | 99.02 | 99.79 | 99.76 | 100.05 | 99.28 |
Li | 27.7 | 7.48 | 15.9 | 9.06 | 7.99 | 28.6 | 25.7 | 12.0 |
Be | 0.0091 | 0.46 | 0.017 | 0.12 | 0.0055 | 0.28 | 0.29 | 0.23 |
Sc | 21.9 | 25.7 | 23.2 | 50.4 | 43.3 | 43.4 | 39.3 | 41.0 |
V | 262 | 274 | 330 | 407 | 594 | 304 | 184 | 324 |
Cr | 270 | 2.94 | 55.9 | 27.6 | 47.1 | 158 | 138 | 153 |
Co | 87.5 | 32.5 | 96.1 | 54.9 | 120 | 41.6 | 31.4 | 30.3 |
Ni | 190 | 9.56 | 65.3 | 27.2 | 55.0 | 49.7 | 63.7 | 57.9 |
Cu | 6.41 | 53.8 | 3.44 | 24.0 | 45.0 | 35.6 | 97.9 | 112 |
Zn | 106 | 84.8 | 122 | 126 | 104 | 77.5 | 53.5 | 75.0 |
Ga | 5.63 | 14.7 | 5.21 | 4.96 | 10.1 | 14.3 | 13.3 | 15.2 |
Rb | 0.18 | 1.49 | 0.13 | 0.075 | 0.085 | 25.9 | 18.4 | 18.2 |
Sr | 4.35 | 420 | 6.43 | 6.12 | 8.95 | 671 | 1448 | 700 |
Y | 9.79 | 34.3 | 16.2 | 23.0 | 17.4 | 29.9 | 18.6 | 18.1 |
Zr | 58.5 | 96.3 | 85.2 | 50.2 | 77.9 | 69.1 | 60.6 | 36.3 |
Nb | 0.82 | 1.61 | 1.36 | 1.11 | 1.59 | 0.93 | 1.07 | 0.67 |
Sn | 0.053 | 0.78 | 0.053 | 0.23 | 0.040 | 0.44 | 0.71 | 0.28 |
Cs | 0.15 | 0.15 | 0.014 | 0.021 | 0.022 | 1.26 | 0.96 | 1.09 |
Ba | 1.17 | 11.1 | 1.97 | 1.61 | 1.52 | 604 | 523 | 139 |
La | 0.99 | 3.97 | 2.15 | 8.30 | 3.78 | 2.10 | 2.91 | 2.82 |
Ce | 3.41 | 11.2 | 5.94 | 18.0 | 9.76 | 6.78 | 8.32 | 7.30 |
Pr | 0.63 | 1.89 | 1.01 | 2.57 | 1.54 | 1.27 | 1.41 | 1.20 |
Nd | 3.71 | 10.1 | 5.68 | 11.3 | 8.64 | 7.34 | 7.28 | 6.14 |
Sm | 1.24 | 3.41 | 2.06 | 3.13 | 2.60 | 2.70 | 2.29 | 1.89 |
Eu | 0.15 | 1.56 | 0.18 | 1.80 | 0.20 | 1.10 | 0.85 | 0.76 |
Gd | 1.67 | 4.66 | 2.76 | 3.57 | 3.39 | 4.08 | 2.90 | 2.49 |
Tb | 0.30 | 0.84 | 0.48 | 0.61 | 0.52 | 0.74 | 0.50 | 0.44 |
Dy | 1.86 | 5.53 | 3.14 | 3.84 | 3.33 | 4.85 | 3.24 | 3.00 |
Ho | 0.41 | 1.17 | 0.68 | 0.85 | 0.70 | 1.07 | 0.63 | 0.62 |
Er | 1.16 | 3.32 | 1.87 | 2.32 | 2.06 | 3.05 | 1.88 | 1.86 |
Tm | 0.17 | 0.53 | 0.28 | 0.37 | 0.28 | 0.47 | 0.28 | 0.29 |
Yb | 1.04 | 3.38 | 1.67 | 2.39 | 1.77 | 2.98 | 1.80 | 1.94 |
Lu | 0.17 | 0.51 | 0.26 | 0.38 | 0.30 | 0.48 | 0.26 | 0.28 |
Hf | 1.40 | 2.57 | 2.17 | 1.57 | 2.18 | 2.02 | 1.61 | 1.13 |
Ta | 0.063 | 0.10 | 0.10 | 0.071 | 0.11 | 0.068 | 0.069 | 0.044 |
Tl | 0.0044 | 0.016 | 0.010 | 0.0048 | 0.0034 | 0.14 | 0.13 | 0.10 |
Pb | 0.16 | 0.78 | 0.23 | 0.34 | 0.12 | 0.32 | 0.59 | 0.54 |
Th | 0.081 | 0.25 | 0.18 | 0.49 | 0.69 | 0.10 | 0.19 | 0.28 |
U | 0.035 | 0.14 | 0.096 | 0.31 | 0.37 | 0.045 | 0.090 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wang, G.; Liu, H.; Li, F. Rodingites in the Darbut Ophiolitic Mélange, West Junggar: New Insights into Rodingitization and Tectonic Evolution. Minerals 2022, 12, 1229. https://doi.org/10.3390/min12101229
Zhang P, Wang G, Liu H, Li F. Rodingites in the Darbut Ophiolitic Mélange, West Junggar: New Insights into Rodingitization and Tectonic Evolution. Minerals. 2022; 12(10):1229. https://doi.org/10.3390/min12101229
Chicago/Turabian StyleZhang, Pan, Guocan Wang, Huaguo Liu, and Feng Li. 2022. "Rodingites in the Darbut Ophiolitic Mélange, West Junggar: New Insights into Rodingitization and Tectonic Evolution" Minerals 12, no. 10: 1229. https://doi.org/10.3390/min12101229
APA StyleZhang, P., Wang, G., Liu, H., & Li, F. (2022). Rodingites in the Darbut Ophiolitic Mélange, West Junggar: New Insights into Rodingitization and Tectonic Evolution. Minerals, 12(10), 1229. https://doi.org/10.3390/min12101229