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Abstract: Magnetotellurics (MT) is an important geophysical method for resource exploration and
mineral evaluation. As a direct and effective form of data interpretation, MT inversion is usually
considered to be a penalty-function constraint-based optimization strategy. However, conventional
MT inversion involves a large number of calculations in penalty terms and causes difficulties in
selecting exact regularization factors. For this reason, we propose a multiplier-based MT inversion
scheme, which is implemented by introducing the incremental Lagrangian function. In this case, it
can avoid the exact solution of the primal-dual subproblem in the penalty function and further reduce
the sensitivity of the regularization factors, thus achieving the goal of improving the convergence
efficiency and accelerating the optimization calculation of the inverse algorithm. In this study, two
models were used to verify the performance of the multiplier method in the regularized MT inversion.
The first experiment, with an undulating two-layer model of metal ore, verified that the multiplier
method could effectively avoid the MT inversion falling into local minimal. The second experiment,
with a wedge model, showed that the multiplier method has strong robustness, due to which it
can expand the selection range and reduce the difficulty of the regularization factors. We tested the
feasibility of the multiplier method in field data. We compared the results of the multiplier method
with those of conventional inversion methods in order to verify the accuracy of the multiplier method.

Keywords:
Lagrange multiplier

magnetotellurics; multiplier method; regularized inversion; regularized factor;

1. Introduction

Magnetotellurics (MT) is a geophysical exploration method that uses natural planar
electromagnetic waves as field sources and obtains geoelectric tectonic information by
observing mutually orthogonal electric and magnetic field components at the surface [1,2].
MT inversion is the reduction in the electrical distribution in the subsurface through MT
responses, such as apparent resistivity, impedance phase, surface impedance, and tipper,
and it is a very important part of MT data processing and interpretation [3].

In the last half-century, MT inversion has developed rapidly in terms of global op-
timization and local optimization. The global optimization methods include simulated
annealing algorithm [4], neural network inversion [5,6], genetic algorithm [7], particle
swarm optimization [8], Bayesian method [9,10], and deep learning [11,12]. The local opti-
mization methods include Occam inversion [13,14], simplified-based Occam inversion [15],
rapid relaxation inversion [16,17], nonlinear conjugate gradient inversion [18-20], and
Gauss—Newton inversion [21-25]. The inversion method of global optimization prevents
the inversion process from falling into the local minimal through global parameter search.
However, it increases the time and storage cost of inversion optimization, especially for
high-dimensional problems, and there is still significant scope for improvement in this
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regard [26]. The inversion method of local optimization offers better speed, but the inver-
sion results easily fall into local minimal, and it is difficult to capture a satisfactory global
optimal solution [27].

To resolve the problem that local optimization inversion methods tend to fall into
local minimal, researchers have used different methods. Newman and Alumbaugh argue
that trying multiple initial models can prevent the problem of inversions falling into local
minimal [28]. Adaptive weighted averaging in the Niblett-Bostick transform preserves part
of the nonlinearity of the original problem, and this technique weakens the dependence
of the inverse model on the initial model [29]. To obtain a reliable initial model, an
imprinting algorithm based on the weighting method to construct the initial model was
proposed [30]. Numerous studies have shown that regularization methods not only deal
with the discomfort problem but also positively affect the problem of falling into local
extrema for local inversion [31-35]. In the current MT regularization inversion, the main
methods commonly used for the selection of the regularization factor are the L-curve
method [36], the generalized cross-validation method [37], the adaptive algorithm [38], the
MT adaptive regularization [39], and others. Nevertheless, no common method has been
found for the selection of the regularization factor.

At present, the multiplier method is a widely used algorithm in solving optimization
problems with multiple constraints [40—44]. Groot-Hedlin and Constable [45] developed a
linearization algorithm to invert the noisy MT data of the subsurface conductivity struc-
ture represented by the sharp resistivity contrast defined by the smooth boundary and
proposed a new balance mechanism of model roughness and data-fitting difference based
on the Lagrange multiplier method. This mechanism provides a better solution for regu-
larization factor selection, but it does not consider the effect of the multiplier method on
the regularization factor. The multiplier method is less commonly used in geophysical
inversions [46]. In this paper, the modified total variation is combined with the multiplier
method for the first time and applied to the MT inversion. The multiplier method, also
known as the Augmented Lagrange Method (ALM), starts from the essence of the prob-
lem and transforms the constraints of the constrained problem into one of the objective
functions by introducing a strategy of Lagrange multipliers, completing the conversion
from a constrained optimization problem to an unconstrained optimization problem. The
improvement of the multiplier method on the data-objective function prevents the MT in-
version from falling into local extremes and guarantees the stability of the inversion, while
the approximate estimation of the solution reduces the dependence of the optimization
process on the regularization factor.

In this paper, the multiplier method is applied to the study of MT inversion for the
first time. The multiplier method is used to improve the convergence speed of the inversion
by preventing the inversion from falling into local extremes to improve its efficiency. In ad-
dition, due to the unique method of solving the approximation estimation of the multiplier
method, for the first time, the multiplier method is combined with the MT regularization
translation to reduce the dependence of the inversion on the regularization term, improve
the threshold range of the regularization factor, and increase the regularization range of the
selection of factors. In this study, an undulating two-layer model was used to verify that
the multiplier method has better convergence performance in MT inversion. In addition, a
wedge model was used to verify that the multiplier method has stronger robustness in MT
regularized inversion.

2. Methodology
2.1. Conventional Inversion

The MT inversion problem can be expressed as follows.
d=F(m)+e 1)

d denotes the observed data vector, F(m) is the forward response operator, m denotes
the model parameter vector, and e is the residual vector. Since the inversion problem has



Minerals 2022, 12, 1230

30f18

multiple solutions, simply speaking, an exceptionally wide range of solutions can meet
the fitting requirements of the observed data. Therefore, to obtain the required inversion
results, we need to rely on other a priori information to constrain the inversion. The penalty-
function method is a classical algorithm for solving constrained problems. The fundamental
idea is that the constraint conditions are transformed into some kind of penalty function
added to the data-objective function according to their characteristics, thus transforming
the optimization problem with constraints into a series of unconstrained optimization
problems to be solved. Thus, the optimization problem can be written as

min®d,;(m)
s.t. Raém) @

where ®;(m), R(m) and m represent the data-objective function, regularization term, and
inversion parameter, respectively. In mathematical form, Equation (2) can also represent
the constraint of the data-objective function on the regularization term as

minR (m)
s.t. Dy(m) ®)

The conventional MT inversion problem is an optimization problem with constraints,
which can be expressed as [47].

D(m) = Py(m) + AR(m) 4)

of which
Dy(m) = [Wy(E(m) — d)| )

where W, in Equation (5) is the data-weighting matrix, which is typically based on the
inverse of the measured standard deviation, F(m) is the forward response operator, m
denotes the model parameter vector, and d denotes the observed data vector.

The MT inversion problem with constraints is converted into an unconstrained opti-
mization problem by the external penalty function method, which can be expressed as

minR (m)
s.t. [Wy(B(m)—d)| ©

solved using the external penalty Equation (2). The process can be expressed by Algorithm 1 as

Algorithm 1: External Penalty Method

Given B > 0, tolerance g > 0, starting points mg and Ao;

fork=0,1,2,...

Find an approximate minimizer my of ®(m), starting at 1, and terminating when
|V ®(m)|| < e

if final the convergence test satisfied

stop with approximate solution m;

end if

Choose new penalty parameter Ay, > Ag;

Choose a new starting point my,1;

end for

The external-penalty-function method has the feature of a simple solution framework,
which is solved by directly calling the general procedure of the unconstrained optimization
algorithm, and the procedure is simple to implement. However, the disadvantages are
more obvious: (1), for complex geophysical problems, iy is not a feasible point of the
problem itself; (2), it is very difficult to obtain an appropriate penalty parameter A;. When
it is too small, the penalty term does not exert its proper effect. Conversely, when the
penalty parameter is too large, the number of conditions for solving the penalty function
also increases, and the equation becomes more difficult to solve; and (3), the most criti-
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cal point, since the penalty function is generally non-integrable, it is difficult to directly
use the derivative of the optimization algorithm, resulting in the slow convergence of
the algorithm.

2.2. The Multiplier Method

The multiplier method, also known as the Augmented Lagrange Method (ALM),
is based on the Lagrange function of the original problem to start with an appropriate
penalty function, thus transforming the original problem into the solution to a series of
unconstrained optimization subproblems. The Lagrangian function of the original problem,
however, can be obtained from the Lagrange Multiplier Method (LMM), a method for
finding the extrema of multivariate functions whose variables are constrained by one or
more conditions, which introduces a new scalar unknown, the Lagrange multiplier: the
gradient of the constrained equation of coefficients of each vector in the linear combination.
The Lagrangian function for the optimization problem of Equation (3) can be written as

L(m,w) = R(m) + u" (E(m) — d) )

where p is the Lagrangian multiplier vector. When L(m,u) = 0, we can obtain the optimal
value by calculation. For the most part, the gradient method cannot be used to optimize the
Lagrangian function directly because the optimal value of the original problem corresponds
to the saddle point of the Lagrangian, and the gradient method cannot guarantee that the
saddle point is found.

The multiplier method, also known as the augmented Lagrange method, is shown
in Algorithm 2. Moreover, if the gradient of the primary problem s7Rmy) is a higher-
order function, the primary problem can only be solved by an iterative method, such as
the Newton method. However, the iterative method requires that the primary problem
function satisfies the second-order derivative, and the second-order derivative-solution
process is relatively expensive. Furthermore, due to the penalty parameter p—+oo in
the external penalty function method in ALM, the pathological nature of the augmented
objective function constructed in the external penalty function method is enhanced. This
pathological nature of the augmented objective function is the main drawback of the exter-
nal penalty function method, and this drawback is effectively overcome in the multiplier
method by the introduction of the Lagrangian function and the addition of an appropriate
penalty function. To overcome the drawbacks of the Lagrangian method, the multiplier
method is proposed, and it is used to calculate Equation (7), which can be written as [48]:

Algorithm 2: Augmented Lagrangian Method

Given 3 > 0, tolerance £q > 0, starting points m" and pY;
fork=0,1,2,...
Find an approximate minimizer n* of L4 (mk, uk) , starting at ¥, and terminating

when ||V, L4 (mk, uk) | <exs

if the final convergence test satisfied

stop with approximate solution m*;

end if

Update Lagrange multipliers using (12) to obtain p**1;
Choose new penalty parameter u+1 > uf;

Set starting point for the next iteration to m**1 = m*;
Select tolerance g;1;
end for
La(m,w) = R(m) + u" (F(m)—d) + A||F(m)—d]3 ®)

where A > 0 is the penalty parameter. For the constraint problem, this can be written as

minmaxR (1) — (i, F(m) —d) = (A, F(m) —d) + w7 (Ax =) + AF(m)—dll;  ©)
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where < > denotes the inner product. Formula (9) can be abbreviated as

minma}\xR(m) — (w, E(m)—d) + A|F(m)—d]|5 (10)
"o,

Hence, the updated formula for the multiplicative method can be written as:
n*! = argmin R(m) — (w, F(m) —d) -+ A[|F(m) —d]|3 (11)

et =t — A(E(m)—d) (12)

By integrating Equation (8) into Equations (11) and (12), it is not difficult to find
that the value range of A is very wide at this time. Through mathematical analysis of
Equations (11) and (12), we find that the product of the weight factor A and the square in
Equation (8) becomes the product of the weight factor A and the first-order data. This
method reduces the weight of the weight factor A, which can reduce the difficulty of
selecting the weight factor in the Lagrangian method.

To explain Equation (12) more thoroughly, we use Figure 1 to represent the process of
data correction, in which “a”, “b”, “c”, and “d” denote the extreme values of the problem,
and assuming that “d” is the global minimum value, the others are the local extreme values.
In addition, the solid black line indicates the original state of the optimization problem, i.e.,
the real scenario; the short blue line indicates the case in which the conventional optimiza-
tion method falls into the local extrema; and the red dashed line indicates that through the
multiplicative method proposed in this paper, we modify the overall optimization equation
so that we do not fall into the local extrema when performing optimization, thus achieving
the dual effects of accelerating convergence and the avoidance of falling into local extrema.
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Figure 1. Multiplicative multi-scale correction process for data. a, b, and c are those local minimals; d
is the global minimal.

3. Magnetotelluric Inversion Based on Multiplier Method
3.1. Data-Objective Function

In this part, we propose a new iterative algorithm for solving the MT inversion problem
of Equation (4) based on the multiplicative method. We use the multiplicative method to
modify the data-objective function of the optimization process so that the optimization
problem is modified under the constrained condition, the constrained optimization problem
is transformed into an unconstrained problem, and multi-scale inversion is achieved. At
this point, the MT inversion objective function can be written as

minmax [ Wy (F(m)—d")[[3 = {u, Wy (F(m) ~d*)) + AR (m) (13)
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u is the Lagrange multiplier vector and d* is the observed data. Equation (4) is the
multiplier method used to iteratively solve this minimal problem. In each iteration of the
algorithm, the objective function is first minimized for m, with p held constant, after which
the multiplier p is updated to maximize the objective. The major advantage of such a
solution procedure, as mentioned in Hestenes and Powell’s paper, is that it features a very
simple update iteration formula [48].

i1 = argmin [Wo(E(m)~d")[3 — (s, Wa(F(m)—d")) + AR(m) ~ (14)

W1 = g + AW (F(myyq) —d) (15)

where k is the number of iterations and the initial Lagrange multiplier yy = 0. Taking the
partial derivatives of the model parameters m for (14) results in the following equation:

()T [2BWa (E(m) —d*) — ] + A=

%R(m) (16)

in which

J(m) = = (17)

om

Jis denoted as a Jacobi matrix, and the superscript T denotes the transpose. In Equation (16),
the rightmost term in the parentheses, p¥, can be considered as the Lagrange multiplier
vector, which partially satisfies the optimality conditions of the original problem equation.
It follows that a reasonable choice for the multiplier vector for the next iteration should
be Equation (15). Furthermore, if we use the variable projection method to reconstruct the
extended Lagrangian function in an equivalent dyadic form, in which only the multiplier
vector is involved, then the gradient of the dyadic function is 28W; (F(m) — d) and, hence,
the optimal multiplier satisfies F(im) = d [49]. Therefore, the update direction in Equation (15)
is considered as the gradient direction (the step length of the gradient is A) for solving the
pairwise problem so that it is locally maximized concerning p. With this in consideration,
we can apply a quasi-Newton approach to this pairwise problem to improve convergence,
but at the cost of increased computational complexity.

3.2. Model Updates

To obtain the model update, this paper presents a solution that uses a simplified
approach. For Equations (18) and (19), assuming that the variable dj varies with /A and
ignoring the constant term associated with p, Equation (14) is simplified [46], which gives
the data-objective function update equation as

my = argmin Wy (B(mi_1) — di_1)||* + AR (my_1) (18)

dp = di—1 — (F(mp_q) —d") (19)

where dy = d*, my is the initial inversion model which can be chosen according to the
geological background. This paper adopts the 100 (3-m uniform model. It is easy to see that
only one step in the above iterative method is needed to approximate the minimization
equation before updating the multipliers. Proof of the convergence of such algorithms for
inexact solutions of the primitive subproblem was provided by Miele [50]. In addition, this
method has also been described by Tapia [51], who calls it the diagonal variable method of
the conventional method.

Considering that the modified total-variation regularization has the dual effect of
ensuring the inversion stability and accurately reproducing the sharp interface [23], the
modified total-variation regularization term is adopted in this paper.
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4. Numerical Examples

In this part, the performance of the multiplier method in MT inversion is verified by
the following numerical algorithms. Aiming to verify the performance of the multiplier
method in avoiding local minimal, this study compared the convergence of the multiplier
method and the conventional inversion method using an undulating two-layer model. The
comparison experiments were carried out in terms of inversion-result plots, convergence-
curve plots, inversion-related index values, and the gradient of the inversion root mean
square (RMS). The hardware platform used for this inversion study was a personal com-
puter with a basic configuration of Intel(R) Core (TM) i7-7700 CPU @ 3.60 GHz (Interl,
Santa Clara, CA, USA).

In this inversion study, for the forward simulation part, we used a non-regular quadri-
lateral to dissect the grid of the target body and then adopted the finite-cell method for
the simulation calculation [52]. To reduce the influence of other factors on this study, we
followed the principle of a single variable, and the MT inversion method was the joint
method of TE + TM. To make full use of the existing data, we chose the apparent resistivity
and phase-synchronization-inversion approach, in which we do not present the inversion
results of phase in the numerical model, in order to ensure the compactness of the article,
and we present the results of both the apparent resistivity and the phase uniformly in the
field data.

4.1. Undulating Two-Layer Model

To verify the performance of the multiplier method in MT inversion, we first con-
structed a two-layer model in which the first (top) layer has a resistivity of 100 (2-m while
the second layer has a resistivity of 1000 (2-m. Since the electrical properties of metal
deposits are generally of low resistance, we designed the model as in Figure 2a. As shown
in Figure 2a, we insert two low-resistivity (10 (3-m) ore bodies into the top layer. The two
anomalies have different shapes. To make the topography realistic, we set the ground
surface in an irregular shape. The center of the left quadrilateral low-resistance body was
buried at a depth of 1 km with a lateral length of 1.5 km, and the center of the right elliptical
low-resistance body was buried at a depth of 1.2 km with a lateral length of 4 km. The
total length of the study area was 20 km, with 41 observation points, and the observation
interval was 0.5km; the frequency range was 0.01~1000 (Hz), with 10 frequency points: 0.01,
0.0359, 0.1292, 0.4642, 1.6681, 5.9948, 21.5443, 77.4264, 278.2559, and 1000 (Hz). In this study,
the finite-element method was used for the forward simulation, and different forward and
inverse grids were used during the study. The forward grid was 208 x 72 (the air region
was set to 10 layers), and the inverse grid was 85 x 45.

In this paper, we used the control-variables method to investigate the performance of
the multiplier method in MT inversion. The initial model was a homogeneous half-space
with a resistivity of 100 ()-m in the first layer; the conventional total-variance regularization
constraint was used, and the optimal results of the two inversions were selected empirically.
The modified total-variation regularization was used in this experiment for the following
reasons: (1) the modified total-variation regularization is a better constraint on the inversion
effect of the model with interfaces, and the performance of the multiplier method in
the MT inversion application can be judged more intuitively; and (2) the total-variance
regularization has a better stabilization constraint on the inversion. The inversion results of
the conventional method and the multiplier method are shown in Figure 2b,c, respectively.

The black dashed lines in Figure 2b,c indicate the locations of anomalies in the orthorec-
tified model. Firstly, comparing the inversion recovery integrity, the inversion results of
both methods completely recovered the two low-resistance bodies and the high-resistance
laminae, and no key part was missing from the inversion results; secondly, in terms of the
inversion accuracy of the two methods, the multiplier method was more accurate than the
conventional inversion method. Compared with the conventional method, the multiplier
method can clearly inverse the stratigraphic partition interface and better suppress the
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high-resistance artifacts next to the low-resistance boundary, all these improved support
for the interpretation of the field data.
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Figure 2. Inversion model and results: (a) the model, (b) the inversion result of the conventional
inversion method, and (c) the inversion result of the multiplier method.

Figure 3 shows the convergence curves of the inversions of both the conventional MT
inversion and the multiplier-method MT inversion. The black dashed line indicates the
convergence curve of the conventional inversion method, and the red dashed line indicates
the convergence curve of the multiplier-method inversion. There are two convergence
curves for the multiplier method inversion; the first appears at the 12th inversion iteration,
and the second appears at the 22nd inversion iteration. These two iterations are described
in detail below. The comparison graph of the inversion convergence curves demonstrates
that the multiplier method can accelerate the inversion convergence speed and improve the
inversion efficiency when the inversion falls into slow convergence, while the conventional
inversion method makes the results satisfy the conditions set in advance by the smooth
convergence in the longer convergence and repeated iterations, which increases the cost of
the inversion. The model error, RMS error of the simulated data fitting, and inversion time
of the two methods are compared in Table 1. The model error is calculated in Equation
(20), where m™ is the model parameter calculated by the inversion method, m/" is the
true model parameter, and M is the number of model parameters. Equation (20) represents
the error between the model calculated by inversion and the true model. The RMS error
is calculated in Equation (21), where 4" is the calculated forward response, dobs is the
observed data, and N is the number of data. Table 1 shows the comparison of the inversion-
evaluation data of the two methods; the multiplier method is better than the conventional
inversion method in terms of both accuracy and speed.

1 minv o mtrue
E}’ror - MZ(W X 100) (20)

M
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Figure 3. Comparison of RMS data fitting error curves.

Table 1. Model error, RMS data fitting error, and inversion time for the heave model.

Method Error (%) RMS Time (s)
Conventional 9.57 0.0065 770.4180
Multipliers 7.41 0.0057 740.3230

This experiment was implemented in two steps. Firstly, when the gradient of the
inverse convergence curve was less than 5% for three consecutive times, the first multi-
plicative method was implemented to induce the data-objective function to adjust to the
global extremes under the condition of mathematical constraints; the threshold condition
for the second implementation of the multiplicative method was that the gradient of the
convergence curve was less than 2% for three consecutive times; the implementation effect
is shown in Figure 4. CMTI is the conventional magnetotelluric inversion and MMTTI is
the multipliers magnetotelluric inversion. The solid black line is the gradient of the RMS
data fitting error curve of the conventional MT inversion. The solid red line is the gradient
of the RMS curve based on multiplicative MT. The red dashed line is the threshold line
of 5%. The black dashed line is the threshold line of 2%. The black solid lines “0” in
Figure 4 indicate the number of iterations needed to achieve the conditions required to
implement the multiplicative method in this experiment, which are: 9, 10, 11, 19, 20, and
21. The first implementation of the multiplication method is at the 11th iteration, and
the second inversion iteration is at the 21st iteration. The solid black lines in the figure
form the first point after the triangle with the red dashed line and the black dashed-dotted
line, respectively.
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Figure 4. Multiplier-method RMS data fitting error.

After this experiment, the results showed that the multiplier method could effectively
improve the inversion efficiency in the application of MT inversion, mainly in terms of
accelerating the inversion convergence and improving the inversion accuracy.

4.2. Wedge Model

In this study, the multiplier method was applied to the MT regularized inversion in
response to the difficulty of regularization-factor selection in the regularized inversion.
Given the advantages of the multiplier method in the regularization-factor selection, the
experimental design in this example aims to investigate the performance of the multiplier
method in the MT regularized inversion and to verify the effectiveness of the method
through a wedge model.

The experimental model uses a wedge model, as shown in Figure 5, in which the
slope of the upper boundary of the wedge is 5.7° and the slope of the lower boundary is
16.6°. The details of the model are shown in Figure 5. The red part of the resistivity is
a 1000-ohm-meter high-resistance block, the blue area is a 10-ohm-meter low-resistance
wedge, the green polygon indicates the background with a resistivity of 100 (-m, and
the color scale on the right-hand side in Figure 5 of the model indicates the range of the
resistivity. A total of 22 observations were set up for this model, each at a spacing of
0.5 km. The grid profile in the forward simulation was 132 x 60, with 10 frequency points
and frequencies of 0.01, 0.0359, 0.1292, 0.4642, 1.6681, 5.9948, 21.5443, 77.4264, 278.2559,
1000 (Hz), and 10 grid layers in the air layer. Different size grids were used for the forward
and inverse, and the inverse network was 66 x 30.

To determine the dependence of the two methods on the regularization factors, this
comparison experiment was conducted by selecting four different sets of regularization
factors, all within the range required to ensure that the regularization factors were valid
for the inversion, i.e., the inversion results were within the corresponding error range, in
which the four sets of regularization factors were selected from different scales of variation,
namely: 0.05, 0.1, 0.3, and 0.5. The inversion results are shown in Figure 6; Figure 6a—d
show the results of the conventional inversion, and Figure 6e—h show the results of the
multiplier-method inversion. The results suggest that the proposed method can reconstruct
the underground structure more accurately than the conventional method. From the
perspective of the overall structure recovery of the model and the reconstruction of the
resistivity value of each abnormal body, the proposed method has a good effect. It shows
that the accuracy of the proposed method is not only guaranteed but also that the details
can be reconstructed better. To demonstrate its advantages in the selection of regularization
factors, the new method is discussed in detail below.
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Figure 6. Inversion results for different regularization factors.

In this study, the inversion results are compared in detail. The results of the conven-
tional methods have two characteristics. Firstly, the interface of the low-resistance body is
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not well recovered, and the inversion results have obvious downward trend, which makes
the data analysis difficult. Secondly, in the black boxes of Figure 6a,c,d, the background
resistivity of the conventional inversion results is higher than that of the real model. Unlike
conventional inversion methods, the multiplier method is modified for the data-objective
function. Among them, there are two types of corrections: a predefined fixed number of
times and a number of times intelligently controlled by setting a threshold value for the
data-fit difference. The optimization was carried out through multiple steps and directions
to prevent the inversion process from falling into local extremes and enhances the inver-
sion’s detailed portrayal of the target region. Figure 7 shows the convergence curves of
the inversion for different methods and different regularization factors. Compared with
the conventional method, the convergence curve of the multiplier method has obvious
characteristics. The convergence trend of the multiplier-method curve is very similar to that
of the multi-scale method. The multiplier method performs optimization calculations in
one scale and enters the next scale domain when the convergence condition is reached. This
method can accelerate the convergence of optimization calculation and thus improve the
inversion efficiency. This indicates that the multiplier method outperforms the conventional
inversion method in MT inversion.

100 F T T T T T | B

- = =CMTI) = 0.05
= = =CMTI) =0.1
- = =CMTI) =0.3
CMTI\ = 0.5
—— MMTI = 0.05
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107! E

RMS

102

1073
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Figure 7. Comparison of inversion-convergence curves.

Figure 8 shows the single-point data comparison through the dashed line in Figure 5 of
the wedge model, i.e., the data of the observation point at the horizontal 5.5 km. The dashed
line indicates the inversion result of the conventional inversion method, and the solid line
indicates the inversion result of the multiplier method. The dashed line in Figure 8 has two
characteristics: (1) the recovery deviation of the high-resistance body is large, and the result
shows linear variation, which, in this case, can be interpreted as a manifestation of inversion
multi-solvability, where a single layer of the high-resistance body, recovered into a linearly
varying high-resistance body, causes the misjudgment of subsequent interpretations of the
data and increases the difficulty of interpreting the data information; (2), the boundary
differentiation between different anomalies is insufficient to locate the anomalies and judge
their scope in a timely and effective manner. However, from the comparison in Figure 8, it
is easy to find that the solid line results in the figure define the target boundary well and
prevent the problems discussed above.
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Figure 8. Comparison of single-point recovery curves.

The most critical aim in designing this experiment was to demonstrate whether there
was a difference between the effect of the sensitivities of the conventional method and
the multiplier method on the regularization factor. Therefore, the inversion parameters
of the two methods were compared, and the results are presented in Table 2, where the
inversion model error, the difference in the fit of the data, and the inversion time are
presented, respectively. The model error represents the ratio of the difference between
the inversion results and the forward model, as detailed in Equation (20). The data-fit
difference represents the ratio of the difference between the last positive result and the
observed data in the inversion to the observed data, as detailed in Equation (21). The
inversion time represents the time spent on the inversion process for the same number
of inversion iterations for different regularization factors. As can be seen in Table 2, the
difference in time taken by different regularization factors is not significant; however, there
is a large difference in their model error and data fit. For this reason, in this paper, the
model error and data fit difference are presented in a more intuitive bar chart and a line
graph, with the blue block and blue line in Figure 9 indicating the model error and data-fit
difference of the inversion results of the conventional method, respectively, and the red
block and red line indicating the model error and data-fit error of the inversion results of the
multiplier method. The figure shows that the multiplier method has better results than the
conventional method, and in the inversion results of the conventional method, the influence
of different regularization factors on the inversion results fluctuates greatly. For example,
when A = 0.1 is the best regularization factor for this experiment, when A is greater or less
than 0.1, the model error and data-fit difference are greater than when A = 0.1. Combining
the inversion results in Figure 6, it was easy to find that these two methods have different
performances under different regularization factors. In the conventional method, there
were large differences in the inversion results, model errors, and data fit between different
regularization factors; however, the multiplier method obtained better inversion results,
model errors, and data-fit differences for different regularization factors. This experimental
procedure demonstrates that the multiplier method has strong robustness and can obtain
better inversion results for different regularization factors, which can reduce the difficulty
of regularization factor selection.
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Table 2. Model errors, RMS data fitting error, and inversion times for different regularization factors

of the wedge model.
Method Regularization Parameter Error (%) RMS Time (s)
0.05 17.18 0.0072 206.4840
C onal 0.1 10.13 0.0040 206.6550
onventiona 0.3 20.56 0.0227 208.2030
0.5 21.02 0.0292 210.4520
0.05 5.67 0.0029 204.4870
Multipliers 0.1 441 0.0001 201.8690
p 0.3 8.98 0.0034 205.6320
0.5 8.98 0.0076 208.5530
0.05 - ‘ \ [ ~0.03
50.0292
I CMTI Error

I MMTI Error
—&—CMTIRMS
| —*—MMTIRMS

0.025

0.1718
0.02

w
0.015 =
L

Error

0.01

0.005

Figure 9. Comparison of RMS data fitting and model errors for different regularization factors.

In summary, the multiplier method, with its excellent robustness, can obtain more
reliable inversion results among different regularization factors. Therefore, this approach
can reduce the workload involved in selecting the appropriate regularization factor and
greatly improve the efficiency of accurate inversion. Furthermore, the inversion iteration
time is not significantly different from that of the conventional method, which reflects the
advantages of the multiplier method in reducing the difficulty involved in selecting the
regularization factor in many respects.

5. Field-Data Example

The numerical examples demonstrate that the proposed algorithm is feasible and
effective. Therefore, we verified its efficiency through field data. We chose the data in an
open-source program for verification and compared them with the inversion results of
the conventional algorithm. The data were obtained from the observation of the Lachlan
folded belt in central Australia, with 53 stations in total, and the measured line trend was
East-West, with a total length of 180 km. The number of field collection frequencies was 27.
The frequencies were: 0.0092, 0.0134, 0.0183, 0.0269, 0.037, 0.054, 0.073, 0.107, 0.146, 0.215,
0.293,0.43, 0.59, 0.86, 1.17,1.72,2.34,3.4,4.7,6.9,9.4, 13.7, 18.8, 27.5, 40, 66, and 97 (Hz).
The remote reference point was 160 km away from the midpoint of the survey line.

For these field data, we compared the MT inversion results of the conventional method
and the multiplier method. Specifically, the inversion results of the field data, the final RMS
data fitting errors, and the iteration number of the inversion were compared. We selected an
initial model with a resistivity of 100 ()-m and carried out 30 iterations of optimization. The
multiplier method was used to correct the data-objective function. In this study, we used a
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fixed number of iterations to modify the data-objective function. Through experiments, we
found that the use of five iterations was the most appropriate.

Figure 10 shows the inversion results of the two methods. The two results were very
close to each other, and we consider our inversion results to be credible. In Table 3 and
Figure 11, it is shown that the RMS data fitting error of both methods is relatively small. The
RMS data fitting error of the conventional inversion method is 0.0760, while the RMS data
fitting error of the multiplier method is 0.0408. Therefore, we suggest that the inversion
result of the multiplier method is closer to the real situation. Finally, there are subtle
differences between our proposed method and the conventional method. For example, our
proposed method presents a separate small anomaly in the results, but the location of this
block can be found in the conventional inversion results, as shown by the black rectangular
box in Figure 10. Furthermore, combined with the RMS data fitting error values in Table 3,
the proposed method has a smaller data-fit difference, and we can conclude that the result
of the proposed method better reflects the real situation.

MMTI log,,(22-m)
Py X TS K7 XK YATNALT v \7W'W\7 4
E
<
<
a 2
0
a

0 20 40 60 80 100 120 140 160
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Figure 10. Comparison of inversion for field data (the top is the result of MMTI, the bottom is the
result of the CMTT).
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Figure 11. Comparison of RMS data fitting error between MMTI and CMTL
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Table 3. RMS data fitting error and time of inversion for the field data.

Method RMS Time (s)
Conventional 0.0760 1652.2350
Multipliers 0.0408 1456.3620

6. Conclusions

(1) In this paper, the modified total variation was combined with the multiplier method
for the first time and successfully applied to the MT inversion. To address the problem
of the difficult regularization selection and significant workload in inversion, the effect
of the multiplier method on the selection of regularization factors was comprehensively
discussed in this paper. In general, the multiplicative method can optimize the selection of
regularization factors for inversion.

(2) By comparing with the open-source program, it was proven that the application of
the method proposed in this paper to the inversion of field data is feasible. Through the
research, it was found that the method proposed in this paper can complete not only the
inversion of the measured data but also obtain better results than conventional inversion.

(3) As shown in this paper, the multiplier method can accomplish the task of preventing
the inversion from falling into local extremes and reducing the difficulty of selecting
the regularization factor in MT inversion. Therefore, similar problems can be solved by
applying the multiplier method for other complex geophysical inversion problems.

(4) This paper deals with single-parameter inversion, and the multiplier method can
perform this task relatively satisfactorily. However, when faced with two-parameter or
multi-parameter inversion, such as when the method is applied to the two-parameter
inversion of the radio magnetotelluric method, the effectiveness of the method will require
further study. Therefore, two-parameter or multi-parameter multiplier inversion will be a
future research direction.
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