Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Analytical Procedures
3.2. Proxy Calculations
4. Results and Discussion
4.1. Lithofacies Division and Petrological Characteristics
4.1.1. Medium Organic Silty Mixed Fine-Grained Sedimentary Rock
4.1.2. High Organic Matter Shale Calcareous Mixed Fine-Grained Sedimentary Rock
4.1.3. Medium Organic Massive Clay Rock
4.1.4. High Organic Matter Shale Calcareous Clay Rock
4.1.5. High Organic Matter Shale Limestone
4.2. Geological Significance of Fine-Grained Lithofacies
4.2.1. Occurrence of Organic Matter
4.2.2. Sedimentary Environment
5. Conclusions
- (1)
- Based on the mineral component, primary sedimentary structure, and organic matter abundance parameters, the fine-grained sedimentary rocks of Es1L in the Xiliu area of the northern Lixian slope in Raoyang Sag are divided into five lithofacies types: medium organic silty mixed fine-grained rock, medium organic massive clay rock, high organic shale limestone mixed fine-grained rock, high organic matter shale calcareous clay rock, and high organic matter shale limestone, among which high organic matter shale limestone and high organic matter shale calcareous mixed fine-grained rock are well developed.
- (2)
- Among the three lithofacies with lamellation, organic matter is mainly enriched in the mineral laminae in stripes, the organic matter pores are not developed, and the amounts of free hydrocarbon and adsorbed hydrocarbon have advantages; medium organic silty mixed fine-grained rock and medium organic massive clay rock with undeveloped lamellation are characterized by small-scale organic matter scattered in a disordered manner, with significantly low free hydrocarbon content and no organic matter pores.
- (3)
- The sedimentary environment evolution of Es1L in the Xiliu area of northern Lixian slope experiences different stages. At the bottom, the development of three high organic matter lithofacies is influenced by a low material source, high water salinity, and a strong reduction environment; in the upper part, the development of medium organic silty mixed fine-grained rock and medium organic massive clay rock facies is influenced by the higher material source, lower water salinity, and a weaker reduction environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.; Schieber, J.; Demko, T.M. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Milliken, K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. J. Sediment. Res. 2014, 84, 1185–1199. [Google Scholar]
- Krumbein, W.C. The mechanical analysis of fine-grained sediments. J. Sediment. Res. 1932, 2, 140–149. [Google Scholar]
- Schieber, J.; Zimmerle, W. The history and promise of shale research. Shales Mudstones 1998, 1, 1–10. [Google Scholar]
- Macquaker, J.H.; Adams, A.E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones. J. Sediment. Res. 2003, 73, 735–744. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macquaker, J.H. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar]
- Xiong, T.; Chen, L.; Chen, X.; Ji, Y.B.; Wu, P.J.; Hu, Y.; Wang, G.X.; Peng, H. Characteristics, genetic mechanism of marine shale laminae and its significance of shale gas accumulation. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3490–3508. [Google Scholar]
- Hao, F.; Zhou, X.; Zhu, Y.; Yang, Y. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org. Geochem. 2011, 42, 323–339. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, R.T.; Peng, X.B.; Li, X.Q.; Wang, N. Characteristics and geological significance of biomarkers from the Paleogene source rocks in Bozhong Sag, Bohai Bay Basin. Bull. Geol. Sci. Technol. 2022, 41, 180–192. [Google Scholar] [CrossRef]
- Schieber, J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York. J. Sediment. Res. 1999, 69, 909–925. [Google Scholar] [CrossRef]
- Hickey, J.J.; Henk, B. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 TP Sims well, Wise County, Texas. AAPG Bull. 2007, 91, 437–443. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar]
- Niu, C.M.; Yu, H.B.; Hu, A.W.; Ye, T.; Qin, D.H.; Hua, X.L.; Liang, S.Y. Main controlling factors of natural gas accumulation and favorable exploration target in Bozhong Depression, Bohai Bay Basin. China Pet. Explor. 2021, 26, 152–164. [Google Scholar]
- Yang, H.; Liu, C.L.; Wang, F.L.; Tang, G.M.; Li, G.X.; Zheng, X.X.; Wu, Y.P. Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag. Lithol. Reserv. 2021, 33, 81–92. [Google Scholar]
- Song, Z.; Li, J.; Li, X.; Chen, K.; Wang, C.; Li, P.; Geng, H. Coupling Relationship between Lithofacies and Brittleness of the Shale Oil Reservoir: A Case Study of the Shahejie Formation in the Raoyang Sag. Geofluids 2022, 2022, 2729597. [Google Scholar] [CrossRef]
- Han, G.; Cao, C.; Zhang, W.J.; Cao, Y.; Wang, S.H.; Bao, L. Hydrocarbon transport capacity of fault-sandstone configuration of Ed2+3 members in Liuchu area of Raoyang Sag and its relationship with oil and gas enrichment. China Pet. Explor. 2021, 26, 69–76. [Google Scholar]
- Ji, Y.L.; Ren, H.Y.; Zhang, S.Q.; Ma, Z.T.; Niu, J.Y.; Guo, S.S.; Liu, X.Y. Paleogene palaeogeography and oil and gas distribution in Bohai Bay Basin. J. Palaeogeogr. (Chin. Ed.) 2022, 24, 611–633. [Google Scholar]
- Lv, C.B.; Wu, Z.Y.; Liang, X.R.; Fu, L.L.; Pang, H.; Li, Q.; Lv, X.W. The Division of Reservoir Unit and Its Geological Significance in Lixian Slope of Raoyang Sag. Sci. Technol. Eng. 2020, 20, 6812–6821. [Google Scholar]
- Song, J.; Huo, Z.; Fu, G.; Hu, M.; Liu, L. Petroleum migration and accumulation in the Liuchu area of Raoyang Sag, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2020, 192, 107276. [Google Scholar]
- Wei, Y.B.; Li, J.Q.; Lu, S.F.; Song, Z.J.; Zhao, R.X.; Zhang, Y.; Liu, X. Comprehensive evaluation method of sweet spot zone in lacustrine shale oil reservoir and its application: A case study of shale oil in lower 1st member of the Shahejie formation in the Raoyang sag. J. China Univ. Min. Technol. 2021, 50, 813–824. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, H.F.; Ying, J.F.; Zhang, J.; Liu, X.M. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos 2008, 101, 435–452. [Google Scholar]
- Zhang, H.F.; Sun, M.; Zhou, X.H.; Zhou, M.F.; Fan, W.M.; Zheng, J.P. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim. Cosmochim. Acta 2003, 67, 4373–4387. [Google Scholar]
- Chen, H.H.; Zhu, X.M.; Huang, H.D.; Shi, R.S.; Luo, Y.N.; Cui, G. Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis. Earth Sci. 2017, 42, 1955–1971. [Google Scholar]
- Yang, F.; Wang, Q.; Hao, F.; Guo, L.X.; Zou, H.Y. Biomarker Characteristics of Lower Sub-Member of the First Member of the Shahejie Formation and Its Accumulation Contribution in Raoyang Depression, Jizhong Sub-Basin. Lithol. Reserv. 2021, 46, 172–185. [Google Scholar]
- Zhang, C.H.; Han, J.Z.; Ji, Y.L.; Zhou, Y.; Su, B.; Wang, S.C.; Liu, J.X. Distribution characteristics and stacking patterns of sandbodies in the continental lacustrine fan delta-beach dam system: A case study from submember 3 upper of Paleogene Shahejie Formation in Liuxi area, Raoyang Sag, Bohai Bay Basin. Nat. Gas Geosci. 2020, 31, 518–531. [Google Scholar]
- Du, W.; Ji, Y.L.; Ji, M.Y.; Jin, Z.G.; Hao, L.S.; Ran, A.H.; Yin, T.H. Establishment and significance of high-resolution Early Oligocene chronostratigraphic framework in Raoyang Sag, Bohai Bay. J. China Univ. Pet. (Ed. Nat. Sci.) 2020, 44, 142–151. [Google Scholar]
- Wang, J.; Ma, S.P.; Luo, Q.; Guo, J.Y.; Cui, Z.Q. Recognition and resource potential of source rocks in Raoyang Sag of Bohai Bay Basin. Acta Pet. Sin. 2009, 30, 51–55. [Google Scholar]
- Du, Y.F.; Zhu, X.M.; Ye, L.; Gao, Y. Features and Model of Mixed Sediments in Lower Submember of First Member of Shahejie Formation in Lixian Slope, Raoyang Sag. Earth Sci. 2020, 45, 3759–3778. [Google Scholar]
- Xue, H.; Han, C.Y.; Xiao, B.Y.; Wang, F.; Li, L. Sedimentary characteristics and models of shallow water delta front of the lower first member of Shahejie Formation in Gaoyang area, Lixian Slope. Lithol. Reserv. 2020, 32, 69–80. [Google Scholar]
- Geng, M.Y.; Chen, S.P.; Liu, L.F.; Huang, S.B.; Wu, B.; Zhang, Y. The palaeolake environment and development model of Paleogene high quality source rocks in the Bozhong Depression. J. Northeast Pet. Univ. 2021, 45, 10–21. [Google Scholar]
- Du, Y.F.; Zhu, X.M.; Gao, Y.; Li, L.L.; Ye, L.; Li, X.D.; Chen, Y.Q. Sedimentary provenance of the first member of the Shahejie Formation, Lixian Slope, Raoyang Sag. Earth Sci. Front. 2021, 28, 115–130. [Google Scholar] [CrossRef]
- Demaison, G.J.; Moore, G.T. Anoxic environments and oil source bed genesis. AAPG Bull. 1980, 64, 1179–1209. [Google Scholar]
- Kelts, K. Environments of deposition of lacustrine petroleum source rocks: An introduction. Geol. Soc. Lond. Spec. Publ. 1988, 40, 3–26. [Google Scholar] [CrossRef]
- Leng, M.J.; Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat. Sci. Rev. 2004, 23, 811–831. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fan, M.; Lu, Y.; Liu, H.; Hao, Y.; Xie, Z. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. Int. J. Coal Geol. 2016, 167, 103–118. [Google Scholar]
- Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. Isot. Geosci. Sect. 1990, 80, 261–279. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Yi, H.S.; Shi, Z.Q.; Zhu, Y.T.; Ma, X. Reconstruction of paleo-salinity and lake-level fluctuation history by using boron concentration in lacustrine mudstones. J. Lake Sci. 2009, 21, 77–83. [Google Scholar]
- Ma, Y.; Fan, M.; Lu, Y.; Liu, H.; Hao, Y.; Xie, Z.; Hu, H. Middle Eocene paleohydrology of the Dongying Depression in eastern China from sedimentological and geochemical signatures of lacustrine mudstone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 479, 16–33. [Google Scholar] [CrossRef]
- Yan, M.C.; Chi, Q.H.; Gu, T.X.; Wang, C.S. Chemical Compositions of Continental Crust and Rocks in Eastern China. Geophys. Geochem. Explor. 1997, 21, 451–459. [Google Scholar]
- Widayat, A.H.; Bas, V.; Oschmann, W.; Anggayana, K.; Püttmann, W. Climatic control on primary productivity changes during development of the Late Eocene Kiliran Jao Lake, Central Sumatra Basin, Indonesia. Int. J. Coal Geol. 2016, 165, 133–141. [Google Scholar]
- Yin, J.; Wang, Q.; Hao, F.; Guo, L.X.; Zou, H.Y. Palaeoenvironmental reconstruction of lacustrine source rocks in the lower 1st Member of the Shahejie Formation in the Raoyang Sag and the Baxian Sag, Bohai Bay Basin, eastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 495, 87–104. [Google Scholar] [CrossRef]
- Yin, J.; Wang, Q.; Hao, F.; Guo, L.X.; Zou, H.Y. Palaeolake Environment and Depositional Model of Source Rocks of the Lower Submember of Sha1 in Raoyang Sag, Bohai Bay Basin. Earth Sci. 2017, 42, 1209–1222. [Google Scholar]
- Schindler, D.W. Evolution of phosphorus limitation in lakes: Natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 1977, 195, 260–262. [Google Scholar]
Well XL5 | Well ND1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) | Depth (m) | TOC (mg/g) |
3327.54 | 1.13 | 3337.74 | 1.90 | 3344.7 | 1.49 | 3352.5 | 2.98 | 3358.9 | 3.48 | 3364.8 | 2.40 | 3075 | 0.86 |
3328.14 | 1.13 | 3338.04 | 2.44 | 3345.1 | 1.85 | 3352.9 | 6.33 | 3359.1 | 3.62 | 3365.2 | 2.31 | 3105 | 2.35 |
3328.64 | 1.31 | 3338.34 | 6.46 | 3345.4 | 3.80 | 3353.3 | 2.89 | 3359.3 | 3.98 | 3365.3 | 1.67 | 3115 | 2.40 |
3329.14 | 1.36 | 3338.74 | 2.98 | 3345.7 | 4.61 | 3353.5 | 2.12 | 3359.5 | 3.66 | 3365.8 | 2.58 | 3155 | 0.50 |
3329.57 | 1.45 | 3339.04 | 4.43 | 3346.1 | 6.06 | 3353.8 | 2.26 | 3359.7 | 4.56 | 3366.3 | 2.31 | 3185 | 0.86 |
3330.07 | 1.45 | 3339.4 | 2.12 | 3346.4 | 2.58 | 3354.2 | 3.62 | 3360 | 4.07 | 3366.6 | 2.12 | 3210 | 0.72 |
3330.75 | 1.31 | 3339.7 | 1.85 | 3346.7 | 2.94 | 3354.6 | 4.79 | 3360.3 | 2.17 | 3225 | 0.63 | ||
3331.05 | 0.95 | 3339.9 | 1.63 | 3347 | 3.62 | 3354.8 | 6.37 | 3361.2 | 2.08 | 3245 | 0.72 | ||
3331.67 | 1.63 | 3340.4 | 1.85 | 3347.4 | 1.18 | 3355.2 | 3.03 | 3361.5 | 4.07 | 3275 | 0.68 | ||
3332.07 | 1.54 | 3340.85 | 2.21 | 3347.7 | 0.99 | 3355.3 | 5.11 | 3361.7 | 2.89 | 3285 | 1.08 | ||
3333.04 | 1.54 | 3341.1 | 2.98 | 3348 | 1.31 | 3355.6 | 5.42 | 3361.9 | 2.71 | 3300 | 1.13 | ||
3333.39 | 1.45 | 3341.7 | 3.53 | 3348.5 | 2.76 | 3355.8 | 4.07 | 3362.1 | 4.93 | 3307.5 | 1.13 | ||
3333.84 | 1.18 | 3342 | 3.03 | 3349.5 | 2.71 | 3356.4 | 3.57 | 3362.4 | 1.13 | 3350 | 0.68 | ||
3334.64 | 2.08 | 3342.4 | 1.94 | 3349.9 | 4.34 | 3356.7 | 2.31 | 3362.7 | 1.90 | 3372 | 0.72 | ||
3335.44 | 2.12 | 3342.8 | 2.03 | 3350.4 | 2.26 | 3357.2 | 2.35 | 3362.9 | 2.12 | 3395 | 0.86 | ||
3335.94 | 1.76 | 3343 | 1.94 | 3350.8 | 1.90 | 3357.6 | 4.56 | 3363.2 | 1.49 | 3465 | 1.76 | ||
3336.34 | 1.81 | 3343.4 | 1.67 | 3351.1 | 1.72 | 3357.8 | 3.62 | 3363.3 | 2.44 | ||||
3336.74 | 1.81 | 3343.8 | 1.81 | 3351.3 | 1.67 | 3358 | 3.62 | 3363.5 | 2.08 | ||||
3337.04 | 1.58 | 3344.1 | 1.90 | 3351.4 | 1.81 | 3358.1 | 3.71 | 3364.3 | 2.89 | ||||
3337.34 | 1.90 | 3344.4 | 4.11 | 3351.8 | 3.80 | 3358.3 | 3.89 | 3364.6 | 2.98 |
Well XL5 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depth (m) | Al | Na | K | P | B | Ga | Sr | Ba | Mo | U | S1-1 | S1-2 | S2-1 | S2-2 |
(ppm) | (mg/g) | |||||||||||||
3327.34 | 53,047 | 8807 | 15,152 | 514.00 | 20.02 | 12.8 | 497 | 655 | 1.3 | 2.5 | 0.06 | 2.06 | 4.46 | 3.29 |
3329.17 | 58,235 | 9230 | 17,301 | 523.95 | 19.78 | 16.2 | 490 | 677 | 1.0 | 2.3 | 0.08 | 1.95 | 7.52 | 7.42 |
3331.67 | 51,221 | 8792 | 14,040 | 514.77 | 18.41 | 17.4 | 511 | 869 | 1.5 | 2.3 | 0.11 | 2.13 | 8.88 | 7.29 |
3332.07 | 55,239 | 8918 | 15,575 | 515.26 | 18.32 | 15.6 | 501 | 673 | 1.9 | 2.8 | 0.10 | 2.47 | 8.57 | 8.35 |
3332.64 | 57,844 | 8977 | 16,056 | 514.68 | 19.34 | 15.2 | 614 | 678 | 2.0 | 3.2 | 0.15 | 2.22 | 7.20 | 7.82 |
3345.7 | 60,448 | 8651 | 18,844 | 498.87 | 19.58 | 15.0 | 788 | 675 | 3.4 | 5.2 | 0.24 | 3.24 | 17.32 | 15.94 |
3351.3 | 57,939 | 8985 | 18,380 | 532.12 | 20.09 | 16.1 | 1773 | 836 | 5.7 | 6.4 | 0.22 | 3.79 | 15.29 | 10.64 |
3352.5 | 35,942 | 7323 | 9758 | 525.86 | 22.01 | 10.2 | 4437 | 1432 | 9.3 | 6.7 | 0.28 | 4.41 | 17.67 | 18.88 |
3352.9 | 50,839 | 8874 | 16,405 | 522.73 | 20.53 | 11.8 | 2067 | 1159 | 11.7 | 4.9 | 0.25 | 4.91 | 15.11 | 15.41 |
3357.3 | 52,200 | 9512 | 16,148 | 527.67 | 20.41 | 12.6 | 1964 | 1355 | 11.9 | 5.8 | 0.25 | 4.41 | 18.76 | 25.29 |
3359.3 | 61,502 | 9578 | 19,326 | 524.22 | 20.27 | 16.5 | 1092 | 1120 | 6.0 | 6.3 | 0.40 | 4.79 | 17.91 | 32.67 |
3363.6 | 49,738 | 8332 | 16,870 | 500.90 | 19.84 | 14.3 | 2802 | 1100 | 3.2 | 4.7 | 0.24 | 4.37 | 20.86 | 16.44 |
3363.9 | 62,725 | 8836 | 21,384 | 520.59 | 18.87 | 16.3 | 777 | 1211 | 12.1 | 8.0 | 0.25 | 4.49 | 15.12 | 15.33 |
3364.1 | 57,849 | 8184 | 20,039 | 514.90 | 20.13 | 15.0 | 1488 | 1141 | 4.8 | 4.1 | 0.40 | 7.66 | 20.03 | 18.40 |
Well ND1 | ||||||||||||||
Depth (m) | Al | Na | K | P | B | Ga | Sr | Ba | Mo | U | ||||
(ppm) | ||||||||||||||
3075 | 60,600 | 11,800 | 21,900 | 740 | 23.4 | 21.6 | 853 | 745 | 0.9 | 3.1 | ||||
3105 | 51,300 | 9490 | 19,200 | 664 | 26.2 | 18.6 | 820 | 772 | 1.5 | 3.4 | ||||
3115 | 57,000 | 9930 | 21,200 | 607 | 20.7 | 20.2 | 1080 | 688 | 1.4 | 3.4 | ||||
3155 | 59,500 | 12,000 | 23,600 | 685 | 20.3 | 21.6 | 343 | 686 | 0.8 | 2.6 | ||||
3185 | 58,900 | 10,700 | 23,500 | 796 | 21.3 | 21.5 | 366 | 760 | 0.9 | 2.7 | ||||
3210 | 72,100 | 8500 | 25,600 | 829 | 24.5 | 25.9 | 943 | 983 | 1.1 | 3.2 | ||||
3225 | 58,400 | 12,600 | 23,400 | 737 | 18 | 21.3 | 347 | 746 | 1.2 | 2.4 | ||||
3245 | 55,400 | 11,400 | 21,800 | 658 | 28.8 | 20.4 | 379 | 631 | 0.9 | 2.6 | ||||
3275 | 59,800 | 12,400 | 22,900 | 706 | 27.1 | 21.2 | 439 | 680 | 0.7 | 2.8 | ||||
3285 | 46,500 | 8620 | 20,600 | 462 | 26.6 | 16.1 | 940 | 693 | 2 | 2.8 | ||||
3300 | 56,800 | 10,100 | 20,200 | 694 | 20.5 | 20.3 | 1410 | 857 | 1.8 | 2.3 | ||||
3307.5 | 57,200 | 12,200 | 22,400 | 735 | 16.4 | 20.3 | 597 | 735 | 1.5 | 2.2 | ||||
3350 | 61,000 | 12,400 | 25,300 | 687 | 24.5 | 22.2 | 417 | 708 | 0.8 | 2.9 | ||||
3372 | 62,100 | 14,500 | 22,200 | 790 | 19.3 | 22.3 | 254 | 930 | 1 | 2.4 | ||||
3395 | 55,300 | 9230 | 22,100 | 677 | 18.8 | 20.1 | 929 | 950 | 1.2 | 2.4 | ||||
3465 | 54,300 | 10,300 | 23,100 | 427 | 54.3 | 18.8 | 995 | 879 | 1.8 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yin, J.; Wang, Z. Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China. Minerals 2022, 12, 1414. https://doi.org/10.3390/min12111414
Li Y, Yin J, Wang Z. Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China. Minerals. 2022; 12(11):1414. https://doi.org/10.3390/min12111414
Chicago/Turabian StyleLi, Yuezhe, Jie Yin, and Zhenqi Wang. 2022. "Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China" Minerals 12, no. 11: 1414. https://doi.org/10.3390/min12111414
APA StyleLi, Y., Yin, J., & Wang, Z. (2022). Lithofacies Characteristics and Controlling Factors of Fine-Grained Sedimentary Rocks in the Lower First Member of the Shahejie Formation in the Northern Lixian Slope of Raoyang Sag, China. Minerals, 12(11), 1414. https://doi.org/10.3390/min12111414