The Role of Selenium and Hydrocarbons in Au-Ag Ore Formation in the Rodnikovoe Low-Sulfidation (LS) Epithermal Deposit, Kamchatka Peninsula, Russia
Abstract
:1. Introduction
2. Geological Background of the Rodnikovoe Deposit
3. Methods
4. Results
4.1. Geochemical Features of Ores in the Rodnikovoe Deposit
4.2. Features of Mineral Associations
4.3. Composition of Ag-Au Minerals in the Rodnikovoe Deposit
4.4. Composition and Physicochemical Parameters of Hydrothermal Fluids
5. Discussion
5.1. The Role of Organic Compounds in the Accumulation of Selenium
5.2. Physicochemical Constrains on the Selenium Endowment of the Ore-Forming Environment
5.3. Au and Se Mode of Occurrence. Compositional Features of Au-Minerals in the Rodnikovoe Deposit
5.4. Evolution of the Ore-Forming System
6. Conclusions
- (1)
- The Rodnikovoe epithermal deposit is a classic low-sulfidation type, graded as a gold-silver formation (Au/Ag are 0.1–0.2) and characterized by selenium speciation, at the expenses of tellurium and antimony.
- (2)
- Two alternating ore assemblages: silver-aguilarite-acanthite and gold-uytenbogaardtite-acanthite series are typomorphic of this deposit. In the former, Ag0.49–0.56Au0.44–0.51 alloys are replaced by solid solutions of the acanthite series and jalpaite; whereas in the latter— they are replaced by first uytenbogaardtite, then acanthite. The first assemblage is intergrown with secondary silver (Ag0.77–0.91), while the second with higher grade gold (Au0.63–0.67). The evolution of the ore-forming system occurred under conditions of decreasing temperature and an increasing sulfur activity: Fe → Cu; Ag → Au; S → Se; As → Sb.
- (3)
- Organic compounds, represented by oxygen-free aliphatic (paraffins, olefins), cyclic (cycloalkanes and cycloalkenes, arenes, polycyclic aromatic hydrocarbons), oxygenated (alcohols, ethers, furans, aldehydes, ketones, carboxylic acids), nitrogenated and sulfonated hydrocarbons mixtures (1 rel.%), found in numerous fluid-gas inclusions, played an important role in the transport and accumulation of ore metals along with selenium. The compositions of these hydrocarbons are compatible with both biogenic and thermogenic origin.
- (4)
- Rodnikovoe LS Au-Ag epithermal deposits are derived from hydrothermal fluids with fO2 below the magnetite-hematite buffer, at fSe2/fS2 ratios < 1. These conditions constrain the deposition of selenide minerals, except for the naumannite and acanthite series, and allow an active influx of selenium into sulfosalts.
- (5)
- Most relevant typomorphic features of ore minerals: The solid solution of the acanthite series moves away from the Ag2S-Ag2Se trend: Ag2−xS1+x → Ag2+xSe1−x; uytenbogaardtite shows a tendency directed towards a hypothetical phase AuS2, rather than a mixture with petrovskaite as expected; pearceite-polybasite minerals are mostly stoichiometric, with a subtle deviation towards Ag.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okrugin, V.M.; Shishkanova, K.O.; Filosofova, T.M. New data on the ores of the Vilyuchinsky gold-silver-polymetallic ore occurrence, South Kamchatka. Ores Met. 2017, 1, 40–54. (In Russian) [Google Scholar]
- Vasilevsky, M.M.; Stefanov, Y.M.; Shiroky, B.I.; Kutyev, F.S.; Okrugin, V.M. Metallogeny of Kamchatka upper structural story and the problem of ore specialization of folded regions tectonic-magmatic evolution. In Forecasting Estimation of Ore Content of Volcanogenic Formation; Nedra: Moscow, Russia, 1977; pp. 14–60. (In Russian) [Google Scholar]
- Okrugin, V.M. Mutnovsky Hydrothermal Field Uzon-Geyser Depression. In Proceedings of the Materials 8th International Symposium Water-Rock Interact, Vladivostok, Russia, 15–19 August 1995. [Google Scholar]
- Petrenko, I.D.; Bolshakov, N.M. Structural position and age of Au-Ag mineralization of southern Kamchatka (Mutnovskoe ore field). Geol. Pacific Ocean 1995, 5, 100–111. (In Russian) [Google Scholar]
- Petrenko, I.D. Gold-Silver Formation of Kamchatka; VSEGEI: S-Peterburg, Russia, 1999; p. 115. (In Russian) [Google Scholar]
- Takahashi, R.; Matsueda, H.; Okrugin, V.M. Hydrothermal gold mineralization at the Rodnikovoe deposit in South Kamchatka, Russia. Resour. Geol. 2002, 52, 359–369. [Google Scholar] [CrossRef]
- Tsukanov, N.V. Tectonic-stratigraphic terranes, Kamchatka active margins: Structure, composition and geodynamics. In Proceedings of the Annual Conference “Volcanism and Related Processes”, IVS FEB RAS, Petropavlovsk-Kamchatsky, Russia, 30 March–1 April 2015; pp. 97–103. (In Russian). [Google Scholar]
- Stepanov, V.A. Gold and mercury in the processes of ore-formation in Kamchatka. Izv. Vuzov Geol. Explor. 2018, 4, 54–60. (In Russian) [Google Scholar] [CrossRef]
- Lattanzi, P.; Okrugin, V.M.; Corsini, A.; Okrugina, A.; Tchubarov, V.; Livi, S. Base and precious metal mineralization in the Mutnovsky area, Kamchatka, Russia. Soc. Econ. Geol. 1995, 20, 5–9. [Google Scholar] [CrossRef]
- Okrugin, V.M. Rodnikovskoe deposit. In Geodynamics, Magmatism and Metallogeny of the East of Russia; Dalnauka: Vladivostok, Russia, 2006; pp. 702–706. (In Russian) [Google Scholar]
- Gold of the Kamchatka Territory. Status and Prospects for the Development of the Mineral Resource Base. Available online: https://nedradv.ru/nedradv/ru/page_industry?obj=37cbccbf7c0d2e5d6f9ac69fea2f36f0 (accessed on 1 August 2009).
- Dubessy, J.; Poty, B.; Claire, R. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. Eur. J. Miner. 1989, 1, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Bulbak, T.A.; Tomilenko, A.A.; Gibsher, N.A.; Sazonov, A.M.; Shaparenko, E.O.; Ryabukha, M.A.; Khomenko, M.O.; Silyanov, S.A.; Nekrasova, N.A. Hydrocarbons in fluid inclusions from native gold, pyrite and quartz of the Sovetskoye deposit (Yenisei Ridge, Russia) according to pyrolysis-free gas chromatography-mass spectrometry. Russ. Geol. Geophys. 2020, 61, 1260–1282. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Volkov, A.V.; Savva, N.E.; Prokofiev, V.Y.; Kolova, E.E.; Dolomanova-Topol’, A.A.; Galyamov, A.L.; Murashov, K.Y. Epithermal Au-Ag-Se-Te deposits of the Chukchi Peninsula (Arctic zone of Russia): Metallogeny, mineral assemblages, and fluid regime. Russ. Geol. Geophys. 2022, 63, 522–549. [Google Scholar] [CrossRef]
- Sakhno, V.G.; Barinov, N.N.; Karas’, O.A.; Ivin, V.V.; Pipko, M.S.; Tsurikova, L.S. Petrological-Geochemical Isotopic Criteria for Predicting the Large Volume of Gold-Silver Ore Content of Volcano-Structures in the Chukotka Sector of the Arctic Coast of Russia. 2014. Available online: http://www.ras.ru/scientificactivity/rasprograms/arctic.aspx (accessed on 11 February 2014).
- Zhuravkova, T.V.; Palyanova, G.A.; Kalinin, Y.A.; Goryachev, N.A.; Zinina, V.Y.; Zhitova, L.M. Physicochemical Conditions of Formation of Gold and Silver Parageneses at the Valunistoe Deposit (Chukchi Peninsula). Russ. Geol. Geophys. 2019, 60, 1247–1256. [Google Scholar] [CrossRef]
- Palyanova, G.A.; Savva, N.E.; Zhuravkova, T.V.; Kolova, E.E. Gold and silver minerals in low-sulfidaton ores of the Julietta deposit (northeastern Russia). Russ. Geol. Geophys. 2016, 57, 1171–1190. [Google Scholar] [CrossRef]
- Bindi, L.; Evain, M.; Spry, P.G.; Menchetti, S. The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules. Amer. Miner. 2007, 92, 918–925. [Google Scholar] [CrossRef]
- Seward, T.M. Thio complex of gold and the transfer of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta 1973, 53, 379–399. [Google Scholar] [CrossRef]
- Sobolev, O.I.; Gutyj, B.V.; Sobolieva, S.V.; Borshch, O.O.; Nedashkivsky, V.M.; Kachan, L.M.; Karkach, P.M.; Nedashkivska, N.V.; Poroshinska, O.A.; Stovbetska, L.S.; et al. Selenium in natural environment and food chains. A Review. Ukr. J. Ecol. 2020, 10, 148–158. [Google Scholar] [CrossRef]
- Wen, H.-J.; Qiu, Y.-Z. Geology and Geochemistry of Se-Bearing Formations in Central China. Int. Geol. Rev. 2002, 44, 164–178. [Google Scholar] [CrossRef]
- Akinfiev, N.N.; Tagirov, B.R. Effect of selenium on silver transport and precipitation by hydrothermal solutions: Thermodynamic description of the Ag-Se-S-Cl-O-H system. Geol. Ore Depos. 2006, 48, 402–413. [Google Scholar] [CrossRef]
- Kizilshtein, L.Y. The role of organic matter in the formation of gold deposits (on the example of black shales). Russ. J. Gen. Chem. 2000, XLIV, 108–114. (In Russian) [Google Scholar]
- Galimov, E.M.; Sevastyanov, V.S.; Karpov, G.A.; Kamaleeva, A.I.; Kuznetsova, O.V.; Konopleva, I.V.; Vlasova, L.N. Hydrocarbons from the volcanic region of oil occurrences in the caldera of Uzon volcano in Kamchatka 2015. Geochemistry 2015, 12, 1059–1068. (In Russian) [Google Scholar] [CrossRef]
- Poturai, V.A. Organic matter in hydrothermal systems of the Far East of different types and environments. Bull. Tomsk. Polytech. Univ. 2018, 329, 6–16. (In Russian) [Google Scholar]
- Poturai, V.A. Organic Matter in Peninsular and Continental Hydrothermal Systems of the Far East. Ph.D. Thesies, Federal State Budgetary Institution of Science Institute for Comprehensive Analysis of Regional Problems of the Far Eastern Branch of the Russian Academy of Sciences, Birobidzhan, Russia, 2019. (In Russian). [Google Scholar]
- Poturai, V.A.; Kompanichenko, V.N. Composition and distribution of saturated hydrocarbons in thermal waters and steam-water mixture of Mutnovsky geothermal region and Uzon caldera (Kamchatka). Geochemistry 2019, 64, 79–88. (In Russian) [Google Scholar] [CrossRef]
- Fiebig, J.; Stefánsson, A.; Ricci, A.; Tassi, F.; Viveiros, F.; Silva, C.; Lopez, T.M.; Schreiber, C.; Hofmann, S.; Mountain, B.W. Abiogenesis not required to explain the origin of volcanic hydrothermal hydrocarbons. Geochem. Persp. Let. 2019, 11, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Tolstykh, N.D.; Bortnikov, N.S.; Shapovalova, M.O.; Shaparenko, E.O. The Role of Hydrocarbons in the Formation of Epithermal Gold–Silver Deposits in Kamchatka, Russia. Dokl. Earth Sci. 2022, 507, 994–999. [Google Scholar]
- Yuningsih, E.T.; Matsueda, H.; Rosana, M.F. Diagnostic genesis features of Au-Ag selenide-telluride mineralization of Western Java Deposits. Indones. J. Geosci. 2016, 3, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Slobodskoy, R.M. Organoelement Compounds in Magmatic and Ore-Forming Processes. Nauka: Novosibirsk, Russia, 1981. (In Russian) [Google Scholar]
- Hustor, D.L.; Sieb, S.H.; Suterb, G.F. Selenium theoretical and its importance to the study of ore genesis: The basis and its application to volcanic-hosted massive sulfide deposits using pixeprobe analysis. Nucl. Instrum. Methods Phys. Res. 1995, 104, 476–480. [Google Scholar] [CrossRef]
- Simon, G.; Kesler, S.E.; Essene, E.J. Phase Relations among Selenides, Sulfides, Tellurides, and Oxides: II. Applications to Selenide-Bearing Ore Deposits. Econ. Geol. 1997, 92, 468–484. [Google Scholar] [CrossRef]
- Pingitore, N.E.; Ponce, B.F.; Eastman, M.P.; Moreno, F.; Podpora, C. Solid solutions in the system Ag2S—Ag2Se. J. Mater. Res. 1992, 7, 2219–2224. [Google Scholar] [CrossRef]
- Bindi, L.; Pingitore, N.E. On the symmetry and crystal structure of aguilarite, Ag4SeS. Mineral. Mag. 2013, 77, 21–31. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Kravtsova, R.G.; Zhuravkova, T.V. Ag2 (S, Se) solid solutions in the ores of the Rogovik gold-silver deposit (northeastern Russia). Russ. Geol. Geophys. 2015, 56, 1738–1748. [Google Scholar] [CrossRef]
- Kazachenko, V.T.; Miroshnichenko, N.V.; Perevoznikova, E.V.; Karabtsov, A.A. Noble metal minerals in metalliferous sediments of the triassic-jurassic carbonaceous sequence in Sikhote Alin. Proc. Acad. Sci. 2008, 421, 919–922. (In Russian) [Google Scholar] [CrossRef]
- Kullerud, K.; Kotková, J.; Šrein, V.; Drabek, M.; Skoda, R. Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation. Contrib. Mineral. Petrol. 2018, 173, 71. [Google Scholar] [CrossRef]
- Barton, M.D. The Ag—Au—S system. Econ. Geol. 1980, 75, 303–316. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Kokh, K.A.; Seryotkin, Y.V. Formation of gold and silver sulfides in the system Ag-Au-S. Russ. Geol. Geophys. 2011, 52, 443–449. [Google Scholar] [CrossRef]
- Savva, N.E.; Palyanova, G.A.; Kolova, E.E. Gold and Silver Minerals and Conditions of Their Formation at the Dorozhnoye Deposit (Magadan Region, Russia). Nat. Resour. 2014, 5, 478–495. [Google Scholar] [CrossRef]
Sample | Au | Ag | Au/Ag | Cu | As | Bi | Pb | Sb | Se | Sn | Zn | Te |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rodn-1 | 5.6 | 71.5 | 0.08 | 37.6 | 120 | 7.0 | 7.9 | 55.3 | 8.00 | 0.6 | 29 | 0.13 |
Rodn-2 | 11 | 135 | 0.08 | 71.3 | 25.0 | 0.04 | 2.1 | 42.2 | 25.2 | 0.3 | 9.0 | 0.05 |
Rodn-4 | 21 | 115 | 0.18 | 37.2 | 23.0 | 0.05 | 3.6 | 41.3 | 10.14 | 0.4 | 12.0 | 0.09 |
Assemblage | Mineral Composition and Geochemical Speciation in Mineral Assemblages | |
---|---|---|
Ag-Au-aguilarite-acanthite | (Ag,Au) | Ag-Au alloys (Ag > Au) |
Ag2S, Ag2(S,Se) | Acanthite | |
Ag4SeS | Aguilarite | |
Ag3CuS2 | Jalpaite | |
Ag9CuS4(Ag,Au,Cu)6(As,Sb)2S7 | Pearceite | |
Ag6(Cu,Ag,Zn)6(Sb,As)4S13 | Argentotetrahedrite-(Zn) | |
Ag6Cu4(Zn,Fe)2(Sb,As)4S13 | Argentotetrahedrite-(Zn,Fe) | |
Au-Ag-uytenbogaardtite-acanthite | (Ag,Au) | Ag-Au alloys (Ag > Au) |
(Au,Ag) | Ag-Au alloys (Au > Ag) | |
Ag3AuS2 | Uytenbogaardtite | |
Ag2Se | Naumannite | |
Ag3AsS3 | Proustite/Xanthoconite | |
Ag9CuS4(Ag,Au,Cu)6(Sb,As)2S7 | Polybasite | |
Ag5Cu2S5 | Mckinstryite (Ag5Cu3S4)? | |
Ag8GeS6 | Argyrodite |
No. | Au | Ag | Total | Au | Ag | Total | No. | Au | Ag | Total | Au | Ag | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | at.% | wt.% | at.% | ||||||||||
1 | 3.07 | 97.3 | 100.4 | 1.70 | 98.30 | 100 | 40 | 61.89 | 38.33 | 100.22 | 46.93 | 53.07 | 100 |
2 | 9.48 | 89.5 | 98.96 | 5.48 | 94.52 | 100 | 41 | 62.63 | 38.15 | 100.78 | 47.34 | 52.66 | 100 |
3 | 19.61 | 81.2 | 100.8 | 11.68 | 88.32 | 100 | 42 | 61.49 | 37.23 | 98.72 | 47.49 | 52.51 | 100 |
4 | 19.36 | 79.6 | 98.92 | 11.76 | 88.24 | 100 | 43 | 62.19 | 37.15 | 99.34 | 47.83 | 52.17 | 100 |
5 | 24.89 | 74.6 | 99.5 | 15.45 | 84.55 | 100 | 44 | 63.01 | 37.55 | 100.56 | 47.89 | 52.11 | 100 |
6 | 26.92 | 72.2 | 99.16 | 16.95 | 83.05 | 100 | 45 | 62.52 | 37.19 | 99.71 | 47.93 | 52.07 | 100 |
7 | 30.97 | 69.9 | 100.9 | 19.53 | 80.47 | 100 | 46 | 62.25 | 36.9 | 99.15 | 48.02 | 51.98 | 100 |
8 | 31.54 | 68.7 | 100.2 | 20.10 | 79.90 | 100 | 47 | 62.97 | 37.31 | 100.28 | 48.03 | 51.97 | 100 |
9 | 31.26 | 67.2 | 98.5 | 20.29 | 79.71 | 100 | 48 | 63.44 | 37.54 | 100.98 | 48.07 | 51.93 | 100 |
10 | 35.00 | 65.6 | 100.6 | 22.61 | 77.39 | 100 | 49 | 63.34 | 37.43 | 100.77 | 48.10 | 51.90 | 100 |
11 | 38.79 | 60.3 | 99.05 | 26.06 | 73.94 | 100 | 50 | 63.09 | 37.28 | 100.37 | 48.10 | 51.90 | 100 |
12 | 39.31 | 60.6 | 99.94 | 26.20 | 73.80 | 100 | 51 | 62.50 | 36.4 | 98.9 | 48.46 | 51.54 | 100 |
13 | 43.16 | 57.1 | 100.2 | 29.28 | 70.72 | 100 | 52 | 62.91 | 36.6 | 99.51 | 48.49 | 51.51 | 100 |
14 | 44.87 | 54.6 | 99.44 | 31.05 | 68.95 | 100 | 53 | 62.47 | 36.32 | 98.79 | 48.51 | 51.49 | 100 |
15 | 44.81 | 54.4 | 99.18 | 31.10 | 68.90 | 100 | 54 | 63.34 | 36.74 | 100.08 | 48.56 | 51.44 | 100 |
16 | 45.82 | 54.1 | 99.9 | 31.69 | 68.31 | 100 | 55 | 63.8 | 36.59 | 100.39 | 48.85 | 51.15 | 100 |
17 | 49.56 | 49.9 | 99.43 | 35.24 | 64.76 | 100 | 56 | 63.01 | 36.12 | 99.13 | 48.86 | 51.14 | 100 |
18 | 49.97 | 48.2 | 98.15 | 36.22 | 63.78 | 100 | 57 | 62.50 | 35.67 | 98.17 | 48.97 | 51.03 | 100 |
19 | 51.58 | 47.8 | 99.37 | 37.15 | 62.85 | 100 | 58 | 62.54 | 35.62 | 98.16 | 49.02 | 50.98 | 100 |
20 | 54.05 | 46.2 | 100.3 | 39.04 | 60.96 | 100 | 59 | 63.65 | 36.07 | 99.72 | 49.15 | 50.85 | 100 |
21 | 57.43 | 43.5 | 100.9 | 41.96 | 58.04 | 100 | 60 | 63.76 | 36.13 | 99.89 | 49.15 | 50.85 | 100 |
22 | 58.03 | 42.3 | 100.4 | 42.88 | 57.12 | 100 | 61 | 64.09 | 36.04 | 100.13 | 49.34 | 50.66 | 100 |
23 | 58.26 | 42 | 100.3 | 43.15 | 56.85 | 100 | 62 | 64.17 | 35.87 | 100.04 | 49.49 | 50.51 | 100 |
24 | 57.30 | 41.2 | 98.49 | 43.24 | 56.76 | 100 | 63 | 63.35 | 35.31 | 98.66 | 49.56 | 50.44 | 100 |
25 | 58.21 | 41.8 | 99.96 | 43.30 | 56.70 | 100 | 64 | 64.54 | 35.6 | 100.14 | 49.82 | 50.18 | 100 |
26 | 57.45 | 40.6 | 98.06 | 43.65 | 56.35 | 100 | 65 | 64.22 | 35.09 | 99.31 | 50.06 | 49.94 | 100 |
27 | 57.94 | 40.7 | 98.59 | 43.84 | 56.16 | 100 | 66 | 64.77 | 34.23 | 99.00 | 50.89 | 49.11 | 100 |
28 | 59.03 | 40.6 | 99.58 | 44.36 | 55.64 | 100 | 67 | 65.40 | 34.34 | 99.74 | 51.05 | 48.95 | 100 |
29 | 58.74 | 40.3 | 99.02 | 44.40 | 55.60 | 100 | 68 | 65.96 | 34.63 | 100.59 | 51.05 | 48.95 | 100 |
30 | 60.14 | 40.7 | 100.9 | 44.72 | 55.28 | 100 | 69 | 66.63 | 33.36 | 99.99 | 52.24 | 47.76 | 100 |
31 | 59.42 | 39.8 | 99.23 | 44.98 | 55.02 | 100 | 70 | 67.67 | 32.86 | 100.53 | 53.00 | 47.00 | 100 |
32 | 58.87 | 39.3 | 98.12 | 45.10 | 54.90 | 100 | 71 | 67.46 | 32.27 | 99.73 | 53.38 | 46.62 | 100 |
33 | 59.04 | 39.1 | 98.16 | 45.25 | 54.75 | 100 | 72 | 67.33 | 32.17 | 99.5 | 53.41 | 46.59 | 100 |
34 | 59.96 | 39.2 | 99.19 | 45.56 | 54.44 | 100 | 73 | 75.59 | 25.00 | 100.59 | 62.35 | 37.65 | 100 |
35 | 60.78 | 39.6 | 100.4 | 45.69 | 54.31 | 100 | 74 | 74.58 | 24.44 | 99.02 | 62.56 | 37.44 | 100 |
36 | 60.20 | 39 | 99.16 | 45.83 | 54.17 | 100 | 75 | 77.73 | 21.85 | 99.58 | 66.08 | 33.92 | 100 |
37 | 61.74 | 38.6 | 100.3 | 46.70 | 53.30 | 100 | 76 | 77.33 | 21.09 | 98.42 | 66.76 | 33.24 | 100 |
38 | 61.49 | 38.3 | 99.83 | 46.76 | 53.24 | 100 | 77 | 81.38 | 19.2 | 100.58 | 69.89 | 30.11 | 100 |
39 | 60.97 | 37.8 | 98.77 | 46.90 | 53.10 | 100 | 78 | 92.73 | 6.46 | 99.19 | 88.71 | 11.29 | 100 |
No. | Sample | Au | Ag | Se | S | Total | Formula |
---|---|---|---|---|---|---|---|
1 | Rod-4_3 | 83.68 | 2.15 | 12.05 | 97.88 | Ag1.97(S0.96Se0.07)1.03 | |
2 | Rod-4_3 | 83.87 | 2.44 | 12.52 | 98.83 | Ag1.95(S0.98Se0.08)1.06 | |
3 | Rod-3_1 | 83.21 | 4.38 | 12.37 | 99.96 | Ag1.91(S0.95Se0.14)1.09 | |
4 | Rod-2_10 | 2.32 | 80.82 | 5.25 | 10.36 | 98.75 | (Ag1.95Au0.03)1.98(S0.84Se0.17)1.01 |
5 | Rod-2_7 | 1.96 | 79.96 | 5.68 | 10.36 | 97.96 | (Ag1.94Au0.03)1.97(S0.85Se0.19)1.04 |
6 | Rod-2_5 | 82.3 | 6.25 | 10.43 | 98.98 | Ag1.96(S0.84Se0.20)1.04 | |
7 | Rod-3_3 | 82.92 | 6.31 | 10.34 | 99.57 | Ag1.97(S0.83Se0.20)1.03 | |
8 | Rod-2_1 | 81.61 | 6.56 | 10.55 | 98.72 | Ag1.94(S0.84Se0.21)1.05 | |
9 | Rod-3_1 | 82.65 | 6.92 | 10.53 | 100.1 | Ag1.94(S0.83Se0.22)1.05 | |
10 | Rod-2_1 | 82.23 | 7.21 | 10.26 | 99.7 | Ag1.95(S0.82Se0.23)1.05 | |
11 | Rod-2_4 | 80.94 | 7.31 | 9.36 | 97.61 | Ag1.98(S0.77Se0.24)1.01 | |
12 | Rod-2_6 | 79.69 | 8.26 | 9.06 | 97.96 * | Ag1.94(S0.74Se0.28)1.02 | |
13 | Rod-3_2 | 79.35 | 10.01 | 8.65 | 98.01 | Ag1.95(S0.71Se0.34)1.05 | |
14 | Rod-1_9 | 1.91 | 79.23 | 9.91 | 7.2 | 98.25 | Ag4.03Se0.69S1.23 |
15 | Rod-1_1a | 78.51 | 11.35 | 6.8 | 96.66 | Ag4.01Se0.79S1.17 | |
16 | Rod-1_5 | 78.74 | 11.72 | 7.23 | 97.69 | Ag3.97Se0.81S1.23 | |
17 | Rod-1_1b | 79.71 | 11.92 | 7.11 | 98.74 | Ag3.99Se0.81S1.20 | |
18 | Rod-1_1c | 79.29 | 12.33 | 6.83 | 98.45 | Ag3.99Se0.85S1.16 | |
19 | Rod-1_1c | 79.34 | 12.88 | 7.06 | 99.28 | Ag3.94Se0.87S1.18 | |
20 | Rod-1_7 | 78.04 | 14.89 | 5.28 | 98.21 | Ag4.03Se1.05S0.92 | |
21 | Rod-1_8 | 76.56 | 23.08 | 0.71 | 100.4 | Ag2.08(Se0.86S0.06)0.92 | |
22 | Rod-1_1c | 73.44 | 24.59 | 0.41 | 98.44 | Ag2.03(Se0.93S0.04)0.97 |
No. | Sample | Cu | Au | Ag | Se | S | Total | Formula |
---|---|---|---|---|---|---|---|---|
1 | Rod-2_7 | 2.10 | 23.58 | 59.39 | 2.59 | 10.46 | 98.12 | (Ag3.11Cu0.19)3.30Au0.68(S1.84Se0.19)2.03 |
2 | Rod-2_10 | 0.92 | 25.54 | 58.49 | 2.21 | 10.56 | 97.72 | (Ag3.12Cu0.08)3.20Au0.75(S1.89Se0.16)2.05 |
3 | Rod-3_2 | 0.53 | 27.07 | 57.78 | 0.00 | 10.64 | 96.02 | (Ag3.17Cu0.05)3.22Au0.81S1.97 |
4 | Rod-3_2 | 1.01 | 28.57 | 53.30 | 4.02 | 11.03 | 97.93 | (Ag2.82Cu0.09)2.91Au0.83(S1.97Se0.29)2.26 |
5 | Rod-2_10 | 0.84 | 29.84 | 54.74 | 3.55 | 11.58 | 100.55 | (Ag2.82Cu0.07)2.89Au0.84(S2.01Se0.25)2.26 |
6 | Rod-3_2 | 0.67 | 28.32 | 58.66 | 0.00 | 10.22 | 97.87 | (Ag3.21Cu0.06)3.27Au0.85S1.88 |
7 | Rod-2_1 | 1.45 | 31.58 | 51.35 | 0.00 | 14.39 | 98.77 | (Ag2.58Cu0.12)2.70Au0.87S2.43 |
8 | Rod-3_5 | 0.41 | 33.73 | 53.51 | 0.00 | 12.96 | 100.61 | (Ag2.76Cu0.04)2.80Au0.95S2.25 |
9 | Rod-1_1c | 0.00 | 32.31 | 53.30 | 1.41 | 10.75 | 97.77 | Ag2.93Au0.97(S1.99Se0.11)2.10 |
10 | Rod-4_4 | 0.00 | 30.03 | 49.53 | 0.00 | 9.50 | 89.06 | Ag3.03Au1.01S1.96 |
11 | Rod-3_2 | 0.53 | 33.93 | 49.55 | 0.00 | 12.14 | 96.15 | (Ag2.71Cu0.05)2.76Au1.01S2.23 |
12 | Rod-2_10 | 0.70 | 34.37 | 50.53 | 2.64 | 10.95 | 99.19 | (Ag2.72Cu0.06)2.78Au1.01(S1.99Se0.19)2.18 |
13 | Rod-2_7 | 2.05 | 40.43 | 39.75 | 1.55 | 14.50 | 98.28 | (Ag2.05Cu0.18)2.23Au1.14(S2.52Se0.11)2.63 |
14 | Rod-1_1c | 0.00 | 41.80 | 43.28 | 1.75 | 13.76 | 100.59 | Ag2.26Au1.20(S2.42Se0.12)2.54 |
No. | Sample | Cu | Au | Ag | Sb | As | Se | S | Total | Formula |
---|---|---|---|---|---|---|---|---|---|---|
1 | Rod-2_8 | 7.47 | 1.85 | 69.30 | 0.00 | 5.69 | 1.23 | 15.02 | 100.56 | Ag9.00Cu1.00S4.00(Ag5.01Cu1.56Au0.20)6.77As1.66(S6.22Se0.34)6.56 |
2 | Rod-2_6 | 8.80 | 65.55 | 2.12 | 5.41 | 2.76 | 15.28 | 99.92 | Ag9.00Cu1.00S4.00(Ag4.08Cu1.98)6.06(As1.55Sb0.37)1.92(S6.26Se0.75)7.01 | |
3 | Rod-2_4 | 8.95 | 4.19 | 60.56 | 2.31 | 4.87 | 1.72 | 14.46 | 97.06 | Ag9.00Cu1.00S4.00(Ag3.72Cu2.19Au0.48)6.39(As1.47Sb0.43)1.90(S6.22Se0.49)6.71 |
4 | Rod-2_4 | 7.68 | 12.20 | 55.77 | 2.97 | 3.76 | 2.01 | 12.60 | 96.99 | Ag9.00Cu1.00S4.00(Ag3.57Cu1.94Au1.51)7.02(As1.22Sb0.59)1.81(S5.55Se0.62)6.17 |
5 | Rod-4_3 | 2.54 | 75.08 | 4.71 | 2.77 | 1.32 | 12.99 | 99.41 | Ag9.00Cu0.94S4.00Ag7.36(As0.87Sb0.91)1.78(S5.53Se0.39)5.92 | |
6 | Rod-2_8 | 6.38 | 2.24 | 67.91 | 6.57 | 2.22 | 1.42 | 14.30 | 101.04 | Ag9.00Cu1.00S4.00(Ag5.16Cu1.26Au0.26)6.68(Sb1.21As0.67)1.88(S6.40Se0.40)6.44 |
7 | Rod-4_4 | 7.76 | 67.80 | 6.54 | 1.70 | 1.65 | 13.78 | 99.23 | Ag9.00Cu1.00S4.00(Ag5.27Cu1.77)7.04(Sb1.22As0.51)1.73(S5.76Se0.47)6.23 | |
8 | 7.65 | 69.41 | 6.88 | 1.89 | 1.74 | 14.45 | 102.02 | Ag9.00Cu1.00S4.00(Ag5.15Cu1.65)6.80(Sb1.24As0.55)1.79(S5.91Se0.48)6.39 | ||
9 | 6.43 | 69.64 | 6.79 | 1.41 | 1.33 | 12.25 | 97.85 | Ag9.00Cu1.00S4.00(Ag6.34Cu1.40)7.74(Sb1.33As0.45)1.78(S5.08Se0.40)5.48 | ||
10 | Rod-3_6 | 1.38 | 5.45 | 69.57 | 7.06 | 1.66 | 4.95 | 12.21 | 102.28 | Ag9.00Cu0.52S4.00(Ag6.36Au0.66)7.02(Sb1.38As0.53)1.91(S5.07Se1.49)6.56 |
11 | Rod-2_6 | 8.24 | 65.03 | 7.62 | 1.40 | 3.00 | 14.49 | 99.78 | Ag9.00Cu1.88S4.00(Ag4.41Cu1.88)6.29(Sb1.39As0.42)1.81(S6.05Se0.85)6.90 |
No. | Cu | Zn | Ge | Ag | Sb | As | Se | S | Total | Formula |
---|---|---|---|---|---|---|---|---|---|---|
1 | 71.59 | 5.89 | 8.94 | 11.61 | 98.03 | Ag8.18As0.97(S4.46Se1.39)5.85 | ||||
2 | 70.94 | 5.91 | 8.65 | 11.29 | 96.79 | Ag8.23As0.99(S4.41Se1.37)5.78 | ||||
3 | 5.99 | 75.85 | 2.17 | 16.03 | 100.04 | Ag8.03Ge0.94(S5.71Se0.31)6.02 | ||||
4 | 65.54 | 14.17 | 1.45 | 18.29 | 99.45 | Ag3.07As0.96(S2.88Se0.09)2.97 | ||||
5 | 60.96 | 12.16 | 3.26 | 15.28 | 91.66 | Ag3.18As0.91(S2.68Se0.23)2.91 | ||||
6 | 63.87 | 12.45 | 8.85 | 13.63 | 98.8 | Ag3.20As0.90(S2.30Se0.61)2.91 | ||||
7 | 33.59 | 6.74 | 3.39 | 28.19 | 23.88 | 96.01 | Cu9.35(Zn1.82Ag0.56)2.38Sb4.10S13.18 | |||
8 | 15.01 | 62.84 | 2.75 | 17.45 | 98.05 | Ag5.00Cu2.03(S4.67Se0.30)4.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolstykh, N.; Shapovalova, M.; Shaparenko, E.; Bukhanova, D. The Role of Selenium and Hydrocarbons in Au-Ag Ore Formation in the Rodnikovoe Low-Sulfidation (LS) Epithermal Deposit, Kamchatka Peninsula, Russia. Minerals 2022, 12, 1418. https://doi.org/10.3390/min12111418
Tolstykh N, Shapovalova M, Shaparenko E, Bukhanova D. The Role of Selenium and Hydrocarbons in Au-Ag Ore Formation in the Rodnikovoe Low-Sulfidation (LS) Epithermal Deposit, Kamchatka Peninsula, Russia. Minerals. 2022; 12(11):1418. https://doi.org/10.3390/min12111418
Chicago/Turabian StyleTolstykh, Nadezhda, Maria Shapovalova, Elena Shaparenko, and Daria Bukhanova. 2022. "The Role of Selenium and Hydrocarbons in Au-Ag Ore Formation in the Rodnikovoe Low-Sulfidation (LS) Epithermal Deposit, Kamchatka Peninsula, Russia" Minerals 12, no. 11: 1418. https://doi.org/10.3390/min12111418
APA StyleTolstykh, N., Shapovalova, M., Shaparenko, E., & Bukhanova, D. (2022). The Role of Selenium and Hydrocarbons in Au-Ag Ore Formation in the Rodnikovoe Low-Sulfidation (LS) Epithermal Deposit, Kamchatka Peninsula, Russia. Minerals, 12(11), 1418. https://doi.org/10.3390/min12111418