Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry
Abstract
:1. Introduction
2. Regional Geological Background
3. Sample Characteristics
4. Analytical Method
4.1. Zircon LA-ICP-MS U-Pb Dating
4.2. Whole-rock Primary and Trace (Rare Earth) Elements
5. Result Analysis
5.1. Zircon LA-ICP-MS U-Pb Dating Results
5.1.1. Late Cambrian Volcanic Rock Age
5.1.2. Late-Ordovician Volcanic Rock Age
5.1.3. Late-Silurian Volcanic Rock Age
5.2. Primary and Trace Element Characteristics
5.2.1. Primary Elements
5.2.2. Trace (Rare Earth) Element Characteristics
6. Discussion
6.1. Age of Early Paleozoic Volcanic Rock Formations in the Study Area
6.2. Petrogenesis and Tectonic Settings
- (1)
- 537–508 Ma: The Paleo-Asian Ocean subducted beneath the Ergun Massif to form a Cambrian arc granite belt on the Ergun Massif. Along with the continuous subduction-accretion and amalgamation of the oceanic crust, the subduction belt continuously retreated into the ocean, and the 508 Ma subduction belt migrated to the southeast side of the Duobaoshan-ARongqi-Zalantun magmatic arc (Figure 12a).
- (2)
- 508–423 Ma: The oceanic basin subduction caused the Duobaoshan-Arongqi-Zalantun-Yi’ershi magmatic arc, within which Duobaoshan (Mt Duobao) porphyry-type copper ores developed, and extensive Ordovician deposition was present in the back-arc extension area. Massive post-orogenic granites formed on the southern edge of and inside the Ergun Massif, along with lithosphere expansion in the back-arc area (Figure 12b).
7. Conclusions
- (1)
- Late Cambrian-Late Silurian volcanic rocks exist in the A’Rong Qi area, and the zircon U-Pb isotopic age is 423.3–507.5 Ma. The volcanic rocks were identified as a set of rock stratigraphic assemblages spanning from the Late Cambrian to the Early Silurian.
- (2)
- The Late Cambrian-Late Silurian volcanic rocks are HREE-rich quasi-aluminous-peraluminous calc-alkaline-shoshonite series with minor europium anomalies, abundant LILEs and obvious negative anomalies in Nb, Ta and Ti, suggesting that a A’Rongqi-Zalantun continental margin arc existed in the Early Paleozoic. This margin arc may have been produced by the subduction, accretion and soft collisions of the plates along the eastern margin of the Ergun Massif in the Early Paleozoic.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, D.; Wang, S.; Xie, X.; Zhang, J.; Wang, T. Metallogenic Province Derived from Mantle Sources: A Case Study of Central Asian Orogenic Belt. Min. Depos. 2003, 22, 41–55. [Google Scholar]
- Li, J. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Li, J.; Gao, L.; Sun, G.; Li, Y.; Wang, Y. Shuangjinzi middle Triassic syn-collisional crust-derived granite in the east Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plate. Acta Petrol. Sin. 2007, 23, 565–582. [Google Scholar]
- Sun, D.; Wu, F.; Zhang, Y.; Gao, S. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone: Evidence from the Dayushan Granitic Pluton, Jilin Province. J. Jiling Univ. (Earth Sci. Ed.) 2004, 34, 174–181. [Google Scholar]
- Sun, W.; Chi, X.; Pan, S.; Zhang, X.; Quan, J.; Fan, L.; Wang, L. Zircon LA-ICP-MS U–Pb dating and its geological signifificance of the Dawangzi formation from Wolegen Group in Xinlin area, northern Great Xing’an range. J. Jilin Univ. (Earth Sci. Ed.) 2014, 44, 176–185. [Google Scholar]
- Wu, G.; Sun, F.; Zhao, C.; Li, Z.; Zhao, A.; Pang, Q.; Li, G. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chin. Sci. Bull. 2005, 50, 2733–2743. [Google Scholar] [CrossRef]
- Xu, B.; Chen, B. Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plates in northern Inner Mongolia. Sci. China (Ser. D) 1997, 40, 463–469. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, W.; Han, G.; Zhang, J.; Guo, Q. Discussion on the basement properties and east boundary of the Ergun massif. Sci. Geol. Sin. 2013, 48, 227–244. [Google Scholar]
- Zhang, Y.; Zhang, C.; Wu, X.; Cui, T.; Yang, Y.; Chen, H.; Jiang, B.; Guo, W.; Ma, Y. Geochronology and Geochemistry of Late Paleozoic Marine Volcanic from the Zhalantun Area in Northern DaHinggan Mountains and Its Geological Significance. Acta Geol. Sin. 2016, 90, 2706–2720. [Google Scholar]
- Li, Y.; Xu, W.-L.; Tang, J.; Pei, F.-P.; Wang, F.; Sun, C.-Y. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos 2018, 304, 57–73. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.-L.; Zhu, R.-X.; Wang, F.; Ge, W.-C. Sorokin AA Late Jurassic to early Early Cretaceous tectonic nature on the NE Asian continental margin: Constraints from Mesozoic accretionary complexes. Earth-Sci. Rev. 2020, 200, 103042. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.; Li, Y.; Sun, C. Composition variations of Mesozoic and Cenozoic basalts in northern Great Xing’an Range: Implications for thermal evulution of mantle. Earth Sci. 2019, 44, 1096–1112. [Google Scholar]
- Tang, J.; Xu, W.; Wang, F.; Ge, W. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Sci. China-Earth Sci. 2018, 61, 527–559. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.; Wang, F.; Zhao, S.; Wang, W. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of EarlyMesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res. 2016, 31, 218–240. [Google Scholar] [CrossRef]
- Xu, W.; Pei, F.; Wang, F.; Meng, E.; Ji, W.; Yang, D.; Wang, W. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Wang, F.; Tang, J.; Sun, C.; Wang, Z. Early-Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: Constraints on the suture location between the Xing’an and Songnen-Zhangguangcai Range massifs. Int. Geol. Rev. 2018, 60, 2046–2062. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Feng, Z.; Wen, Q.; Neubauer, F.; Liang, C. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.; Sun, F.; Liu, J.; Wang, G.; Xu, B. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. J. Asian Earth Sci. 2015, 97, 229–250. [Google Scholar] [CrossRef]
- Miao, L.; Liu, D.; Zhang, F.; Fan, W.; Shi, Y.; Xie, H. Zircon SHRIMP U-Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chin. Sci. Bull. 2007, 52, 1112–1124. [Google Scholar] [CrossRef]
- Jian, P.; Liu, D.; Kröner, A.; Windley, B.F.; Shi, Y.; Zhang, F.; Shi, G.; Miao, L.; Zhang, W.; Zhang, Q.; et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos 2008, 101, 233–259. [Google Scholar] [CrossRef]
- Miao, L.; Fan, W.; Liu, D.; Zhang, F.; Shi, Y.; Guo, F. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. J. Asian Earth Sci. 2008, 32, 348–370. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Zorin, Y.A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt Trans-Baikal region (Russia) and Mongolia. Tectonophysics. 1999, 306, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Zhang, Y.; Liu, D. Introduction to the Naissance of SHRIMP and its Contribution to Isotope Geology. J. Chin. Mass Spectrom. Soc. 2002, 23, 58–62. [Google Scholar]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report Pb204. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Fan, C.; Hu, M.; Zhao, L.; Sun, D.; Zhan, X. Advances in in situ Microanalysis of U-Pb Zircon Geochronology Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Rock Min. Anal. 2012, 31, 29–46. [Google Scholar]
- Gehrels, G.; Johnsson, M.; Howell, D. Detrital zircon geochronology of the Adams Argillite and Nation River Formation, East-Central Alaska, U.S.A. J. Sediment. Res. 1999, 69, 135–144. [Google Scholar] [CrossRef]
- Kalsbeek, F.; Frei, D.; Affaton, P. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: An Amazonian connection? Sediment. Geol. 2008, 212, 86–95. [Google Scholar] [CrossRef]
- Nelson, J.; Gehrels, G. Detrital zircon geochronology and provenance of the southeastern Yukon-Tanana terrane. Can. J. Earth Sci. 2007, 44, 297–316. [Google Scholar] [CrossRef]
- Sircombe, K. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment. Geol. 1999, 124, 47–67. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Jahn, B.M.; Wilde, S.A. Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J. Asian Earth Sci. 2004, 23, 731–744. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element diserimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Winchester, J.A.; Floyd, P.A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett. 1976, 28, 459–469. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M. Igneous Petrogenesis: A Global Tectonic Approach; Chapman and Hall: London, UK, 1989; p. 466. [Google Scholar]
- Sun, S.; Mcdonough, W. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society of London Special Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- Sun, W.; Chi, X.-G.; Zhao, Z.; Pan, S.-Y.; Liu, J.-F.; Zhang, R.; Quan, J.-Y. Zircon geochronology constraints on the age and nature of ’Precambrian metamorphic rocks’ in the Xing’an block of Northeast China. Int. Geol. Rev. 2014, 56, 672–694. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.F. Origin of continental arc andesites: The composition of source rocks is the key. J. Asian Earth Sci. 2017, 145, 217–232. [Google Scholar] [CrossRef]
- Guffanti, M.; Clynne, M.A.; Muffler, L.J.P. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust. J. Geophys. Res. Solid Earth 1996, 101, 3003–3013. [Google Scholar] [CrossRef]
- Jung SHoernes, S.; Mezger, K. Synorogenic melting of mafic lower crust: Constraints from geochronology, petrology and Sr, Nd, Pb and, O isotope geochemistry of quartz diorites (Damara orogen, Namibia). Contrib. Mineral. Petrol. 2002, 143, 551–566. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef] [Green Version]
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Lee, T.C.; Wu, C.T. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochim. Cosmochim. Acta 2014, 143, 8–22. [Google Scholar] [CrossRef]
- Guo, F.; Nakamuru, E.; Fan, W.M.; Kobayoshi, K.; Li, C.W. Generation of Palaeocene adakitic andesites by magma mixing in Yanji area, NE China. J. Petrol. 2007, 48, 661–692. [Google Scholar] [CrossRef]
- Reubi, O.; Blundy, J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 2009, 461, 1269–1273. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.C.; Yang, H.; Xu, W.L.; Zhang, Y.L.; Bi, J.H.; Liu, X.W. Geochronology geochemistry and Hf isotopes of Jurassic intermediate-acidic intrusions in the Xing’an Block, northeastern China: Petrogenesis and implications for subduction of the Paleo- Pacific oceanic plate. J. Asian Earth Sci. 2016, 118, 11–31. [Google Scholar] [CrossRef]
- Kelemen, P.B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 1995, 120, 1–19. [Google Scholar]
- Yu, Q.; Ge, W.C.; Zhang, J.; Zhao, G.C.; Zhang, Y.L.; Yang, H. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Res. 2017, 43, 164–177. [Google Scholar] [CrossRef]
- Taylor, S.; Mclennan, S. The continental crust: Its composition and evolution. J. Geol. 1985, 94, 57–72. [Google Scholar]
- Weaver, B.; Tarney, J. Empirical-Approach to Estimating the Composition of the Continental-Crust. Nature 1984, 310, 575–577. [Google Scholar] [CrossRef]
- Rudnick, R.; Shan, G.; Ling, W.; Liu, Y.; McDonough, W. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 2004, 77, 609–637. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data:Evaluation, Presentation, Interpretation; Longman Scientific and Technical Limited: New York, NY, USA, 1993; pp. 1–343. [Google Scholar]
- Kelemen, P.B.; Whitehead, J.A.; Aharonov, E.; Jordahl, K.A. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J. Geophys. Res. Solid Earth 1995, 100, 475–496. [Google Scholar] [CrossRef]
- Spera, F.J.; Bohrson, W.A. Energy-Constrained Open-System Magmatic Processes I: General Model and Energy-Constrained Assimilation and Fractional Crystallization (EC-AFC) Formulation. J. Petrol. 2021, 20, 999–1018. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Chen, Y.; Li, K.; Li, J.F.; Yang, J.F.; Qian, X.Y. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the Late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt. J. Asian Earth Sci. 2017, 135, 370–389. [Google Scholar] [CrossRef]
- Defant, M.J. Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and sr–nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern dabie complex, central china. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Sun, W. Zircon Geochronology Constraints on the Age and Nature of “Precambrian Metamorphic rocks”and Lower Paleozoic in the Xing’an Block of Northeast China; Jilin University: Changchun, China, 2014. [Google Scholar]
- Ge, W.; Wu, F.; Zhou, C.; Zhang, J. Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chin. Sci. Bull. 2007, 52, 3416–3427. [Google Scholar] [CrossRef]
- Han, G.; Liu, Y.; Neubauer, F.; Genser, J.; Li, W.; Zhao, Y.; Liang, C. Origin of terranes in the eastern Central Asian Orogenic Belt, NE China: U-Pb ages of detrital zircons from Ordovician-Devonian sandstones, North Da Xing’an Mts. Tectonophysics 2011, 511, 109–124. [Google Scholar] [CrossRef]
- Yang, X. Geological Characteristics and Study of Detrital Zircon Geochronology of Epimetamorphic Rock Series in Zhalantun Area; Jilin University: Changchun, China, 2007; pp. 1–166. [Google Scholar]
- Cui, G.; Wang, J.; Zhang, J.; Cui, G. U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. World Geol. 2008, 27, 387–394. [Google Scholar]
- She, H.; Li, J.; Xiang, A.; Guan, J.; Yang, Y.; Zhang, D.; Tan, G.; Zhang, B. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol. Sin. 2012, 28, 571–594. [Google Scholar]
- Wu, F.; Sun, D.; Ge, W.; Zhang, Y.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Li, Z.; Lv, J.; Xu, J.; Shu, G. Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry. Minerals 2022, 12, 197. https://doi.org/10.3390/min12020197
Wu D, Li Z, Lv J, Xu J, Shu G. Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry. Minerals. 2022; 12(2):197. https://doi.org/10.3390/min12020197
Chicago/Turabian StyleWu, Datian, Zhumin Li, Junchao Lv, Jia Xu, and Guanglong Shu. 2022. "Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry" Minerals 12, no. 2: 197. https://doi.org/10.3390/min12020197
APA StyleWu, D., Li, Z., Lv, J., Xu, J., & Shu, G. (2022). Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry. Minerals, 12(2), 197. https://doi.org/10.3390/min12020197