Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications
Abstract
:1. Introduction
2. Geological Background and Field Evidence
3. Methods
4. Results
4.1. Petrographic and Morphological Description
4.2. X-ray Powder Diffraction and Unit-Cell Parameters
4.3. Visible Near-Infrared Spectroscopy
4.4. Fourier-Transform Infrared Spectroscopy
4.5. Mineral Chemistry
5. Discussion
5.1. Mineralogical and Chemical Characteristics of the Celadonite in Green Boles
5.2. Origin of Green Authigenic Celadonite under the Subaerial Condition
6. Conclusions
- Celadonite-bearing green boles were investigated in two study areas of the Late Cretaceous Deccan volcanic province; i.e., Salher and Pune. Green boles were formed by the subaerial alteration of basaltic rocks during the lulls of the eruption of basaltic flows.
- Combined mineralogical and chemical investigation, as well as VNIR and FTIR spectroscopy, identified the green authigenic mineral as celadonite.
- Celadonite from the Salher green bole contained slightly lower K2O (7.90 to ~9 wt %), Fe2O3 (total), and MgO, and higher Al2O3 contents than those from Pune. The mineral chemistry indicated Salher celadonite was closer to ferro-aluminoceladonite, whereas the Pune celadonite, with a narrow range of K2O, was closer to typical celadonite composition.
- The green bole of Salher formed as volcaniclastic deposits in local pools of water on the flow top of basalt under slightly reducing conditions, whereas the green bole in Pune formed by the in situ alteration of the flow top of basalt. The sources of Mg, Fe, and Al of celadonite were linked to the dissolution of pyroxene, plagioclase, and metastable interstitial glasses, respectively; whereas K and Si were contributed by the felsic input in Salher celadonite. K and Si contents of celadonite from Pune were possibly sourced by potassic hydrothermal fluid or groundwater flow.
- Therefore, this study is important to provide further insight on the formation of authigenic celadonite in a nonmarine environment.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
VNIR | Visible near-infrared spectroscopy |
FTIR | Fourier-transform infrared spectroscopy |
MIR | Middle-infrared region spectroscopy |
FEG–SEM | Field emission gun–scanning electron microscope |
XRD | X-ray diffraction analysis |
References
- Buckley, H.A.; Bevan, J.C.; Brown, K.M.; Johnson, L.R.; Farmer, V.C. Glauconite and celadonite: Two separate mineral species. Mineral. Mag. 1978, 42, 373–382. [Google Scholar] [CrossRef]
- Odom, I.E. Glauconite and celadonite minerals. Rev. Mineral. 1984, 13, 545–572. [Google Scholar]
- Odin, G.S.; Desprairies, A.; Fullagar, P.D.; Bellon, H.; Decarreau, A.; Frohlich, F.; Zelvelder, M. Chapter D nature and geological significance of celadonite. In Developments in Sedimentology; Odin, G.S., Ed.; Elsevier: Paris, France, 1988; Volume 45. [Google Scholar]
- Velde, B. Green Clay Minerals. Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 7, p. 407. [Google Scholar]
- Baker, L.L.; Rember, W.C.; Sprenke, K.F.; Strawn, D.G. Celadonite in continental flood basalts of the Columbia River Basalt Group. Am. Mineral. 2012, 97, 1284–1290. [Google Scholar] [CrossRef]
- Nieto, F.; Abad, I.; Bauluz, B.; Reolid, M. Textural and genetic relationships between glauconite and celadonite at the nanoscale: Two different structural-compositional fields. Eur. J. Mineral. 2021, 33, 503–517. [Google Scholar] [CrossRef]
- Wise, W.S.; Eugster, H.P. Celadonite: Synthesis, thermal stability and occurrence. Am. Mineral. 1964, 49, 1031–1083. [Google Scholar]
- Kohyama, N.; Shimoda, S.; Sudo, T. Celadonite in the Tuff of Oya, Tochigi Prefecture, Japan. Mineral. J. 1971, 6, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Andrews, A.J. Saponite and celadonite in layer 2 basalts, DSDP Leg 37. Contrib. Mineral. Petrol. 1980, 73, 323–340. [Google Scholar] [CrossRef]
- Staudigel, H.; Gillis, K.; Duncan, R. K/Ar and Rb/Sr ages of celadonites from the Troodos ophiolite, Cyprus. Geology 1986, 14, 72–75. [Google Scholar] [CrossRef]
- Giorgetti, G.; Marescotti, P.; Cabella, R.; Lucchetti, G. Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge: A TEM-AEM study. Clay Miner. 2001, 36, 75–91. [Google Scholar] [CrossRef]
- Boles, J.R.; Coombs, D.S. Mineral reactions in zeolitic Triassic tuff, Hokonui Hills, New Zealand. Geol. Soc. Am. Bull. 1975, 86, 163–173. [Google Scholar] [CrossRef]
- Li, G.; Peacor, D.R.; Coombs, D.S.; Kawachi, Y. Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe2+2 Fe3+3 Si8O20(OH)4, and ferroaluminoceladonite, K2Fe2+2 Al2Si8O20(OH)4. Am. Mineral. 1997, 82, 503–511. [Google Scholar] [CrossRef]
- Weiszburg, T.G.; Tóth, E.; Beran, A. Celadonite, the 10-Å green clay mineral of the manganese carbonate ore, Úrkút, Hungary. Acta Mineral.-Petrogr. 2004, 45, 65–80. [Google Scholar]
- Tóth, E.; Weiszburg, T.G.; Jeffries, T.; Williams, C.T.; Bartha, A.; Bertalan, É.; Cora, I. Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadonite–glauconite group examples). Chem. Geol. 2010, 269, 312–328. [Google Scholar] [CrossRef]
- Savko, K.A.; Piliugin, S.M.; Bazikov, N.S. Experimental data for high-temperature decomposition of natural celadonite from banded iron formation. Chin. J. Geochem. 2015, 34, 507–514. [Google Scholar] [CrossRef]
- Polgári, M.; Hein, J.R.; Németh, T.; Pál-Molnár, E.; Vigh, T. Celadonite and smectite formation in the Úrkút Mn-carbonate ore deposit (Hungary). Sediment. Geol. 2013, 294, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Polgári, M.P.; Gyollai, I. Geochemical constraints on the element enrichments of microbially mediated manganese and iron ores—An overview. Ore Geol. Rev. 2021, 136, 104203. [Google Scholar] [CrossRef]
- Loveland, P.J.; Bendelow, V.C. Celadonite-aluminous-glauconite: An example from the Lake District, UK. Mineral. Mag. 1984, 48, 113–117. [Google Scholar] [CrossRef]
- Polgári, M.; Hein, J.R.; Tóth, A.L.; Pál-Molnár, E.; Vigh, T.; Bíró, L.; Fintor, K. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years (Úrkút, Hungary). Geology 2012, 40, 903–906. [Google Scholar] [CrossRef]
- Wilson, M.J.; Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals; Geological Society: London, UK, 2013. [Google Scholar]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Craig, P.; Chevrier, V.; Sayyed, M.R.G.; Islam, R. Spectral analysis of Deccan intrabasaltic bole beds: Implications for the formation and alteration of phyllosilicates on Mars. Planet. Space Sci. 2017, 135, 55–63. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 408. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; Berger, G.; Mangold, N.; Michalski, J.R.; Catling, D.C.; Ruff, S.V.; Chassefière, E.; Niles, P.B.; Chevrier, V.; Poulet, F. Geochemical consequences of widespread clay mineral formation in Mars’ Ancient Crust. Space Sci. Rev. 2013, 174, 329–364. [Google Scholar] [CrossRef]
- Rampe, E.B.; Blake, D.F.; Bristow, T.F.; Ming, D.W.; Vaniman, D.T.; Morris, R.V.; Achilles, C.N.; Chipera, S.J.; Morrison, S.M.; Tu, V.M.; et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity. Geochemistry 2020, 80, 125605. [Google Scholar] [CrossRef]
- Tangari, A.C.; Marinangeli, L.; Scarciglia, F.; Pompilio, L.; Piluso, E. Volcanic holocrystalline bedrock and hydrothermal alteration: A terrestrial analogue for Mars. Minerals 2020, 10, 1082. [Google Scholar] [CrossRef]
- Losa-Adams, E.; Gil-Lozano, C.; Fairén, A.G.; Bishop, J.L.; Rampe, E.B.; Gago-Duport, L. Long-lasting habitable periods in Gale crater constrained by glauconitic clays. Nat. Astron. 2021, 5, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.; Ben-Dor, E. Origin of red clay layers interbedded with basalts of the Golan Heights. Geoderma 1987, 39, 293–306. [Google Scholar] [CrossRef]
- Singer, A.; Wieder, M.; Gvirtzman, G. Paleoclimate deduced from some early Jurassic basalt-derived paleosols from northern Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 111, 73–82. [Google Scholar] [CrossRef]
- Sheldon, N.D. Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon. Geol. Soc. Am. Bull. 2003, 115, 1377–1387. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Sayeed, M.R.G.; Islam, R.; Hundekari, S.M. Inter-basaltic clay (bole bed) horizons from Deccan traps of India: Implications for palaeo-weathering and palaeo-climate during Deccan volcanism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 242, 90–109. [Google Scholar] [CrossRef]
- Chenet, A.L.; Fluteau, F.; Courtillot, V.; Gérard, M.; Subbarao, K.V. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Mitchell, R.L.; Sheldon, N.D. Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift. Precambrian Res. 2009, 168, 271–283. [Google Scholar] [CrossRef]
- Jutras, P.; Hanley, J.J.; Quillan, R.S.; Leforte, M.J. Intra-basaltic soil formation, sedimentary reworking and eodiagenetic K-enrichment in the Middle to Upper Ordovician Dunn Point Formation of eastern Canada: A rare window into early Palaeozoic surface and near-surface conditions. Geol. Mag. 2012, 149, 798–818. [Google Scholar] [CrossRef]
- Srivastava, P.; Sangode, S.J.; Meshram, D.C.; Gudadhe, S.S.; Nagaraju, E.; Kumar, A.; Venkateshwarlu, M. Paleoweathering and depositional conditions in the inter-flow sediment units (bole beds) of Deccan Volcanic Province, India: A mineral magnetic approach. Geoderma 2012, 177, 90–109. [Google Scholar] [CrossRef]
- Srivastava, P.; Sangode, S.J.; Torrent, J. Mineral magnetic and diffuse reflectance spectroscopy characteristics of the Deccan volcanic bole beds: Implications to genesis and transformations of iron oxides. Geoderma 2015, 239, 317–330. [Google Scholar] [CrossRef]
- Spinola, D.N.; de Castro Portes, R.; Schaefer, C.E.G.R.; Solleiro-Rebolledo, E.; Pi-Puig, T.; Kühn, P. Eocene paleosols on King George Island, Maritime Antarctica: Macromorphology, micromorphology and mineralogy. Catena 2017, 152, 69–81. [Google Scholar] [CrossRef]
- Singh, P.; Le Pera, E.; Bhattacharya, S.; Pande, K.; Banerjee, S. Mineralogical and Textural Characteristics of Red Boles of Western Deccan Volcanic Province, India: Genetic and Paleoenvironmental Implications. In Mesozoic Stratigraphy of India; Banerjee, S., Sarkar, S., Eds.; Society of Earth Scientists Series; Springer: Cham, Switzerland, 2021; Volume 1, pp. 697–722. [Google Scholar] [CrossRef]
- Sayyed, M.R.G.; Hundekari, S.M. Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): Potential for palaeoenvironmental reconstruction. Quat. Int. 2006, 156, 189–199. [Google Scholar] [CrossRef]
- Greenberger, R.N.; Mustard, J.F.; Kumar, P.S.; Dyar, M.D.; Breves, E.A.; Sklute, E.C. Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars. J. Geophys. Res. Planets 2012, 117, E11. [Google Scholar] [CrossRef]
- Wadia, D.N. Geology of India, 4th ed.; Tata-McGraw Hill: New Delhi, India, 1975; p. 508. [Google Scholar]
- Sheth, H.C. From Deccan to Réunion: No trace of a mantle plume. Spec. Pap. Geol. Soc. Am. 2005, 388, 477–501. [Google Scholar]
- Vaidyanadhan, R.; Ramakrishan, M. Geology of India; Geological Society of India: Bangalore, India, 2008; Volume 2, p. 994. [Google Scholar]
- Pande, K. Age and duration of the Deccan Traps, India: A review of radiometric and paleomagnetic constraints. J. Earth Syst. Sci. 2002, 111, 115. [Google Scholar] [CrossRef]
- Kale, V.S.; Bodas, M.; Chatterjee, P.; Pande, K. Emplacement history and evolution of the Deccan Volcanic Province, India. Episodes 2020, 43, 278–299. [Google Scholar] [CrossRef] [Green Version]
- Kale, V.S.; Dole, G.; Shandilya, P.; Pande, K. Stratigraphy and correlations in Deccan Volcanic Province, India: Quo vadis? Geol. Soc. Am. Bull. 2019, 132, 588–607. [Google Scholar] [CrossRef]
- Duraiswami, R.A.; Sheth, H.; Gadpallu, P.; Youbi, N.; Chellai, E.H. A simple recipe for red bole formation in continental flood basalt provinces: Weathering of flow-top and flow-bottom breccias. Arab. J. Geosci. 2020, 13, 953. [Google Scholar] [CrossRef]
- Chenet, A.L.; Courtillot, V.; Fluteau, F.; Gérard, M.; Quidelleur, X.; Khadri, S.F.R.; Subbarao, K.V.; Thordarson, T. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 m thick composite section. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Beane, J.E.; Turner, C.A.; Hooper, P.R.; Subbarao, K.V.; Walsh, J.N. Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull. Volcanol. 1986, 48, 61–83. [Google Scholar] [CrossRef]
- Subbarao, K.V.; Hopper, P.R. Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. In Deccan Flood Basalts; Subbarao, K.V., Ed.; Geological Society of India Memoir: Bangalore, India, 1988; Volume 10. [Google Scholar]
- Subbarao, K.V.; Chandrasekharam, D.; Navaneethakrishnan, P.; Hooper, P.R. Stratigraphy and structure of parts of the Central Deccan basalt province: Eruptive models. In Volcanism; Subbarao, K.V., Ed.; Wiley Eastern Ltd.: New Delhi, India, 1994; pp. 321–332. [Google Scholar]
- Chipera, S.J.; Bish, D.L. Effects of humidity on clay and zeolite quantitative XRD analyses. In Proceedings of the 30th Annual Clay Minerals Society Meeting, San Diego, CA, USA, 25–29 July 1993; p. 53. [Google Scholar]
- Soukup, D.A.; Buck, B.J.; Harris, W. Preparing soils for mineralogical analyses. In Methods of Soil Analysis Part 5—Mineralogical Methods; Soil Science Society of America: Madison, WI, USA, 2008; Volume 5, pp. 13–31. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press (OUP): Oxford, UK, 1989. [Google Scholar]
- Bhattacharya, S.; Mitra, S.; Gupta, S.; Jain, N.; Chauhan, P.; Parthasarathy, G. Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality. J. Geophys. Res. Planets 2016, 121, 402–431. [Google Scholar] [CrossRef] [Green Version]
- Naveen Sarkar, S.; Kumar, T.N.; Ray, D.; Bhattacharya, S.; Shukla, A.D.; Moitra, H.; Dagar, A.; Chauhan, P.; Sen, K.; Das, S. Mineralogy and spectroscopy (VIS near infrared and micro-Raman) of chromite from Nidar ophiolite complex, SE Ladakh, India: Implications for future planetary exploration. Planet. Space Sci. 2019, 165, 1–9. [Google Scholar] [CrossRef]
- Hradil, D.; Píšková, A.; Hradilová, J.; Bezdička, P.; Lehrberger, G. and Gerzer, S. Mineralogy of Bohemian green earth pigment and its microanalytical evidence in historical paintings. Archaeometry 2011, 53, 563–586. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Sakharov, B.A.; Ivanovskaya, T.A.; Dorzhieva, O.V.; McCarty, D.K. Crystal-chemical regularities and identification criteria in Fe-bearing, K-dioctahedral 1M micas from X-ray diffraction and infrared spectroscopy data. Clays Clay Miner. 2017, 65, 234–251. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Środoń, J.; McCarty, D.K.; Dorzhieva, O.V. The illite–aluminoceladonite series: Distinguishing features and identification criteria from X-ray diffraction and infrared spectroscopy data. Clays Clay Miner. 2015, 63, 378–394. [Google Scholar] [CrossRef]
- Schmidt, S.T.; Süssenberger, A.; Wemmer, K. Posteruptive Thermal History of the Proterozoic Basaltic North Shore Volcanic Group of the Midcontinent Rift: Evidence from K/Ar Data of Celadonite. Lithosphere 2021, 2021, 8836546. [Google Scholar] [CrossRef]
- Reid, D.A.; Graham, R.C.; Edinger, S.B.; Bowen, L.H.; Ervin, J.O. Celadonite and its transformation to smectite in an Entisol at Red Rock Canyon, Kern County, California. Clays Clay Miner. 1988, 36, 425–431. [Google Scholar] [CrossRef]
- Drits, V.A.; Zviagina, B.B.; McCarty, D.K.; Salyn, A.L. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. Am. Mineral. 2010, 95, 348–361. [Google Scholar] [CrossRef]
- Sakharov, B.A.; Besson, G.; Drits, V.A.; Kameneva, M.Y.; Salyn, A.L.; Smoliar, B.B. X-ray study of the nature of stacking faults in the structure of glauconites. Clay Miner. 1990, 25, 419–435. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal-Field Theory; Cambridge University Press: Cambridge, UK, 1993; Volume 551. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.L.; Pieters, C.M.; Edwards, J.O. Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 1994, 42, 702–716. [Google Scholar] [CrossRef]
- Bishop, J.; Madejova, J.; Komadel, P.; Froschl, H. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Miner. 2002, 37, 607–616. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Bish, D.L.; Ruff, S.W.; Mustard, J.F. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Bishop, J.; Murad, E.; Dyar, M.D. The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Miner. 2002, 37, 617–628. [Google Scholar] [CrossRef]
- Frost, R.L.; Kloprogge, J.T.; Ding, Z. Near-infrared spectroscopic study of nontronites and ferruginous smectite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 1657–1668. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, D.J.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Fanost, A.; Gimat, A.; de Viguerie, L.; Martinetto, P.; Giot, A.C.; Clémancey, M.; Blondin, G.; Gaslain, F.; Glanville, H.; Walter, P.; et al. Revisiting the identification of commercial and historical green earth pigments. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 124035. [Google Scholar] [CrossRef]
- Bishop, J.L.; Perry, K.A.; Darby Dyar, M.; Bristow, T.F.; Blake, D.F.; Brown, A.J.; Peel, S.E. Coordinated spectral and XRD analyses of magnesite-nontronite-forsterite mixtures and implications for carbonates on Mars. J. Geophys. Res. Planets 2013, 118, 635–650. [Google Scholar] [CrossRef]
- Cariati, F.; Erre, L.; Micera, G.; Piu, P.; Gessa, C. Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays Clay Miner. 1981, 29, 157–159. [Google Scholar] [CrossRef]
- Bishop, J.L.; Dobrea, E.Z.N.; McKeown, N.K.; Parente, M.; Ehlmann, B.L.; Michalski, J.R.; Milliken, R.E.; Poulet, F.; Swayze, G.A.; Mustard, J.F.; et al. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 2008, 321, 830–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grauby, O.; Petit, S.; Decarreau, A.; Baronnet, A. The nontronite-saponite series: An experimental approach. Eur. J. Mineral. 1994, 99–112. [Google Scholar] [CrossRef]
- Gates, W. Infrared spectroscopy and the chemistry of dioctahedral smectites. In The Application of Vibrational Spectroscopy of Layer Silicates and Hydroxides; Kloprogge, J.T., Ed.; The Clay Minerals Society: Aurora, CO, USA, 2005; pp. 126–168. [Google Scholar] [CrossRef]
- Slonimskaya, M.V.; Besson, G.; Dainyak, L.G.; Tchoubar, C.; Drits, V.A. Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner. 1986, 21, 377–388. [Google Scholar] [CrossRef]
- Besson, G.; Drits, V.A. Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the OH stretching bands. Clays Clay Miner. 1997, 45, 158–169. [Google Scholar] [CrossRef]
- Moretto, L.M.; Orsega, E.F.; Mazzocchin, G.A. Spectroscopic methods for the analysis of celadonite and glauconite in Roman green wall paintings. J. Cult. Herit. 2011, 12, 384–391. [Google Scholar] [CrossRef]
- Farmer, V.C. The layer silicate. In The Infrared Spectra of Minerals. Monograph 4; Farmer, V.C., Ed.; Mineral Society: London, UK, 1974; pp. 331–364. [Google Scholar]
- Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing features and identification criteria for K-dioctahedral 1M micas (Illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data. Minerals 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W. Summary of recommendations of AIPEA nomenclature committee on clay minerals. Clay Miner. 1980, 15, 85–93. [Google Scholar] [CrossRef]
- Rieder, M.; Cavazzini, G.; D’yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval, P.V.; Mueller, G.; Neiva, A.M.; Radoslovich, E.W.; et al. Nomenclature of the micas. Clays Clay Miner. 1998, 46, 586–595. [Google Scholar] [CrossRef]
- Kądziołka-Gaweł, M.; Czaja, M.; Dulski, M.; Krzykawski, T.; Szubka, M. Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy. Mineral. Petrol. 2021, 115, 431–444. [Google Scholar] [CrossRef]
- Weaver, C.E.; Pollard, L.D. The Chemistry of Clay Minerals; Elsevier: Amsterdam, The Netherlands, 1973; pp. 5–53. [Google Scholar]
- Odin, G.S.; Matter, A. De glauconiarum origine. Sedimentology 1981, 28, 611–641. [Google Scholar] [CrossRef]
- López-Quirós, A.; Sánchez-Navas, A.; Nieto, F.; Escutia, C. New insights into the nature of glauconite. Am. Miner. 2020, 105, 674–686. [Google Scholar] [CrossRef]
- Chattoraj, S.L.; Banerjee, S.; Saraswati, P.K.; Bansal, U. Origin, depositional setting and stratigraphic implications of Palaeogene glauconite of Kutch. Spec. Publ. Geol. Soc. India 2016, 6, 75–88. [Google Scholar] [CrossRef]
- Choudhury, T.R.; Banerjee, S.; Khanolkar, S.; Saraswati, P.K.; Meena, S.S. Glauconite authigenesis during the onset of the Paleocene-Eocene Thermal Maximum: A case study from the Khuiala Formation in Jaisalmer Basin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 571, 110388. [Google Scholar] [CrossRef]
- Duplay, J.; Buatier, M. The problem of differentiation of glauconite and celadonite. Chem. Geol. 1990, 84, 264–266. [Google Scholar] [CrossRef]
- French, W.J.; Hassan, M.D.; Westcott, J.E. A celadonite-vermiculite series from the volcanic rocks of the Ochils, Stirlingshire. Mineral. Mag. 1977, 41, 481–485. [Google Scholar] [CrossRef]
- Polgári, M.; Hein, J.R.; Vigh, T.; Szabó-Drubina, M.; Fórizs, I.; Bíró, L.; Müller, A.; Tóth, A.L. Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol. Rev. 2012, 47, 87–109. [Google Scholar] [CrossRef]
- Schoene, B.; Samperton, K.M.; Eddy, M.P.; Keller, G.; Adatte, T.; Bowring, S.A.; Khadri, S.F.; Gertsch, B. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 2015, 347, 182–184. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.; Szymanowski, D.; Eddy, M.P.; Samperton, K.M.; Schoene, B. A red bole zircon record of cryptic silicic volcanism in the Deccan Traps, India. Geology 2022. [Google Scholar] [CrossRef]
- Jolley, D.W.; Widdowson, M.; Self, S. Volcanogenic nutrient fluxes and plant ecosystems in large igneous provinces: An example from the Columbia River Basalt Group. J. Geol. Soc. Lond. 2008, 165, 955–966. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals; Longman Group Ltd.: London, UK, 1966; p. 528. [Google Scholar]
- Gottardi, G. The genesis of zeolites. Eur. J. Mineral. 1989, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Iijima, A. Occurrence of natural zeolites. J. Clay Sci. Soc. Jpn. 1986, 26, 90–103. [Google Scholar] [CrossRef]
- Hall, A. Zeolitization of volcaniclastic sediments; the role of temperature and pH. J. Sediment. Res. 1998, 68, 739–745. [Google Scholar] [CrossRef]
- García-Romero, E.; Vegas, J.; Baldonedo, J.L.; Marfil, R. Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands, Spain). Sediment. Geol. 2005, 174, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Sedov, S.; Stoops, G.; Shoba, S. Regoliths and soils on volcanic ash. In Interpretation of Micromorphological Features of Soils and Regoliths; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 275–303. [Google Scholar] [CrossRef]
Sample | Unit-Cell Parameters | |||||
---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | β ° | csinβ (Å) | ccosβ/a | |
SL | 5.2275 | 9.0542 | 10.156 | 100.685 | 9.9801 | −0.3602 |
PN | 5.2259 | 9.0516 | 10.1318 | 100.45 | 9.9636 | −0.3516 |
Sr. No. | SiO2 | Al2O3 | Fe2O3 (Total) | MgO | MnO | TiO2 | CaO | K2O | Na2O | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pune | |||||||||||
1 | 55.67 | 5.35 | 19.01 | 5.52 | 0.01 | 0.02 | 0.26 | 9.48 | 0.09 | 95.41 | |
2 | 55.16 | 5.24 | 19.06 | 5.57 | 0.01 | 0.12 | 0.16 | 9.52 | 0.04 | 94.88 | |
3 | 55.99 | 5.44 | 19.14 | 5.40 | 0.01 | 0.00 | 0.11 | 9.68 | 0.06 | 95.84 | |
4 | 56.24 | 5.13 | 19.43 | 5.70 | 0.01 | 0.06 | 0.15 | 9.76 | 0.07 | 96.55 | |
5 | 51.93 | 6.98 | 17.21 | 5.70 | 0.03 | 0.38 | 0.2 | 9.15 | 0.11 | 91.71 | |
6 | 53.38 | 6.49 | 16.84 | 5.97 | 0.02 | 0.37 | 0.15 | 9.23 | 0.04 | 92.48 | |
7 | 51.64 | 5.79 | 16.11 | 5.56 | 0.00 | 0.35 | 0.14 | 9.25 | 0.04 | 88.87 | |
8 | 50.09 | 5.28 | 17.49 | 5.03 | 0.00 | 0.35 | 0.12 | 9.62 | 0.06 | 88.03 | |
9 | 56.16 | 5.73 | 19.00 | 5.80 | 0.06 | 0.04 | 0.22 | 9.37 | 0.11 | 96.5 | |
10 | 55.50 | 5.35 | 19.47 | 5.53 | 0.00 | 0.09 | 0.18 | 9.44 | 0.12 | 95.69 | |
11 | 56.18 | 5.32 | 19.53 | 5.69 | 0.03 | 0.10 | 0.17 | 9.47 | 0.08 | 96.55 | |
12 | 53.69 | 5.73 | 19.34 | 5.03 | 0.04 | 0.28 | 0.37 | 8.83 | 0.12 | 93.42 | |
13 | 55.04 | 5.91 | 19.01 | 5.73 | 0.06 | 0.04 | 0.31 | 9.04 | 0.13 | 95.26 | |
14 | 50.76 | 5.25 | 19.40 | 4.37 | 0.02 | 0.1 | 0.31 | 9.20 | 0.10 | 89.51 | |
15 | 55.96 | 5.78 | 19.40 | 5.83 | 0.04 | 0.07 | 0.24 | 9.28 | 0.07 | 96.66 | |
16 | 54.55 | 6.16 | 15.22 | 5.55 | 0.00 | 0.44 | 0.28 | 8.84 | 0.08 | 91.11 | |
17 | 54.41 | 5.57 | 16.59 | 5.31 | 0.00 | 0.37 | 0.12 | 9.05 | 0.04 | 91.46 | |
18 | 53.00 | 6.64 | 17.71 | 5.92 | 0.01 | 0.30 | 0.09 | 9.16 | 0.07 | 92.88 | |
Salher | |||||||||||
1 | 54.64 | 11.73 | 15.01 | 4.44 | 0.02 | 0.66 | 0.67 | 7.90 | 0.01 | 95.07 | |
2 | 57.79 | 10.08 | 14.87 | 5.07 | 0.05 | 0.40 | 0.35 | 8.41 | 0.02 | 97.04 | |
3 | 55.77 | 12.28 | 14.20 | 4.76 | 0.00 | 0.29 | 0.42 | 8.27 | 0.05 | 96.02 | |
4 | 56.32 | 10.49 | 15.26 | 5.03 | 0.09 | 0.34 | 0.45 | 8.25 | 0.05 | 96.26 | |
5 | 55.36 | 11.24 | 15.52 | 5.05 | 0.04 | 0.30 | 0.31 | 8.42 | 0.02 | 96.24 | |
6 | 57.18 | 11.78 | 14.60 | 4.89 | 0.00 | 0.33 | 0.41 | 8.57 | 0.01 | 97.77 | |
7 | 55.63 | 10.45 | 15.03 | 5.33 | 0.01 | 0.41 | 0.39 | 8.34 | 0.04 | 95.62 | |
8 | 53.95 | 10.93 | 15.47 | 4.44 | 0.00 | 0.39 | 0.17 | 8.28 | 0.08 | 93.70 | |
9 | 56.14 | 11.62 | 14.50 | 4.76 | 0.00 | 0.48 | 0.11 | 8.83 | 0.00 | 96.45 | |
10 | 54.17 | 9.25 | 17.15 | 4.86 | 0.00 | 0.33 | 0.58 | 8.25 | 0.06 | 94.65 | |
11 | 56.76 | 10.08 | 15.31 | 4.86 | 0.00 | 0.39 | 0.34 | 8.75 | 0.04 | 96.53 | |
12 | 55.41 | 9.95 | 15.17 | 4.73 | 0.02 | 0.38 | 0.16 | 8.85 | 0.07 | 94.75 | |
13 | 55.99 | 10.21 | 14.96 | 4.10 | 0.07 | 0.39 | 0.14 | 8.97 | 0.10 | 94.92 | |
14 | 55.79 | 9.93 | 15.58 | 4.87 | 0.01 | 0.43 | 0.43 | 8.65 | 0.01 | 95.70 | |
15 | 58.73 | 9.59 | 15.83 | 5.28 | 0.00 | 0.43 | 0.43 | 8.69 | 0.08 | 99.06 | |
16 | 55.01 | 9.62 | 16.05 | 5.03 | 0.02 | 0.47 | 0.39 | 8.97 | 0.00 | 95.57 |
Sr. No. | Tetrahedral Cation | Al (Total) | Octahedral Cation | Interlayer Cation | Total Interlayer Cation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Si | Al | Al | Mg | Ti | Fe3+ (Total) | K | Ca | Na | |||
Pune | |||||||||||
1 | 3.90 | 0.10 | 0.44 | 0.34 | 0.58 | 0.00 | 1.00 | 0.85 | 0.02 | 0.01 | 0.88 |
2 | 3.90 | 0.10 | 0.43 | 0.33 | 0.59 | 0.00 | 1.01 | 0.86 | 0.01 | 0.00 | 0.88 |
3 | 3.91 | 0.09 | 0.45 | 0.35 | 0.56 | 0.00 | 1.01 | 0.86 | 0.01 | 0.01 | 0.88 |
4 | 3.90 | 0.10 | 0.42 | 0.32 | 0.59 | 0.00 | 1.02 | 0.86 | 0.01 | 0.01 | 0.88 |
5 | 3.80 | 0.20 | 0.50 | 0.40 | 0.62 | 0.00 | 0.95 | 0.85 | 0.02 | 0.02 | 0.89 |
6 | 3.86 | 0.14 | 0.51 | 0.41 | 0.64 | 0.00 | 0.92 | 0.85 | 0.01 | 0.01 | 0.87 |
7 | 3.89 | 0.11 | 0.50 | 0.40 | 0.62 | 0.00 | 0.91 | 0.89 | 0.01 | 0.01 | 0.91 |
8 | 3.85 | 0.15 | 0.43 | 0.33 | 0.58 | 0.00 | 1.01 | 0.94 | 0.01 | 0.01 | 0.96 |
9 | 3.89 | 0.11 | 0.45 | 0.35 | 0.60 | 0.00 | 0.99 | 0.83 | 0.02 | 0.01 | 0.86 |
10 | 3.89 | 0.11 | 0.43 | 0.33 | 0.58 | 0.00 | 1.03 | 0.84 | 0.01 | 0.02 | 0.87 |
11 | 3.90 | 0.10 | 0.43 | 0.33 | 0.59 | 0.00 | 1.02 | 0.84 | 0.01 | 0.01 | 0.86 |
12 | 3.86 | 0.14 | 0.45 | 0.35 | 0.54 | 0.00 | 1.05 | 0.81 | 0.03 | 0.02 | 0.85 |
13 | 3.86 | 0.14 | 0.45 | 0.35 | 0.60 | 0.00 | 1.00 | 0.81 | 0.02 | 0.02 | 0.85 |
14 | 3.84 | 0.16 | 0.41 | 0.31 | 0.49 | 0.00 | 1.10 | 0.89 | 0.03 | 0.01 | 0.93 |
15 | 3.87 | 0.13 | 0.44 | 0.34 | 0.60 | 0.00 | 1.01 | 0.82 | 0.02 | 0.01 | 0.85 |
16 | 3.96 | 0.04 | 0.59 | 0.49 | 0.60 | 0.00 | 0.83 | 0.82 | 0.02 | 0.01 | 0.85 |
17 | 3.96 | 0.04 | 0.53 | 0.43 | 0.58 | 0.00 | 0.91 | 0.84 | 0.01 | 0.01 | 0.85 |
18 | 3.82 | 0.18 | 0.49 | 0.39 | 0.64 | 0.00 | 0.96 | 0.84 | 0.01 | 0.01 | 0.86 |
Salher | |||||||||||
1 | 3.77 | 0.23 | 0.96 | 0.73 | 0.46 | 0.00 | 0.77 | 0.70 | 0.05 | 0.00 | 0.75 |
2 | 3.89 | 0.11 | 0.80 | 0.69 | 0.51 | 0.00 | 0.75 | 0.72 | 0.03 | 0.00 | 0.75 |
3 | 3.78 | 0.22 | 0.99 | 0.77 | 0.48 | 0.00 | 0.72 | 0.72 | 0.03 | 0.01 | 0.75 |
4 | 3.83 | 0.17 | 0.84 | 0.67 | 0.51 | 0.00 | 0.78 | 0.72 | 0.03 | 0.01 | 0.76 |
5 | 3.77 | 0.23 | 0.91 | 0.68 | 0.51 | 0.00 | 0.79 | 0.73 | 0.02 | 0.00 | 0.76 |
6 | 3.82 | 0.18 | 0.92 | 0.74 | 0.49 | 0.00 | 0.73 | 0.73 | 0.03 | 0.00 | 0.76 |
7 | 3.81 | 0.19 | 0.85 | 0.66 | 0.54 | 0.00 | 0.77 | 0.73 | 0.03 | 0.01 | 0.76 |
8 | 3.78 | 0.22 | 0.91 | 0.69 | 0.46 | 0.00 | 0.81 | 0.74 | 0.01 | 0.01 | 0.76 |
9 | 3.81 | 0.19 | 0.93 | 0.74 | 0.48 | 0.00 | 0.74 | 0.76 | 0.01 | 0.00 | 0.77 |
10 | 3.79 | 0.21 | 0.76 | 0.55 | 0.51 | 0.00 | 0.90 | 0.74 | 0.04 | 0.01 | 0.79 |
11 | 3.86 | 0.14 | 0.81 | 0.67 | 0.49 | 0.00 | 0.78 | 0.76 | 0.02 | 0.01 | 0.79 |
12 | 3.85 | 0.15 | 0.81 | 0.66 | 0.49 | 0.00 | 0.79 | 0.78 | 0.01 | 0.01 | 0.81 |
13 | 3.87 | 0.13 | 0.83 | 0.70 | 0.42 | 0.00 | 0.78 | 0.79 | 0.01 | 0.01 | 0.81 |
14 | 3.84 | 0.16 | 0.80 | 0.64 | 0.50 | 0.00 | 0.80 | 0.76 | 0.03 | 0.00 | 0.79 |
15 | 3.89 | 0.11 | 0.74 | 0.63 | 0.52 | 0.00 | 0.79 | 0.73 | 0.03 | 0.00 | 0.77 |
16 | 3.81 | 0.19 | 0.79 | 0.60 | 0.52 | 0.00 | 0.83 | 0.79 | 0.03 | 0.01 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Banerjee, S.; Pande, K.; Bhattacharya, S.; Sarkar, S.; Le Pera, E. Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications. Minerals 2022, 12, 198. https://doi.org/10.3390/min12020198
Singh P, Banerjee S, Pande K, Bhattacharya S, Sarkar S, Le Pera E. Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications. Minerals. 2022; 12(2):198. https://doi.org/10.3390/min12020198
Chicago/Turabian StyleSingh, Pragya, Santanu Banerjee, Kanchan Pande, Satadru Bhattacharya, Subham Sarkar, and Emilia Le Pera. 2022. "Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications" Minerals 12, no. 2: 198. https://doi.org/10.3390/min12020198
APA StyleSingh, P., Banerjee, S., Pande, K., Bhattacharya, S., Sarkar, S., & Le Pera, E. (2022). Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications. Minerals, 12(2), 198. https://doi.org/10.3390/min12020198