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Abstract: Fluorine appears in coal and is released into the atmosphere upon combustion, resulting in
harmful impacts on the environment and life, which needs to be removed from coal before utilization.
Coal can be processed by flotation and gravity separation to reduce its fluorine content. In this study,
a lignite sample from a mine in Shaanxi Province, China, was characterized using the float–sink
test, sieving test, X-ray diffraction (XRD), and polarized light microscopy. Mineralogical analysis
indicated that the fluorine in coal is mainly contained in Muscovite and polylithionite, and partly in
pyrite. The washability and floatability analyses were employed to evaluate the extent of fluorine
removal from >0.5 and <0.5 mm size fractions of lignite, respectively. Compared to the raw sample
that contained 347.74 µg/g fluorine content, the proposed combination of gravity-flotation separation
process decreased the fluorine content to 90.14 µg/g, which meets the requisites of coal standards.

Keywords: fluorine; occurrence; removal; gravity-flotation separation; lignite

1. Introduction

Fluorine in coal is potentially hazardous to the environment and life [1–3]. During
the coal combustion process, fluorine gets converted into gases (such as HF, SiF4, and CF4)
and dust particles (such as SiF6 and CaF2), which enter into the atmospheric environment
having detrimental environmental and ecological consequences [4–6]. The gaseous fluoride
emissions such as CF4, which are reported to have greenhouse potential (GWP) around
6500 times as compared to CO2, can cause a significant greenhouse effect, while HF is
multiple times more toxic to animals and plant life than SO2 [7,8].

Interim Measures for Commercial Coal Quality Management (2014) stipulates that the
maximum fluorine content of coal for commercial purposes must be less than 200 µg/g to
ensure environmental protection. The fluorine content in Chinese coal ranges between 2
and 911 µg/g, and it occurs in various modes, as listed in Table 1. The majority of fluorine
in coal comes from inorganic minerals. Notably, the fluorine content of different regions in
China fluctuates greatly [9,10]. The fluorine content in Chinese coal is reported to follow
a logarithmic normal distribution, having a range of 17–3088 mg/kg of fluorine fraction.
In total, 73% of Chinese coal contains fluorine ranging from 50 to 300 mg/kg, averaging
202 mg/kg [11]. Power plants use nearly 1.76 billion tons of coal produced in China to
generate electricity [12,13]. Considering the average fluorine concentration of coal at a
low value of 100 µg/g, the fluorine emission from 1 t steam coal combustion into the
atmosphere amounts to 8.3 × 10−5 t [14]. This can have a detrimental effect on humans,
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animals, and plants which is why it is important to minimize the harmful effects of fluorine
generated from coal combustion.

Table 1. A summary of the fluorine content and occurrence modes in some Chinese coals.

Coal Sample Fluorine Content
(µg/g) Fluorine Occurrence Mode Ref.

A coal sample from Guizhou
Province, China

357 Fluorine mainly occurred in residual-associated form and
carbonate- and Fe/Mn-associated form. [15]

<200 µg/g Most of these coals are low fluorine (<200 µg/g); however,
the fluorine content of clay is as high as 1027.6 µg/g. [16]

715.20 (average) The inorganic occurrence is the primary mode of occurrence
of fluorine in coals from Guizhou province. [17]

Haerwusu Surface Mine, Inner
Mongolia, China 286 Boehmite and kaolinite are prime carriers of fluorine, but

sometimes associated both with organic and inorganic matter. [18,19]

Xiangning mining area, Shanxi
Province, China, China 2–911 Fluorine in coal mainly exists in an inorganic bound state in

forms such as fluorapatite and calcium fluoride. [20]

Nantong coalfield, Chongqing
Province, China 490 (average) Fluorine in coals from Nantong coalfield existed in the

organic and inorganic minerals simultaneously. [21]

China coals 67.3–3145.4 Fluorine in coal mainly occurs in an inorganic form. [22]

Various engineering measures, such as denitrification and desulfurization, can signifi-
cantly reduce the amount of fluorine released during coal combustion, thereby reducing
the associated environmental impacts [20]. The defluorination processes can be classified
into defluorination before combustion, fluorine fixation during combustion, and flue gas
defluorination after combustion [23,24]. The fluorine removal process depends on whether
fluorine has an inorganic form, which is predominantly abundant, or organic form [9,20,25].
Both fluorine fixation and flue gas defluorination (the latter of which is often employed
with coal-fired boilers in large power stations) can effectively remove both inorganic and
organic fluorine from coal. These two methods are widely useful in particular for the
removal of organic fluorine [4,14,20,26]. For coal with a higher content of inorganic fluorine,
the defluorination of pulverized coal before combustion using various physical or physic-
ochemical methods has a low operating cost compared to the other two processes [27].
As mentioned previously, the majority of fluorine in coal is in association with inorganic
minerals, indicating that most of the fluorine has a strong affinity for ash materials (i.e.,
gangue). Thus, the commonly used coal preparation methods can be useful for the removal
of fluorine from coal, such as gravity separation (physical method) and flotation (physic-
ochemical method). Zhou et al. [15] reported that a total of 76.05% of the total fluorine
was removed by froth flotation under an optimum condition. Lin et al. [20] demonstrated
that froth flotation can reduce the amount of fluorine significantly. Mohanty et al. [28]
found that a fine coal cleaning circuit using enhanced-gravity separation (EGS) and column
flotation in a rougher–cleaner arrangement provides a more efficient reduction in ash and
the trace element (i.e., Hg and Se) when compared to the results of single-stage cleaning
operations. It can be implied that flotation has a high removal rate of fluorine, due to its
strong interaction with ash, similar to Hg/Se.

In coal preparation plants, coal of size > 0.5 mm is commonly upgraded by gravity
separation devices, such as teeter bed separators [29,30], spirals [31,32], dense medium
cyclones [33,34], and jigs [35,36]. Flotation is an effective method to separate hydrophilic
gangue from hydrophobic coal (<0.5 mm) [37,38]. As discussed, previous studies mainly
focused on the removal of fluorine in fine coal (<0.5 mm) by using froth flotation. However,
there is a lack of literature reporting the removal of fluorine in coarse coal (>0.5 mm) by
using gravity separation. To bridge this gap, gravity separation as well as flotation have
been utilized to remove fluorine from >0.5 and <0.5 mm coal size fractions, respectively.
The first step was to study the modes of occurrence of fluorine in coal. Then, fluorine
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removal efficiency by gravity-separation and flotation was investigated. Finally, a flowsheet
to remove fluorine from <50 mm coal was proposed.

2. Materials and Methods
2.1. Materials

Coal samples smaller than 50 mm in size were collected from a mine in Shaanxi
Province, China. Sec-octyl alcohol (analytical reagent) and kerosene (commercially pure)
were used as the frother and collector, respectively. Zinc chloride, benzene (carbon tetra-
chloride), and cyclohexane were obtained from China National Pharmaceutical Group Co.,
Ltd. (Beijing, China) and were used for float–sink tests.

2.2. Sieve Analysis

The sieve analysis was carried out according to Chinese Standard GB/T 477-2008
(Method for size analysis of coal) using sieves with mesh sizes of 50, 25, 13, 6, 3, 1, and 0.5
mm. The coal sample used for the sieving was air-dried under prescribed conditions. After
the sieving test, the retained size fractions of 25–50, 13–25, 6–13, 3–6, 1–3, 0.5–1, and <0.5 mm
were weighed. Afterwards, the sub-samples were prepared according to Chinese Standard
GB/T 474-2008 (Method for preparation of coal sample). The obtained sub-samples were
further used for the determination of fluorine, ash, and total sulfur content.

2.3. Float–Sink Analysis

Representative coal samples were prepared for each size fraction. Float–sink analyses
were conducted according to Chinese Standard GB/T 478-2008 (Method for float and sink
analysis of coal). To perform a float–sink test on >0.5 mm coal, water was mixed with
pure zinc chloride (as a liquid sorting medium), to obtain a solution of a specific density.
Organic heavy media with different densities were prepared to perform the float–sink test
of <0.5 mm coal by mixing benzene (carbon tetrachloride) and cyclohexane.

The float–sink products were dried and weighed. After that, the sub-samples were
prepared according to Chinese Standard GB/T 474-2008 (Method for preparation of coal
sample) for further determination of fluorine, ash, and total sulfur content.

2.4. Batch Flotation Test

The procedure of the batch flotation test was carried out according to Chinese Standard
GB/T 4757-2013 (Methods for the batch flotation testing of fine coal) using a standard
laboratory RK/FD-II sub-aeration flotation cell (volume = 1.5 dm3). The pulp with a 60 g/L
solid concentration was conditioned for 3 min. The required amount of kerosene was added
and conditioned for two more minutes. After that, the required amount of sec-octyl alcohol
was added, and the slurry was conditioned for another 0.5 min. Then, the air valve was
opened at 4.17 dm3/ min air flow rate, and the froth was collected for 3 min. In each test, tap
water was added to maintain a constant pulp level and a froth layer of 1 cm. The agitation
speed was kept constant at 1900 rpm. A detailed description of the working process of
the mechanical flotation cell is reported in the literature [39]. The release analysis test
was performed to determine the floatability of the coking coal fines according to Chinese
Standard GB/T 36167-2018 (Methods for coal preparation laboratory timed-release flotation
analysis). Flotation release tests were performed based on published literature [40–42].
The flotation time was constant at 3 min for different flotation stages of release flotation.
The release analysis procedure used in this study is similar to “reverse release analysis”
introduced by Randolph [43], where the tailings are collected in the cleaning stage of
flotation.

2.5. XRD Test

The ground sample (<0.074 mm) obtained using an XPM-ϕ 120 × 3 three-headed
grinding machine (Nanchang Source of Mining and Metallurgy Equipment Co., Ltd.,
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Nanchang, China) was subjected to XRD analysis using a D8 Advance X-ray diffractometer
(Bruker, Germany).

2.6. Determination of Ash, Fluorine, Sulfur Contents, and Calorific Value

The proximate analysis for the determination of ash content was carried out according
to Chinese Standards (Table S1) GB/T 212-2008 (Proximate analysis of coal), using a
CTM100 muffle furnace (Tairui Company, Xuzhou, China). The ultimate analysis was
carried out according to GB/T 31391-2015 (Ultimate analysis of coal). The total sulfur
content was determined according to Chinese Standard GB/T 214-2007 (Determination of
total sulfur in coal) using the CTS7000 automatic sulfur detector (Tairui Company, Xuzhou,
China). The fluorine content in coal was analyzed by pyro hydrolysis/fluorine ion-selective
electrode method [26] according to Chinese Standard 4633-2014 (Determination of fluorine
in coal). The calorific value of coal was determined according to Chinese Standard GB/T
213-2008 (Determination of the calorific value of coal) using an auto-calorimetry instrument
(CT5000, Weike Tech. Company, Xuzhou, China).

3. Results and Discussion
3.1. Mineralogical Characterization

Interim Measures for Commercial Coal Quality Management (2014) states that the
maximum ash, total sulfur, and fluorine contents of coal should not exceed 30%, 1.5%, or
200 mg/g, respectively. Results of the proximate and ultimate analyses are given in Table 2.
According to Chinese Standard GB/T5751-2009 (Chinese classification of coals), the coal
under consideration is classified as lignite. The ash content, total sulfur content, fluorine
content, and net calorific values are 38.88%, 2.95%, 241 µg/g, and 16.07 MJ/kg, respectively.
Thus, the quality of this coal needs to be upgraded to meet those requirements.

Table 2. Proximate and ultimate analysis data.

Proximate Analysis (%) Ultimate Analysis (%) Fad
(µg/g)

Qnet.ar
(MJ/kg)Mad Ad Vdaf FCd Cdaf Hdaf Odaf Ndaf St.d

4.68 38.88 44.46 33.95 74.39 4.67 13.80 1.08 2.95 241 16.07

Note: in Table 2, Mad and Fad are the moisture content (M) and the fluorine content (F) in the coal on an air-dried
(ad) basis; Ad and FCd are the ash content (A) and the fixed carbon content (FC) on a dry (d) basis; Vdaf, Cdaf,
Hdaf, Odaf, Ndaf, and St.d are the carbon, hydrogen, oxygen, nitrogen and total sulfur, on dry ash-free (daf) basis,
respectively; Qnet.ar is the net calorific value (at constant pressure) as received.

The ash content, total sulfur content, and fluorine content of different size fractions
are shown in Figure 1. The amount of product in each size group and their ash, sulfur, and
fluorine contents and distribution are given in the Table S2. It is evident that there is a direct
relation between ash and fluorine contents. As the most active non-metallic element known,
fluorine has a strong oxidation affinity and can combine with almost any other to form
fluoride [25]. According to previous studies [3,10,19,25,26], fluorine in coal mainly exists in
the form of inorganic substances. Fluorapatite minerals may be the main occurrence mode
of fluorine in coal. In addition, other inorganic substances include fluorspar, tourmaline,
mica, and clay minerals.

3.2. Fluorine and Sulfur Distributions in Different Density Fractions of >0.5 mm Coal

As shown in Figure 2, the fluorine content increases significantly when the density
fraction increases. This phenomenon indicates that the occurrence of fluorine in this
coal sample is mainly inorganic. Figure 3 shows the relationships between ash content,
total sulfur content, and fluorine content for different size fractions. For a given size
fraction when the density fraction is increased the ash content increased significantly. As
observed from Figure 3, the higher the ash content of the coal, the higher the content of
fluorine and sulfur. According to the literature [20], fluorine in coal might be adsorbed
in fluorine-containing minerals (fluorapatite) and clay minerals such as muscovite and
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kaolinite in ionic state. The XRD result of the high-density fraction (>2.0 g/cm3) is shown
in Figure 4. As shown in Figure 4, the main minerals are muscovite-3T, polylithionite,
nimite-1MIIb, clinochlore-1MIIb, pyrite, and quartz. Fluorine mainly exists as muscovite-3T
and polylithionite, while pyrite is the main form of inorganic sulfur.

Figure 1. The ash content, total sulfur content, and fluorine content of different size fractions.

Figure 2. The fluorine content of different density fractions.

Figure 3. The relationships between ash content, total sulfur content, and fluorine content for different
size fractions. (a) ash content vs. fluorine content; (b) ash content vs. total sulfur content. The high
ash content corresponds to the fraction with a high density.



Minerals 2022, 12, 280 6 of 11

Figure 4. XRD result of the high-density fraction (>1.8 g/cm3).

The washability curves for >0.5 mm coal are given in Figure 5. The degrees of washa-
bility of clean coal as a function of ash content and the corresponding values of fluorine,
sulfur, and net calorific value in clean coal are presented in Table 3. The cumulative yield of
clean coal is 72.97% when the ash content is 15%.

Figure 5. Classical washability curves for >0.5 mm coal. λ—primary curve; β—cumulative float curve;
θ—cumulative sink curve; δ—density distribution curve; ε—near-gravity material with ±0.1 g/cm3

specific gravity (s. g.).
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Table 3. The degrees of washability of clean coal at the different given ash contents 1.

Ad
(%)

Yield
(%)

Fad
(µg/g)

St.d
(%)

Qnet.ar
(MJ/kg)

δs
(g/cm3)

ε±0.1
(%) Degree of Washability

10.00 61.44 64.65 1.33 23.05 1.52 18.55 Moderate separation
11.00 64.70 69.00 1.37 22.73 1.59 11.04

12.00 67.27 72.58 1.40 22.42 1.66 7.66

Simple separation13.00 69.56 77.68 1.44 22.10 1.75 5.69
14.00 71.18 83.39 1.46 21.80 1.80 5.31
15.00 72.97 89.23 1.49 21.53 1.86 4.94

1 δs is the separation gravity, and ε±0.1 is the near-gravity material with ±0.1 g/cm3 that corresponds to δs. The
degree of washability was determined according to Chinese Standard GB/T16417-2011 (Method for evaluating
the washability of coal).

3.3. Fluorine and Sulfur Distributions in Release Flotation of <0.5 mm Coal

The ash, fluorine, and sulfur contents, after release flotation tests, are shown in Figure 6.
For release analysis, the kerosene dosage and the sec-Octyl alcohol dosage were 9000 and
4500 g/t, respectively. The solid concentration was 100 g/L, the airflow rate was 0.25 m3/h,
and the impeller speed was 1900 rpm. As shown in Figure 6, the fluorine content has a
direct correlation with the ash content. This indicates that fluorine exists in <0.5 mm coal
in the form of inorganic matter. However, results of tailings indicate that the occurrence
form of sulfur is mainly organic. Classical floatability curves for <0.5 mm coal are given in
Figure 7. The degrees of floatability of flotation concentrates at different given ash contents
are summarized in Table 4. It can be seen that the degree of floatability is difficult-to-float
for all given percentages of the ash.

Figure 6. Ash contents, fluorine contents, sulfur contents, and net calorific values for different
products of release flotation tests.

Table 4. The degrees of floatability of flotation concentrates at different given ash contents 1.

Ad
(%)

Yield
(%)

Fad
(µg/g)

St.d
(%)

Qnet.ar
(MJ/kg)

Combustible
Recovery (%)

Degree of
Floatability

10.00 27.16 79.02 1.76 23.02 48.34

Difficult-to-float

11.00 28.37 84.54 1.76 22.72 49.93
12.00 29.72 91.41 1.75 22.44 51.72
13.00 30.93 97.06 1.74 22.15 53.21
14.00 32.14 103.34 1.73 21.85 54.66
15.00 33.36 108.82 1.73 21.56 56.07

1 combustible recovery = yield. (100 − Ad,con)/100 − Ad,<0.5mm; Ad,con is the given ash.
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Figure 7. Classical floatability curves of <0.5 mm coal.

The flotation performance of lignite is known to be poor since several hydrophilic
functional groups are present, such as hydroxyl, carboxyl, methoxyl, and carbonyl [44–46].
For the comparison, the float–sink test of <0.5 mm coal was performed. The upgrading
curves can be used for the analysis of the separation process [47–50]. The comparison of
float–sink and release flotation tests is given in Figure 8. The content of fluorine in clean
coal increases as yields increase. It is observed that the yield of clean coal using gravity
separation is higher than that of flotation separation. However, the fluorine content at
a given yield (around 35%) is significantly lower than that of gravity separation, which
makes the flotation technique more suited to remove fluorine from <0.5 mm size fractions.

Figure 8. Comparison of upgrading curves (Fad vs. yield) of <0.5 mm coal between float–sink and
release flotation tests.

3.4. A Proposed Beneficiation Circuit for <50 mm Coal

It was determined that >0.5 mm coal can be straightforwardly separated using dense
medium cyclones and jigs due to the degree of washability, however, for <0.5 mm the
efficiency of using dense medium separation diminishes [34,51]. On the other hand, the
efficiency of flotation for <0.5 mm is far greater than dense medium separation, making
it more suitable for fluorine removal. It can be concluded from a simple approximation
calculation (see Figure 9A) that fine coal (347.74 µg/g) can be directly mixed with coarse
clean coal to obtain the final product with a qualified quality (122.14 µg/g). To further
decrease the fluorine content of fine coal (see Figure 9B) flotation separation can be used
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before mixing it with coarse clean coal. As a result, the fluorine content in the final product
is reduced down to 90.14 µg/g.

Figure 9. The proposed beneficiation circuits for <50 mm coal. (A) No treatment of <0.5 mm coal;
(B) <0.5 mm coal treated by flotation separation.

4. Conclusions

In this study, gravity separation/sink–float and flotation methods were investigated
for the removal of fluorine from coal (0.001–0.5 mm in size). Based on the results of
proximate and ultimate analyses, the coal was classified as lignite. The results of XRD
analysis showed that the majority of fluorine exists as Muscovite-3T and Polylithionite
and inorganic sulfur occurs as pyrite primarily. Ash content and fluorine were found to be
directly related. A qualified coal product can be obtained by gravity separation treatment
of coarse coal (>0.5 mm). Considering the extent of fluorine removal, for coal <0.5 mm in
size, flotation is more efficient than dense medium separation. Furthermore, the mixture
of clean coarse coal (float–sink) and clean fine coal (flotation) contains significantly less
fluorine than that of the mixture of clean coarse coal (float–sink) and untreated fine coal.
The proposed circuit combining the float-sink–flotation process can significantly reduce
the fluorine content of coal, eventually reducing fluorine emissions to the atmosphere by
utilizing a fine coal fraction cleaned with flotation, covering the inefficient fluorine removal
from fine coal fraction by dense medium separation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12030280/s1, Table S1. List of Chinese Standards, Table S2.
The amount of product in each size group and their ash, sulfur and fluorine contents and distribution.
All information are mentioned in the reference [52] here in the text and in the Supplementary
Material file.
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