Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines
Abstract
:1. Introduction
1.1. Zambales Ophiolite Complex
1.2. Sta. Cruz Nickel Laterite Deposit
2. Materials and Methods
2.1. Petrographic Analysis
2.2. X-ray Diffraction Analysis
2.3. Whole Rock Analyses and Loss on Ignition
2.4. Mass Balance Calculations
- Relative mass gain—species plotting above the isocon
- Relative mass loss—species plotting below the isocon.
2.5. Ultramafic Index of Alteration
3. Results
3.1. Petrography
3.1.1. Petrography of Upper Saprolite Samples
3.1.2. Petrography of Lower Saprolite Samples
3.1.3. Petrography of the Least Altered Rock
3.2. Goethite Crystallinity and Crystallite Size Measurements
3.3. Bulk Major and Minor Geochemistry
3.3.1. Limonite Zone
3.3.2. Transition Zone, Saprolite Zone, and Garnierite Veins
3.4. Ultramafic Index of Alteration
3.5. Relative Mass Changes
4. Discussion
4.1. Laterite Zonation
4.1.1. Limonite Zone
4.1.2. Transition Zone
4.1.3. Saprolite Zone
Olivine Fe-Brucite Serpentine
Serpentine Magnetite
4.2. Goethite Ageing and Hematite Formation
Goethite
Goethite Hematite
Magnetite Maghemite/Hematite
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Crystallite size | FWHM |
---|---|---|
N-000 | 115 | 1.09 |
N-040 | 127 | 0.99 |
N-080 | 139 | 0.91 |
N-120 | 136 | 0.93 |
N-160 | 134 | 0.94 |
N-200 | 130 | 0.96 |
N-240 | 125 | 1.00 |
N-280 | 116 | 1.08 |
N-320 | 112 | 1.12 |
N-360 | 121 | 1.04 |
N-400 | 125 | 1.01 |
N-440 | 125 | 1.01 |
N-480 | 127 | 0.99 |
N-520 | 127 | 0.99 |
N-560 | 124 | 1.02 |
N-600 | 117 | 1.07 |
N-640 | 124 | 1.02 |
Sample | Horizon 1 | Depth (m) | SiO2 | Al2O3 | Fe2O3 | Cr2O3 | MnO | NiO | MgO | Co | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
N-000 | UL | 0 | −99 | −27 | 8 | 307 | 90 | −40 | −99 | 101 | 16 |
N-040 | UL | 0.4 | −98 | −13 | 8 | 62 | 47 | −46 | −100 | 53 | 39 |
N-080 | UL | 0.8 | −97 | 1 | 0 | 66 | 43 | −48 | −100 | 36 | 40 |
N-120 | UL | 1.2 | −97 | 5 | −2 | 71 | 63 | −47 | −100 | 33 | 38 |
N-160 | UL | 1.6 | −97 | −4 | 3 | 72 | 53 | −45 | −100 | 31 | 36 |
N-200 | UL | 2 | −97 | −9 | 6 | 74 | 53 | −45 | −100 | 33 | 35 |
N-240 | UL | 2.4 | −98 | −22 | 10 | 63 | 67 | −43 | −100 | 53 | 33 |
N-280 | LL | 2.8 | −99 | −56 | 17 | 119 | 88 | −34 | −99 | 40 | 27 |
N-320 | LL | 3.2 | −99 | −59 | 19 | 163 | 92 | −30 | −100 | 64 | 16 |
N-360 | LL | 3.6 | −99 | −65 | 19 | 188 | 86 | −34 | −99 | 39 | 16 |
N-400 | LL | 4 | −99 | −60 | 19 | 153 | 86 | −31 | −99 | 39 | 20 |
N-440 | LL | 4.4 | −99 | −56 | 19 | 74 | 102 | −29 | −99 | 58 | 25 |
N-480 | LL | 4.8 | −99 | −78 | 26 | 24 | 113 | −29 | −100 | −15 | 30 |
N-520 | LL | 5.2 | −99 | −70 | 19 | 162 | 113 | −37 | −99 | 48 | 21 |
N-560 | LL | 5.6 | −99 | −65 | 16 | 185 | 92 | −30 | −99 | 153 | 25 |
N-600 | LL | 6 | −99 | −64 | 16 | 192 | 78 | −27 | −99 | 143 | 27 |
N-640 | T | 6.4 | −91 | −35 | 8 | 361 | 93 | 64 | −94 | 206 | 16 |
N-690 | US | 6.9 | −33 | 32 | 5 | 1876 | 84 | 225 | −34 | 33 | 27 |
N-750 | LS | 7.5 | −25 | −89 | −5 | 60 | 42 | 350 | −30 | 35 | 31 |
N-900 | LS | 9 | −27 | −83 | 16 | 151 | 85 | 605 | −36 | 70 | 33 |
N-1050 | LS | 10.5 | −35 | 15 | 1 | 49 | 53 | 668 | −33 | 17 | 29 |
References
- Golightly, J. Nickeliferous laterite deposits. Econ. Geol. 1981, 75, 710–735. [Google Scholar]
- Brand, N.W.; Butt, C.R.M.; Elias, M. Nickel Laterites: Classification and Features. J. Aust. Geol. Geophys. 1998, 17, 81–88. [Google Scholar]
- Elias, M. Nickel laterite deposits—Geological overview, resources and exploitation. Cent. Ore Depos. Res. Univ. Tasmania 2002, 4, 205–220. [Google Scholar]
- Gleeson, S.A.; Butt, C.R.M.; Elias, M. Nickel Laterites: A Review. SEG Newsl. 2003, 54, 9–16. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Cluzel, D. Nickel laterite ore deposits: Weathered serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Golightly, J.P. Progress in Understanding the Evolution of Nickel Laterites. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2010; Volume 15, pp. 451–485. [Google Scholar]
- Trescases, J.-J. Weathering and geochemical behaviour of the elements of ultramafic rocks in New Caledonia. Bur. Miner. Resour. Geol. Geophys. Canberra 1973, 141, 149–161. [Google Scholar]
- Pecora, W.T. Nickel-silicate and associated nickel-cobalt-manganese-oxide deposits near Sao Jose do Tocantins, Goiaz, Brazil. US Geol. Surv. Bull. 1944, 935, 247–305. [Google Scholar]
- Faust, G. The hydrous nickel-magnesium silicates—The garnierite group. Am. Mineral. 1966, 51, 279. [Google Scholar]
- Brindley, G.W.; Hang, P.T.H.I. The Nature of Garnierites—I Structures, Chemical Compositions and Color Characteristics. Clays Clay Miner. 1973, 21, 27–40. [Google Scholar] [CrossRef]
- Galí, S.; Soler, J.M.; Proenza, J.A.; Lewis, J.F.; Cama, J.; Tauler, E. Ni enrichment and stability of Al-free garnierite solid-solutions: A thermodynamic approach. Clays Clay Miner. 2012, 60, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Villanova-de-Benavent, C.; Proenza, J.A.; Galí, S.; García-Casco, A.; Tauler, E.; Lewis, J.F.; Longo, F. Garnierites and garnierites: Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol. Rev. 2014, 58, 91–109. [Google Scholar] [CrossRef]
- Brindley, G.W. The Nature and Nomenclature of Hydrous Nickel-Containing Silicates. Clay Miner. 1974, 10, 271–277. [Google Scholar] [CrossRef]
- Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Mineral. 2009, 21, 467–483. [Google Scholar] [CrossRef]
- Villanova-De-Benavent, C.; Nieto, F.; Viti, C.; Proenza, J.A.; Galí, S.; Roqué-Rosell, J. Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): Mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM. Am. Mineral. 2016, 101, 1460–1473. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Villanova-de-Benavent, C.; Proenza, J.A. The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochim. Cosmochim. Acta 2017, 198, 48–69. [Google Scholar] [CrossRef] [Green Version]
- Putzolu, F.; Abad, I.; Balassone, G.; Boni, M.; Mondillo, N. Ni-bearing smectites in the Wingellina laterite deposit (Western Australia) at nanoscale: TEM-HRTEM evidences of the formation mechanisms. Appl. Clay Sci. 2020, 196, 105753. [Google Scholar] [CrossRef]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Brown, G.E. Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochim. Cosmochim. Acta 2015, 160, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kuhnel, R.A.; Roorda, H.J.; Steensma, J.J.; Kühnel, R.A.; Roorda, H.J.; Steensma, J.J.; Kuhnel, R.A.; Roorda, H.J.; Steensma, J.J.; Kühnel, R.A.; et al. The crystallinity of minerals-A new variable in pedogenetic processes: A study of goethite and associated silicates in laterites. Clays Clay Miner. 1975, 23, 349–354. [Google Scholar] [CrossRef]
- Trescases, J.-J. L’évolution Géochimique Supergène des Roches Ultrabasiques en Zone Tropicale et la Formation des Gisements Nickélifères de Nouvelle-Calédonie; Université Louis Pasteur: Strasbourg, France, 1975; Volume 78, ISBN 2709903628. [Google Scholar]
- Abrajano, T.A.; Pasteris, J.D.; Bacuta, G.C. Zambales ophiolite, Philippines I. Geology and petrology of the critical zone of the Acoje massif. Tectonophysics 1989, 168, 65–100. [Google Scholar] [CrossRef]
- Hawkins, J.W.; Evans, C. A Geology of the Zambales Range, Luzon, Philippine Islands—Ophiolite derived from an island arc-backarc basin pair. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2; Geophysical Monographs Series; Hayes, D.E., Ed.; American Geophysical Union: Washington, DC, USA, 1983; Volume 27, pp. 95–123. [Google Scholar]
- Rossman, D.L.; Castañada, G.C.; Bacuta, G.C. Geology of the Zambales ophiolite, Luzon, Philippines. Tectonophysics 1989, 168, 1–22. [Google Scholar] [CrossRef]
- Yumul, G.P.; Dimalanta, C.B. Geology of the Southern Zambales Ophiolite Complex, (Philippines): Juxtaposed terranes of diverse origin. J. Asian Earth Sci. 1997, 15, 413–421. [Google Scholar] [CrossRef]
- Bacuta, G.C. Geology of some Alpine-type chromite deposits in the Philippines.pdf. J. Geol. Soc. Philipp. 1979, 33, 44–80. [Google Scholar]
- Yumul, G.P.; Dimalanta, C.B.; Faustino, D.V.; De Jesus, J.V. Translation and docking of an arc terrane: Geological and geochemical evidence from the southern Zambales ophiolite complex, Philippines. Tectonophysics 1998, 293, 255–272. [Google Scholar] [CrossRef]
- Garrison, R.E.; Espiritu, E.; Horan, L.J.; Mack, L.E. Petrology, sedimentology, and diagenesis of hemipelagic limestone and tuffaceous turbidites in the Aksitero Formation, central Luzon, Philippines. US Geol. Surv. Prof. Pap. 1979, 1112, 15–16. [Google Scholar]
- Amato, F.L. Stratigraphic paleontology in the Philippines. Philipp. Geol. 1965, 19, 1–24. [Google Scholar]
- Fuller, M.; Haston, R.; Almasco, J. Paleomagnetism of the Zambales ophiolite, Luzon, northern Philippines. Tectonophysics 1989, 168, 171–203. [Google Scholar] [CrossRef]
- Encarnación, J.P.; Mukasa, S.B.; Obille, E.C. Zircon U-Pb geochronology of the Zambales and Angat Ophiolites, Luzon, Philippines: Evidence for an Eocene arc-back arc pair. J. Geophys. Res. 1993, 98, 19991. [Google Scholar] [CrossRef] [Green Version]
- Schweller, W.J.; Karig, D.E.; Bachman, S.B. Original Setting and Emplacement History of the Zambales Ophiolite, Luzon, Phillipines, from Stratigraphic Evidence. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2; Hayes, D.E., Ed.; American Geophysical Union: Washington, DC, USA, 1983; Volume 27, pp. 124–138. ISBN 978-1-118-66409-4. [Google Scholar]
- Taylor, B.; Hayes, D.E. The tectonic evolution of the South China Basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands; American Geophysical Union: Washington, DC, USA, 1980; Volume 23, pp. 89–104. ISBN 1118663799. [Google Scholar]
- de Santiago, A.P.B. Evaluation of Ni-Bearing Saprolite Resources Contained in Filipinas Mining Corporation MPSA No. 268-2008-III Located Barangay Guinabon, Sta. Cruz, Zambales, Philippines; Muntinlupa City, Philippines, 2015. [Google Scholar]
- Aquino, K.A.; Arcilla, C.A.; Schardt, C.S. Mineralogical Zonation of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines Obtained from Detailed X-ray Diffraction Coupled with Rietveld Refinement. J. Geol. Soc. Philipp. 2019, 73, 1–14. [Google Scholar]
- Aquino, K.A. Spatio-Temporal Evolution of Laterization: Insights from Detailed Mineralogical Characterization and Reactive Transport Modelling of Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines; University of the Philippines: Quezon City, Philippines, 2018. [Google Scholar]
- Nickel, E.H.; Nichols, M.C. Mineral Database; MDI Minerals Data: Livermore, CA, USA, 2003. [Google Scholar]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction; Prentice Hall: Englewood Cliffs, NJ, USA, 2001; p. 664. [Google Scholar]
- Grant, J.A. Isocon analysis: A brief review of the method and applications. Phys. Chem. Earth 2005, 30, 997–1004. [Google Scholar] [CrossRef]
- Grant, J.A. The isocon diagram-a simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Quesnel, B.; de Veslud, C.L.C.; Boulvais, P.; Gautier, P.; Cathelineau, M.; Drouillet, M. 3D modeling of the laterites on top of the Koniambo Massif, New Caledonia: Refinement of the per descensum lateritic model for nickel mineralization. Miner. Depos. 2017, 52, 961–978. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Ďurišová, J. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Parker, A. An Index of Weathering for Silicate Rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Ohta, T.; Arai, H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol. 2007, 240, 280–297. [Google Scholar] [CrossRef]
- Muñoz, M.; Ulrich, M.; Cathelineau, M.; Mathon, O. Weathering processes and crystal chemistry of Ni-bearing minerals in saprock horizons of New Caledonia ophiolite. J. Geochem. Explor. 2019, 198, 82–99. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Mosselmans, J.F.W.; Proenza, J.A.; Labrador, M.; Galí, S.; Atkinson, K.D.; Quinn, P.D. Sorption of Ni by “lithiophorite-asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem. Geol. 2010, 275, 9–18. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T. Spectral and chemical studies of iron and manganese oxyhydroxides in laterite developed on ultramafic rocks. Resour. Geol. 2021, 71, 377–391. [Google Scholar] [CrossRef]
- Tupaz, C.A.J.; Watanabe, Y.; Sanematsu, K.; Echigo, T.; Arcilla, C.; Ferrer, C. Ni-co mineralization in the intex laterite deposit, Mindoro, Philippines. Minerals 2020, 10, 579. [Google Scholar] [CrossRef]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of Chrysotile, Antigorite, and Lizardite by FT-Raman Spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Beard, J.S.; Frost, B.R.; Fryer, P.; McCaig, A.; Searle, R.; Ildefonse, B.; Zinin, P.; Sharma, S.K. Onset and progression of serpentinization and magnetite formation in Olivine-rich troctolite from IODP hole U1309D. J. Petrol. 2009, 50, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.R.; Evans, K.A.; Swapp, S.M.; Beard, J.S.; Mothersole, F.E. The process of serpentinization in dunite from New Caledonia. LITHOS 2013, 178, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Klein, F.; Bach, W.; Jöns, N.; McCollom, T.; Moskowitz, B.; Berquó, T. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2009, 73, 6868–6893. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S.; Frost, R.B.; Beard, J.S.; Frost, B.R.; Beard, J.S.; Frost, R.B.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef] [Green Version]
- Klein, F.; Le Roux, V. Quantifying the volume increase and chemical exchange during serpentinization. Geology 2020, 48, 552–556. [Google Scholar] [CrossRef]
- O’Hanley, D.S. Solution to the volume problem in serpentinization. Geology 1992, 20, 705–708. [Google Scholar] [CrossRef]
- Evans, B.W. The Serpentinite Multisystem Revisited: Chrysotile Is Metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Leong, J.A.M.; Howells, A.E.; Robinson, K.J.; Cox, A.; Debes, R.V.; Fecteau, K.; Prapaipong, P.; Shock, E.L. Theoretical Predictions Versus Environmental Observations on Serpentinization Fluids: Lessons From the Samail Ophiolite in Oman. J. Geophys. Res. Solid Earth 2021, 126, 1–28. [Google Scholar] [CrossRef]
- de Obeso, J.C.; Kelemen, P.B. Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20180433. [Google Scholar] [CrossRef] [Green Version]
- Templeton, A.S.; Ellison, E.T.; Glombitza, C.; Morono, Y.; Rempfert, K.R.; Hoehler, T.M.; Zeigler, S.D.; Kraus, E.A.; Spear, J.R.; Nothaft, D.B.; et al. Accessing the Subsurface Biosphere Within Rocks Undergoing Active Low-Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). J. Geophys. Res. Biogeosci. 2021, 126, 1–30. [Google Scholar] [CrossRef]
- Cardace, D.; Meyer-dombard, D.R.A.R.; Woycheese, K.M.; Arcilla, C.A.; Brazelton, W.; Carolina, E. Feasible metabolisms in high pH springs of the Philippines. Front. Microbiol. 2015, 6, 1–17. [Google Scholar] [CrossRef]
- Streit, E.; Kelemen, P.; Eiler, J. Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contrib. Mineral. Petrol. 2012, 164, 821–837. [Google Scholar] [CrossRef] [Green Version]
- Kelemen, P.B.; Matter, J.; Streit, E.E.; Rudge, J.F.; Curry, W.B.; Blusztajn, J. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu. Rev. Earth Planet. Sci. 2011, 39, 545–576. [Google Scholar] [CrossRef]
- Ternieten, L.; Früh-Green, G.L.; Bernasconi, S.M. Carbon Geochemistry of the Active Serpentinization Site at the Wadi Tayin Massif: Insights From the ICDP Oman Drilling Project: Phase II. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022712. [Google Scholar] [CrossRef]
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C.; Piantone, P. Ore-forming processes related to lateritic weathering. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; Volume 1, pp. 681–722. [Google Scholar]
- Leong, J.A.M.; Shock, E.L. Thermodynamic constraints on the geochemistry of low-temperature, continental, serpentinization-generated fluids. Am. J. Sci. 2020, 320, 185–235. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure: Properties, reactions, Occurences and Uses; Wiley-VCH: Hoboken, NJ, USA, 2003; ISBN 3527302743. [Google Scholar]
Depth (m) | Zone 1 | Munsell Color | Descriptive | Short Description |
---|---|---|---|---|
0 | UL | 7.5YR 5/8 | dark brown | mostly very fine soil (<1 mm) to coarse fragments (>10 mm) of Fe oxides |
0.8 | UL | 5YR 4/8 | reddish brown | mostly very fine to fine soil (<1 mm) to medium fragments (<5 mm) of Fe oxides; slightly darker red color probably due to presence of small amounts of hematite |
1.6 | UL | 5YR 4/8 | reddish brown | fine to medium (1–5 mm) grained fragments of Fe oxides; slightly darker red color probably due to presence of small amounts of hematite |
2.4 | UL | 5YR 4/8 | reddish brown | mostly very fine soil (<1 mm) to coarse fragments (>10 mm) of Fe oxides; slightly darker red color probably due to presence of small amounts of hematite |
3.2 | LL | 5YR 4/8 | reddish brown | mostly medium to coarse grained (5–10 mm) fragments of Fe oxides; slightly darker red color probably due to presence of small amounts of hematite |
4.0 | LL | 7.5YR 5/8 | dark brown | fine soil (~1 mm) to medium fragments (<5 mm) of Fe oxides |
4.8 | LL | 7.5YR 5/8 | dark brown | fine soil (~1 mm) to coarse fragments (>10 mm) of Fe oxides |
5.6 | LL | 7.5YR 5/8 | dark brown | mostly medium to coarse grained (5–10 mm) fragments of Fe oxides |
6.4 | T | 7.5YR 5/8 | dark brown | poorly sorted mixture of mostly very coarse grained (>30 mm) and medium grained (1–5 mm) Fe oxide-rich rock fragments |
Sample | Horizon 1 | Depth (m) | SiO2 | TiO2 | Al2O3 | Fe2O3 | Cr2O3 | MnO | NiO | Co | MgO | CaO | BaO | Na2O | K2O | P2O5 | SO3 | LOI | Total | UMIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N-000 | UL | 0.0 | 3.28 | 0.12 | 10.08 | 62.91 | 7.91 | 0.94 | 1.27 | 0.12 | 2.42 | <0.01 | <0.005 | <0.01 | <0.01 | 0.01 | 0.29 | 10.78 | 100.0 | 81.1 |
N-040 | UL | 0.4 | 5.75 | 0.21 | 12.03 | 62.34 | 3.14 | 0.73 | 1.14 | 0.09 | 1.02 | <0.01 | <0.005 | 0.02 | <0.01 | 0.02 | 0.39 | 12.96 | 99.7 | 80.8 |
N-080 | UL | 0.8 | 7.43 | 0.29 | 13.94 | 58.27 | 3.23 | 0.71 | 1.08 | 0.08 | 1.09 | <0.01 | <0.005 | 0.02 | 0.01 | 0.02 | 0.34 | 13.03 | 99.5 | 76.9 |
N-120 | UL | 1.2 | 8.53 | 0.31 | 14.42 | 57.04 | 3.33 | 0.81 | 1.12 | 0.08 | 1.07 | <0.01 | <0.005 | <0.01 | 0.02 | 0.02 | 0.30 | 12.84 | 99.8 | 74.7 |
N-160 | UL | 1.6 | 7.74 | 0.26 | 13.17 | 59.67 | 3.33 | 0.76 | 1.17 | 0.08 | 1.01 | <0.01 | <0.005 | 0.01 | 0.01 | 0.02 | 0.30 | 12.65 | 100.1 | 76.6 |
N-200 | UL | 2.0 | 7.38 | 0.24 | 12.51 | 61.43 | 3.38 | 0.76 | 1.15 | 0.08 | 1.04 | <0.01 | <0.005 | <0.01 | <0.01 | 0.01 | 0.30 | 12.57 | 100.8 | 77.3 |
N-240 | UL | 2.4 | 5.92 | 0.18 | 10.78 | 63.52 | 3.16 | 0.83 | 1.20 | 0.09 | 0.95 | <0.01 | <0.005 | 0.02 | <0.01 | 0.01 | 0.24 | 12.34 | 99.2 | 80.5 |
N-280 | LL | 2.8 | 3.27 | 0.08 | 6.27 | 69.67 | 4.38 | 0.96 | 1.43 | 0.09 | 1.51 | <0.01 | 0.02 | 0.02 | <0.01 | 0.01 | 0.18 | 11.86 | 99.7 | 84.4 |
N-320 | LL | 3.2 | 2.85 | 0.06 | 5.88 | 71.17 | 5.26 | 0.98 | 1.51 | 0.10 | 1.42 | <0.01 | 0.01 | 0.01 | <0.01 | 0.01 | 0.17 | 10.84 | 100.2 | 85.9 |
N-360 | LL | 3.6 | 2.84 | 0.06 | 5.02 | 71.05 | 5.76 | 0.95 | 1.44 | 0.09 | 1.75 | <0.01 | 0.01 | 0.02 | <0.01 | 0.01 | 0.15 | 10.81 | 99.9 | 84.5 |
N-400 | LL | 4.0 | 2.90 | 0.06 | 5.74 | 70.90 | 5.06 | 0.95 | 1.49 | 0.09 | 1.99 | <0.01 | <0.005 | 0.01 | <0.01 | 0.01 | 0.16 | 11.19 | 100.5 | 83.7 |
N-440 | LL | 4.4 | 3.09 | 0.07 | 6.20 | 71.19 | 3.49 | 1.03 | 1.54 | 0.10 | 1.80 | <0.01 | <0.005 | 0.02 | <0.01 | 0.01 | 0.17 | 11.66 | 100.3 | 84.1 |
N-480 | LL | 4.8 | 2.89 | 0.04 | 3.18 | 75.38 | 2.47 | 1.09 | 1.54 | 0.05 | 1.24 | <0.01 | 0.06 | 0.03 | <0.01 | 0.01 | 0.14 | 12.07 | 100.1 | 86.5 |
N-520 | LL | 5.2 | 2.76 | 0.06 | 4.33 | 71.31 | 5.24 | 1.09 | 1.36 | 0.09 | 1.86 | <0.01 | 0.03 | 0.02 | <0.01 | 0.01 | 0.12 | 11.25 | 99.4 | 84.2 |
N-560 | LL | 5.6 | 2.86 | 0.08 | 5.00 | 69.43 | 5.70 | 0.98 | 1.52 | 0.16 | 1.86 | <0.01 | <0.005 | 0.02 | <0.01 | 0.01 | 0.13 | 11.65 | 99.2 | 83.8 |
N-600 | LL | 6.0 | 3.05 | 0.08 | 5.15 | 69.53 | 5.85 | 0.91 | 1.58 | 0.15 | 1.79 | 0.01 | <0.005 | <0.01 | <0.01 | 0.01 | 0.14 | 11.82 | 99.9 | 83.6 |
N-640 | T | 6.4 | 16.48 | 0.13 | 6.18 | 43.23 | 6.16 | 0.66 | 2.37 | 0.13 | 12.57 | 0.65 | <0.005 | 0.04 | <0.01 | 0.01 | 0.06 | 10.77 | 99.3 | 36.1 |
N-650 | V | 6.5 | 38.04 | <0.01 | 0.29 | 10.47 | 0.63 | 0.12 | 3.72 | 0.02 | 32.87 | <0.01 | <0.005 | <0.01 | <0.01 | <0.001 | 0.02 | 13.98 | 100.1 | |
N-690 | US | 6.9 | 32.52 | <0.01 | 3.19 | 10.68 | 6.73 | 0.16 | 1.20 | 0.01 | 33.16 | <0.01 | 0.01 | 0.19 | <0.01 | <0.001 | <0.001 | 11.87 | 99.7 | 6.7 |
N-750 | LS | 7.5 | 38.74 | <0.01 | 0.28 | 10.16 | 0.57 | 0.13 | 1.75 | 0.02 | 36.85 | 0.02 | <0.005 | 0.01 | <0.01 | <0.001 | 0.01 | 12.20 | 100.7 | 4.1 |
N-900 | LS | 9.0 | 37.34 | <0.01 | 0.43 | 12.51 | 0.90 | 0.17 | 2.75 | 0.02 | 33.94 | 0.01 | <0.005 | <0.01 | <0.01 | <0.001 | 0.01 | 12.36 | 100.4 | 5.3 |
N-1000 | LS | 10.0 | 33.31 | 0.04 | 2.93 | 11.96 | 6.33 | 0.20 | 2.52 | 0.02 | 31.83 | <0.01 | <0.005 | <0.01 | <0.01 | <0.001 | 0.01 | 11.01 | 100.1 | 7.2 |
N-1050 | LS | 10.5 | 38.27 | <0.01 | 0.25 | 10.88 | 0.54 | 0.14 | 2.99 | 0.01 | 35.29 | 0.01 | <0.005 | <0.01 | <0.01 | <0.001 | 0.01 | 11.98 | 100.4 | 4.5 |
N-1100 | V | 11.0 | 38.55 | 0.01 | 0.64 | 13.08 | 0.65 | 0.14 | 1.15 | 0.01 | 34.60 | <0.01 | <0.005 | <0.01 | <0.01 | <0.001 | 0.01 | 11.82 | 100.7 | |
PH-S-15A | BR | 37.42 | 0.04 | 2.16 | 7.29 | 0.19 | 0.08 | 0.19 | 0.01 | 39.61 | 1.99 | 0.01 | <0.01 | 0.01 | 0.01 | 10.89 | 99.9 | 4.0 | ||
PH-S-15B | BR | 40.13 | 0.04 | 1.70 | 8.93 | 0.36 | 0.06 | 0.40 | 0.01 | 40.05 | 1.49 | <0.01 | <0.01 | 0.01 | 0.01 | 7.73 | 100.5 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, K.A.; Arcilla, C.A.; Schardt, C.; Tupaz, C.A.J. Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines. Minerals 2022, 12, 305. https://doi.org/10.3390/min12030305
Aquino KA, Arcilla CA, Schardt C, Tupaz CAJ. Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines. Minerals. 2022; 12(3):305. https://doi.org/10.3390/min12030305
Chicago/Turabian StyleAquino, Karmina A., Carlo A. Arcilla, Christian Schardt, and Carmela Alen J. Tupaz. 2022. "Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines" Minerals 12, no. 3: 305. https://doi.org/10.3390/min12030305
APA StyleAquino, K. A., Arcilla, C. A., Schardt, C., & Tupaz, C. A. J. (2022). Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines. Minerals, 12(3), 305. https://doi.org/10.3390/min12030305