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Abstract: Experimental studies on the desorption and adsorption of shale are conducted extensively
and used for in-depth research on shale gas components and isotopic components. However, there
is little systematic research aimed at a given shale stratum. This study takes the Chang-7 shale of
the YC23 Well in the Ordos Basin as the research object, and attempts to obtain a full understanding
of the distribution characteristics of different gas components, and to explore the migration ability
of different gas components. In this study, Chang-7 shale gas in Well YC23 can be sorted into three
categories: generated gas, retained gas and accumulated gas. Geochemical parameters including TOC,
S1 and S2 are used to evaluate the generated gas, and the fractionation of hydrocarbon components is
used to distinguish retained gas and migrated gas. The fractionation of non-hydrocarbon components
as well as carbon isotopes is also analyzed and discussed. This study confirms that shale gas in
different locations has unique gas components due to gas migration.

Keywords: shale system; shale gas; desorption experiment; gas migration

1. Introduction

The successful development of shale gas has led to a better understanding of the
adsorption of gas in shale by geologists. In some shale gas-producing areas, the high
content of adsorbed gas has ensured the stable production of shale gas; indeed, some wells
have been producing shale gas for more than 30 years. Thus, desorption experiments
and adsorption experiments on shale are used extensively for in-depth research on shale
gas components and isotopic components. Progress in the research on shale gas has been
achieved by using the gas composition and isotopic composition as follows: (1) to evaluate
the shale gas content—the methods for calculating lost gas are established, including
calculating lost gas by combining the test results and gas diffusion theory, the United States
Bureau of Mines (USBM) method and the polygonal curve fitting method [1–4]; (2) to
explore the origins of shale gas—the origins of shale gas include biogenesis, thermogenesis,
high-temperature pyrolysis, and mixed origins [4,5]; (3) to explore the migration ability of
different gas components—due to the differences in the adsorption of mineral particles and
kerogen and the dissolving of oil and water, hydrocarbon gases and non-hydrocarbon gases
in the shale system show wide variations in migration ability [6–10]; (4) to explore the state
of shale gas—the three gas states including the adsorbed state, free state and dissolved state
have been studied and the corresponding calculation models are established [6,7,11,12]; and
(5) to explore the evolutionary characteristics of shale gas in the geological periods—based
on the geological conditions such as temperature and pressure, a dynamic simulation is
carried out to assess the gas content and gas state [7,8,13].
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Although studies focused on the migration ability of gas components have been done
in recent years, there are few systematic studies aimed at a given shale stratum. In fact,
the lacustrine shale system has strong heterogeneity, and it is easy to differentiate the
shale gas components. A large number of studies have confirmed that sandy laminae
and thin sandstone are highly developed within shale systems, and there is extensive
organic heterogeneity (organic abundance, organic type, etc.) and reservoir heterogeneity
(organic pore, inorganic pore, pore size, porosity and permeability) [14–20]. Taking the
Chang-7 shale (Chang-7 Member of Triassic Yanchang Formation) of the YC23 Well in the
Ordos Basin as the research object, this study attempts to obtain a full understanding of the
distribution characteristics of different gas components, to explore the migration ability of
different gas components, and to explain the accumulation characteristics of shale gas.

In 2011, the first vertical shale gas well in the Ordos Basin, the Liuping 177 well, pene-
trated Chang-7 shale and produced shale gas with a daily production rate of 700–1500 m3/day.
Since then, dozens of horizontal wells have been drilled and evaluated. However, the shale
gas production was far less than expected and new drilling has essentially stopped. Most
of the geologists believe that the low thermal maturity of Chang-7 shale, which is only in
the oil generation window, is the primary reason for the poor shale gas resources. However,
the high organic abundance of Chang-7 shale is suitable for carrying out the gas desorption
and related experiments. Thus, the exploration and development of shale gas in the Ordos
Basin has promoted the scientific research on shale gas.

2. Geological Background

The Ordos Basin is the second largest basin in China and covers an area of 37 × 104 km2 [11].
The basin is located west of the North China Platform and is bounded by the Qilian–Qinling
collision zone in the southwest, the Liupanshan Basin in the west, the Alashan Platform in
the northwest, the Hetao Graben in the north, the Luliang Uplift in the east, and the Fenwei
Graben in the south (Figure 1) [20,21]. In the central-southern part of the Ordos Basin,
the Triassic Yanchang Formation, which contains 10 members (i.e., Chang-1, Chang-2, ····,
Chang-9, Chang-10), was deposited in a lacustrine environment. The organic-rich shale
is developed within the Chang-7 and Chang-9 members. The Chang-7 Member, with the
Chang-71, Chang-72, and Chang-73 sub-layers, contains 20-200 m (65-650 ft) thick shale. As
most of the shale deposits are within Chang-72 and Chang-73 sub-layers, the commonly
named Chang-7 shale represents Chang-72 shale and Chang-73 shale. The Chang-7 shale
has a shallow burial depth of 700–2400 m (2300–7800 ft), and high organic abundance, with
an average TOC of more than 3.8% [22,23].
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site. In addition, the main focus of this study is the differences in the content of the gas 
components, thus the lost gas has not been considered. 

Figure 1. Map showing the stratigraphic succession of Ordos Basin and the location of the study well.

3. Sampling and Experiments

Nineteen Chang-7 shale (Chang-73) samples were collected from the YC23 Well
(Figure 2). Total organic carbon content and gas desorption experiments were carried
out for 19 samples, and rock pyrolysis were carried out for 13 samples. For the desorbed
gas, gas chromatography was conducted to obtain the contents of different gas components.
In addition, carbon isotope testing was carried out for the desorbed gas collected from
14 samples. The workflow and purpose of the experiments are shown in Figure 2.

Conventional coring was used in the YC23 Well. It took 30–45 min for the cores to
be pulled to the surface. It should be noted that a certain amount of gas was lost during
the drilling and sampling processes. Firstly, the temperature–pressure balance of the
oil–gas–water system is damaged when the drilling bit penetrates the shale, leading to
loss of gas even though the borehole is filled with drilling fluid. Secondly, a decrease in
temperature and pressure when the core is pulled up to the surface could also result in
gas loss. Several methods for calculating lost gas have been proposed as discussed in
the introduction. However, it is very difficult to obtain the accurate quantity of lost gas.
Moreover, the lost volumes of different gas components’ carbon isotopes are still not fully
understood. In order to avoid gas losses, all the desorption experiments in this study were
carried out in the Coring well site. The sample must be cleaned and broken before the
desorption experiments; thus, it took 5–10 min for the cores to be placed in the desorption
canisters at the site. In addition, the main focus of this study is the differences in the content
of the gas components, thus the lost gas has not been considered.
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Figure 2. Chart showing the workflow and purpose of experiments.

The total organic carbon content was measured using Vario TOC. The experimental
procedures were as follows: (1) the solid rock was milled into powder of less than 100 mesh;
(2) hydrochloric acid solution (5% dilute) and powder samples were placed in the fume
hood for ventilation (three days) to remove carbonate; (3) the samples were placed in the
incubator (50 ◦C) to dry (three days); (4) the samples were packed in tin foil after being
weighed; and (5) the samples were placed and the instrument was started. The Vario TOC
automatically compares the sample with a standard sample based on the detected peak
area and determines the organic carbon content.

Rock-eval was used for rock pyrolysis. The experimental procedures were as follows:
(1) the rock samples were broken and each weighed about 100 mg for the experiment;
(2) the sample was heated at a temperature of 300 ◦C for 3 min, and then heated to 650 ◦C
at a heating rate of 25 ◦C/min. The measured parameters included free hydrocarbon (S1),
pyrolysis hydrocarbon (S2) and maximum pyrolysis temperature (Tmax).

The SH-C01 desorption system was used for the shale gas desorption experiment. The
experimental procedures were as follows: (1) the fresh shale samples were placed in the
sealed tank and fill it with helium; (2) the sealed tank was placed on the centrifugal table
to centrifuge the shale into powder; (3) the sealed tank was placed into the desorption
system and heated for 3 h (120 ◦C, as nearly all the adsorbed gases can be desorbed near
120 ◦C) [4]. The procedure for gas collection was as follows: (1) the measuring cylinder
(with a semi-closed end controlled by a valve and an open end) was put in a water pot and
filled with water; (2) the measuring cylinder was kept below the water surface; (3) the valve
of the upper end was closed; (4) the hose (which connects the SH-C01 desorption system)
was put near the lower open end of the measuring cylinder; (5) this made the desorbed
gas flowing into the measuring cylinder; and (6) the desorbed gas was collected from the
upper end through the valve.

The gas components were measured using a gas chromatograph (Agilent 6890N). The
experimental conditions were as follows: GDX-502 chromatographic column (3 mm × 4 m),
mesoporous molecular sieve (3 mm × 2.4 m), and capillary chromatogram column
(50 m × 0.53 mm). The temperature of the chromatographic column ranged from 30 ◦C to
160 ◦C (with a heating rate of 70 ◦C/min). The pressure of the chromatographic column
was 200 KP. The carrier gas was helium. The injection temperature of the chromatographic
column was 120 ◦C. The quantity of injected sample gas was 1 mL. The detection limit
ranged from 0.1 ppm to 10 ppm. The measuring accuracy was about ±5%.

The carbon isotopic composition was measured using gas chromatography combus-
tion isotope ratio mass spectrometry (GC-C-IRMS). In the GC-C-IRMS system, the gas
chromatography instrument is HP6890I (Agilent Technologie, Santa Clara, CA, USA), and
isotopic mass spectrometer instrument is Finigan Delta plus XP (Thermo Finigan, San Jose,
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CA, USA). During the testing, the separated compound was burned and converted into
carbon dioxide in a combustion furnace for carbon isotopic composition analysis. The
chromatographic column used was CP-CarboBOND (25 m × 0.53 mm × 10 µm). Chro-
matography heating was performed by keeping the initial temperature at 30 ◦C for 5 min,
increasing the temperature to 240 ◦C with a heating rate of 15 ◦C/min, and keeping the
temperature at 240 ◦C for 10 min. The flow rate of the carrier gas (helium gas) was kept at
6.2 mL/min. The accuracy of the measured carbon isotopes was about ±0.3‰.

4. Experimental Results

The desorption tests and TOC tests were conducted for 19 shale samples from the
study area. The TOC in the Chang-7 shale ranges from 0.68% to 8.52%, with an average
value of 4.06%, indicating that the organic matter abundance in Chang-7 shale is high.
Among the measured shale samples, 31.5% of the samples (6 samples) have TOC < 2%;
42.1% of the samples (8 samples) have 2% < TOC < 6% and 26.4% (5 samples) of the samples
have TOC > 6%. The S1 ranges from 0.88 to 8.72 mg/g, with an average value of 3.66 mg/g;
the S2 ranges from 0.66 to 24.48 mg/g, with an average value of 8.05 mg/g; the Tmax
ranges from 446 to 459 mg/g, with an average value of 454 mg/g. The volume of desorbed
gas ranges from 0.6 to 2.32 m3/t, with an average value of 1.26% (Table 1). Compared with
most marine shale systems, the shale gas content of Chang-7 shale is generally at a medium
or low level [3].

Table 1. Basic parameters of shale samples.

Samples Burial Depth
(m) S1 S2

TOC
(%)

Tmax
(◦C) HI Desorbed Gas

m3/t

S1 1405.13 - - 5.37 - 198.51 1.41
S2 1405.64 5.14 10.3 5.48 446 187.96 1.78
S3 1406.97 2.64 11.56 6.83 455 169.25 1.84
S4 1407.75 5.67 15.83 6.37 448 248.51 1.29
S5 1408.44 - - 8.15 - 219.02 2.32
S6 1410.56 8.72 24.48 8.01 454 305.62 2.09
S7 1411.27 6.78 10.23 8.52 455 202.23 1.98
S8 1415.22 - - 2.69 - 105.95 1.48
S9 1417.16 2.85 6.04 2.35 452 257.02 1.36

S10 1424.27 3.14 4.49 3.66 456 122.68 0.94
S11 1424.78 - - 3.48 - 180.17 0.71
S12 1425.13 1.13 8.06 4.03 458 200.00 1.05
S13 1429.46 2.48 1.8 1.89 447 95.24 0.66
S14 1432.34 - - 1.84 - 96.20 1.04
S15 1432.54 2.4 5.17 4.88 455 105.94 1.12
S16 1434.73 - - 1.32 - 13.64 0.85
S17 1436.85 3.36 4.79 0.68 459 704.41 0.71
S18 1437.56 2.33 1.84 0.72 457 255.56 0.60
S19 1440.23 0.88 0.06 0.96 455 6.25 0.78

S1: free hydrocarbons; S2: pyrolysis hydrocarbons; Tmax: maximum pyrolysis temperature; HI: hydrogen index.

The desorbed gas from the Chang-7 shale samples mainly contains four types of gas
components, including methane (C1), heavy gases (C2—ethane; C3—propane; iC4—iso-
butane; nC4—n-butane; iC5—iso-pentane; nC5—n-pentane), carbon dioxide (CO2) and
nitrogen (N2) (Figure 3). Among the measured shale samples, the volume percentage
of CH4 ranges from 22.89% to 85.95%, with an average value of 52.16%; the volume
percentage of C2H6 ranges from 1.95% to 34.37%, with an average value of 20.45%; the
volume percentage of propane ranges from 0.7% to 17.47%, with an average value of 8.71%;
the volume percentage of C3H8 (n-butane and iso-butane) ranges from 0.6% to 7.58%, with
an average value of 4.01%; the volume percentage of pentane (n-pentane and iso-pentane)
ranges from 0.0% to 2.53%, with an average value of 1.13%; the volume percentage of
carbon dioxide ranges from 0.0% to 16.66%, with an average value of 5.69%; and the
volume percentage of nitrogen ranges from 0.0% to 28.8%, with an average value of 7.85%.
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Among the four types of gas components, the CH4 content is relatively high, followed by
heavy gases, while the content of carbon dioxide and nitrogen are relatively low.
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Carbon isotopes tests were conducted for 14 shale samples in the study area (Figure 4).
The test results showed that the methane carbon isotopes (δ13C1) range from −52.8‰ to
−44.1‰, with an average value of −48.97‰; the ethane carbon isotopes (δ13C2) range
from 41.3‰ to −35.6‰, with an average value of −38.37‰; the propane carbon isotopes
(δ13C3) range from −38.6‰ to −31.8‰, with an average value of −33.32‰; the butane
carbon isotopes range from −34.8‰ to −24.8‰, with an average value of −29.56‰; the
dioxide carbon isotopes range from −20.1‰ to −16.2‰, with an average value of −17.94‰.
However, it should be noted that some samples do not contain carbon isotopes for C3H8,
iC4 and CO2.
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5. Origins of Shale Gas Sampling

Gaseous hydrocarbon components such as R, R = C1/(C2 + C3), and δ13C1 are im-
portant parameters for assessing the gas origins. The R value for gas of thermal origin is
normally less than 100, and the δ13C1 is normally larger than −55 ‰ [24]. In this study,
the R values range from 0.51 to 17.69, with an average value of 3.14; the δ13C1 are larger
than −55 ‰ (Figure 5). Thus, it can be inferred that the Chang-7 shale gas is of thermal
origin. The above viewpoint is also proved by the thermal maturity of the study area.
The thermal maturity of Chang-7 shale in the study area is generally in the oil generation
window (vitrinite reflectance ranges from 0.8% to 1.1%) [25,26]. Thus, the Chang-7 shale
gas collected from the YC23 Well is of thermal origin, though some Chang-7 shale gas in
the Ordos Basin is biogas [4,5].
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Normally, δ13C1 becomes heavier with increasing thermal maturity, and it is always
characterized by the distinctive fractionation phenomenon. Thus, δ13C1 is a reliable index
for judging the maturity of natural gas [13,27,28]. The heavy gases usually evolved from
kerogen or crude oil during thermal evolution, and it is always characterized by the minor
fractionation phenomenon. For example, the carbon isotopes of some heavy gases, including
δ13C2 and δ13C3 have a narrow fractionation range, and their values are close to the carbon
isotopes of the parent material. Thus, the carbon isotopes of heavy gases are an effective
index for inferring the genesis of the shale gas. The typical oil-type gas that is distributed
across the world has the following characteristics: −55‰ < δ13C1 < −30‰; δ13C2 < −28.8‰;
δ13C3 < −25.5‰; and δ13CCO2 < −10‰ [29,30]. The desorbed gas from Chang-7 shale has
the following characteristics: −52.8‰ < δ13C1 < −44.1‰; δ13C2 < −33.6‰; δ13C3 < −31.8‰;
and δ13CCO2 < −16.2‰. The features mentioned above proved that the Chang-7 shale gas
in this area is an oil-type gas (Figure 6).
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6. Discussion

The Chang-7 shale system has very strong lithologic heterogeneity, and it contains a
large number of sandy laminae and thin sandstone layers. The YC23 Well is a representative
well that reflects lithologic heterogeneity (Figure 7). In the depth range of 1400–1418 m
(4592–4651 ft), the lithology is dark shale with limited sandy laminae. In the depth range
of 1418–1445 m (4651–4739 ft), the lithology is a good combination of dark shale, sandy
laminae, and thin sandstone layers. Some former studies have proved that the existence of
lithologic heterogeneity could cause serious heterogeneity in both the organic geochem-
istry and the reservoir characteristics, which could affect the generation, migration and
distribution of shale gas [21]. The YC23 Well completely substantiates the above viewpoint.
In regard to the YC23 Well, the volumes of desorbed shale gas, S2, and TOC are extremely
high in the depth range of 1400-1418 m (4592–4651 ft) (the section of thick, dark shale), and
the volumes of desorbed shale gas, S2, and TOC are low in the depth range of 1418–1445 m
(4651–4739 ft) (the combined shale, sandy laminae, and thin sandstone layers) (Figure 7).

6.1. Classification of Generated Gas, Retained Gas and Migrated Gas

As shale with the ability to generate large amounts of gas usually has a larger TOC, S1
and S2, this study used TOC, S1 and S2 to assess the generated gas. As shale gas can migrate,
this may cause component fractionation; thus, this study used component fractionation to
distinguish the retained gas and migrated gas (Figure 8).

The test results from 19 shale samples from the YC23 Well show that the TOC is
closely related to the generation, migration and occurrence of shale hydrocarbon. S1 is the
liquid-free hydrocarbon in shale, which roughly represents the shale oil generated and
stored in the shale system. However, hydrocarbons can easily migrate along pores and
micro-fractures; thus, S1 often does not represent in situ-generated shale oil, but retained or
stored oil after migration. For shale samples with a TOC less than 6% in the YC23 Well, there
is no positive correlation between TOC and S1, indicating that shale oil in such samples
has undergone large-scale migration (Figure 9a). S2 roughly represents the hydrocarbon
generation ability of the low–medium maturity source rock, and the volume of desorbed
gas roughly represents the ability to generate shale gas. In the YC23 Well, the TOC shows a
good positive correlation with S2 and the volume of desorbed gas (Figure 9b,d). Thus, it
can be inferred that shale with higher TOC in the YC23 Well has a stronger gas generation
ability. For shale samples with TOC less than 6% in the YC23 Well, there is a weak positive
correlation between desorbed gas and TOC, and there is no correlation between desorbed
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gas and S1. The abovementioned phenomena indicate that shale gas in the shale samples
with TOC less than 6% has also experienced gas migration (Figure 9c,e).
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For shale samples with TOC less than 2%, however, the volume of desorbed gas is
low (between 0.6 and 1.03 m3/t, the average content is 0.77 m3/t), and the gas dryness
is high (between 0.49 and 0.89, the average value is 0.74); For shale samples with TOC
between 2% and 6%, the volume of desorbed gas is medium (between 0.71 and 1.78 m3/t,
the average content is 1.23 m3/t), and the gas dryness is low (between 0.33 and 0.66, the
average value is 0.48); For shale samples with TOC larger than 6%, the volume of desorbed
gas is high (between 1.28 and 2.31 m3/t, the average content is 1.90 m3/t), and the gas
dryness is high (between 0.50 and 0.82, the average value is 0.62) (Figure 9e,f). As shale
with low TOC usually has low hydrocarbon generation ability, the shale samples with
TOC less than 2% may generate a small amount of shale gas, resulting in the low volume
of desorbed gas. However, the low volume of desorbed gas does not indicate that the
shale gas is in situ-generated gas, because a part of the gas generated by shale with higher
TOC may migrate and be store within the samples with TOC less than 2%. In order to
assess the in situ-generated gas or migrated gas, the gas dryness can be used as a reference.
Generally, there is no correlation between the gas volume and the gas dryness, or there is
no significant difference in the gas dryness. However, samples with different TOC ranges
in the study area have significant differences in gas dryness. Shale samples with TOC
between 2% and 6% have the minimum value of gas dryness; shale samples with TOC less
than 2% have the maximum value of gas dryness; shale samples with TOC larger than 6%
have a medium value of gas dryness. Since the migration ability of CH4 is stronger than
that of heavy hydrocarbon gases, the fractionation is likely caused by gas migration.

Based on the geological characteristics of shale and shale gas, the shale gas desorbed
from different shale samples in the YC23 Well can be defined as three types, namely,
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generated gas, retained gas and accumulated gas (Figures 7 and 9) (Table 2). By comparing
the difference in the components of the generated gas, retained gas and accumulated gas,
the shale gas migration and occurrence characteristics can be fully analyzed.

Table 2. Shale gas classification based on gas generation, migration and distribution.

Types
Shale and Shale Gas Characteristics

Shale
Thickness Locations TOC Desorbed Gas

(Average Value)
Volume of

Generated Gas
Volume of

Migrated Gas
Generated Gas

or Migrated Gas

Generated gas 18 m Middle part of
thick shale >6% Large

(3.80 m3/t) Large No or small In situ-
generated gas

Retained gas -
Margin parts
of thick shale
or thin shale

2%~6% Middle
(2.45 m3/t) Large Large Part of in situ

generated gas

Accumulated
gas <5 m Thin shale <2% Small

(1.54 m3/t) Small No or small
In situ-generated

gas and
migrated gas

The generated gas has the following characteristics: (1) shale gas is located in the
middle part of thick high-quality shale (about 18 m or 59 ft thick, TOC larger than 6%);
(2) shale samples that host generated gas are able to generate large amounts of gas and the
volume of desorbed gas is large; (3) the generated gas has no migration or weak migration;
and (4) the shale gas is mainly in situ-generated gas.

The retained gas has the following characteristics: (1) shale gas is located in the thin
shale and marginal parts of thick shale (TOC is between 2% and 6%); (2) shale samples that
host retained gas have medium gas generation ability and the volume of desorbed gas is
medium; (3) part of the generated gas migrates out of shale; and (4) the shale gas is only
partly in situ generated gas.

The accumulated gas has the following characteristics: (1) shale gas is located in thin
shale (TOC less than 2%); (2) shale samples that host accumulated gas have a small gas
generation ability and the volume of desorbed gas is small; (3) the generated gas has no
migration or weak migration; and (4) the shale gas is a mixture of in situ-generated gas and
migrated gas.

6.2. Migration of Different Gas Components

In the burial depth range of 1400–1418 m (4592–4651 ft) of the YC23 Well, the hetero-
geneity of the shale system is very weak (only a small amount of sandy lamina is contained
therein), and the TOC values are extremely high. In the shale section of 1400–1418 m
(4592–4651 ft), the volume of desorbed gas is relatively high compared with other sections
with highly developed sandy lamina or sandstone (Figure 5). Thus, it can be inferred that
the volume of desorbed gas in thick shale is large and that in thin shale is small. The
abovementioned characteristics are likely to indicate that the shale gas in the thick shale has
difficultly migrating, while the shale gas in the thin shale migrates easily. In fact, whether
it is a marine sedimentary system or lacustrine sedimentary system, oil and gas migrate
easily due to the improved seepage conditions (the effective contact between thin shale
and sandstone can improve the seepage conditions); however, oil and gas have difficultly
migrating within thick shale due to poor seepage conditions [10,31,32].

The CH4 content of the accumulated gas in the YC23 Well ranges from 39.31% to
85.95% (average content of 64.73%). The CH4 content of the retained gas ranges from
22.89% to 60.36% (average content is 41.35%). The CH4 content of the generated gas ranges
from 43.30% to 69.59% (average content of 54.39%). The content of heavy gases in the
accumulated gas of the YC23 Well ranges from 9.28% to 41.29% (an average content of
21.58%). The content of heavy gases in the retained gas ranges from 30.66% to 54.67%
(average content is 44.38%). The content of heavy gases in the generated gas ranges from
15.07% to 42.45% (average content is 33.41%) (Figure 10a,b). It can be inferred that the
accumulated gas has the highest content of CH4 and the lowest content of heavy gases; the
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generated gas has the medium content of CH4 and the medium content of heavy gases; the
retained gas has the lowest content of CH4 and the highest content of heavy gases.
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Since the migration ability of CH4 is stronger than that of heavy hydrocarbon gases
under the same geological conditions, the difference in the content of CH4 and heavy gases
can be used to confirm the migration status [33,34]. For accumulated gas, the shale gas
desorbed from low organic shale (TOC < 2%). The most likely reason for the high content
of CH4 and low content of heavy gases is that some CH4 underwent gas migration and
was then stored with the in situ-generated gas. For the retained gas, the shale gas desorbed
from medium organic shale (2% < TOC < 6%). The most likely reason for the low content
of CH4 and high content of heavy gases is that some CH4 underwent gas migration and
then parts of the in situ-generated gas were stored. For the generated gas, the shale gas
desorbed from high organic shale (TOC > 6%). The content of CH4 and heavy gases are at
a medium level due to minor gas migration or no migration.

The CO2 content of the accumulated gas in the YC23 Well ranges from 0.00% to 2.30%
(average content of 0.75%). The CO2 content of the retained gas ranges from 2.82% to
16.66% (average content of 8.30%); and the CO2 content of the generated gas ranges from
0.62% to 12.53% (average content of 7.46%). The N2 content of the accumulated gas ranges
from 0.00% to 28.80% (average content of 12.95%); the N2 content of retained gas ranges
from 0.00% to 22.71% (average content of 5.97%); and the N2 content of the generated gas
ranges from 0.00% to 9.43% (average content of 4.75%) (Figure 10c,d). It can be inferred
that the CO2 content of accumulated gas is very low, and the CO2 content of generated gas
and retained gas is very high; the N2 content of accumulated gas is very high; and the N2
content of generated gas and retained gas is very low.

Both the mineral particles and the kerogen have stronger adsorption ability for CO2
compared with N2; therefore, N2 migrates easily and the migration of CO2 is very difficult
in the shale system [6,7,9,35,36]. Thus, the difference in the content of CO2 and N2 can be
used to confirm the shale gas migration. For the accumulated gas, the high content of N2 is
probably caused by gas migration as the N2 has a strong migration ability whereas CO2
has a weak migration ability. Similarly, a large amount of N2 underwent migration; thus,
the retained gas has a lower content of N2 and a higher content of CO2.
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For the accumulated gas in the YC23 Well, the content of N2 and CH4 ranges from
58.71% to 89.51% (average content of 77.67%); the content of heavy gases ranges from 9.28%
to 41.29% (average content of 21.58%); and the content of CO2 ranges from 0.00% to 2.30%
(average content of 0.75%). For the retained gas in the YC23 Well, the content of N2 and
CH4 ranges from 41.23% to 66.51% (average content of 47.32%); the content of heavy gases
ranges from 30.66% to 54.67% (average content of 44.38%); and the content of CO2 ranges
from 2.82% to 16.66% (an average content of 8.30%). For the generated gas in the YC23
Well, the content of N2 and CH4 ranges from 48.58% to 79.02% (average content of 59.13%);
the content of heavy gases ranges from 15.07% to 42.45% (average content of 33.41%); and
the content of CO2 ranges from 0.62% to 12.53% (average content of 7.46%). On the ternary
plots of the gas components, the accumulated gas samples are mainly distributed in the
upper left corner of the chart, the retained gas samples are mainly distributed in the lower
left corner of the chart, and the generated gas samples are mainly distributed in the middle
of the chart (Figure 11). Thus, it can be inferred that each different gas component has a
unique migration ability, and as a result, the accumulated gas, retained gas and generated
gas have different component contents.
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values, and the retained gas and the generated gas have relatively heavy δ13C1 values and
δ13C2 values. During the gas migration process, δ13C1 is one of the easiest components to
migrate compared with other carbon isotopes including δ13C2, δ13C3, δCO2. Thus, it is easy
to show a migration fractionation for δ13C1 during gas migration [37–39]. Therefore, the
δ13C1 values can be used as indicators to assess gas migration. For the accumulated gas,
there must be more gas with relatively light δ13C1, as δ13C1 migrates more easily compared
with other carbon isotopes. In addition, there is little difference in δ13C2 in the retained gas
and the generated gas, although the accumulated gas has a relatively light weight δ13C2
value (Figure 12b). Thus, it can be inferred that the difference in the δ13C2 value is probably
not caused by gas migration, but by the gas generation, because different shale samples
have difference gas generation abilities.
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The amount of gas components is controlled not only by gas migration, but also by
the gas generation ability within the shale system. Generally, gas components with major
differences in migration ability show strong gas fractionation, whereas gas components
with minor differences in migration ability show poor gas fractionation [13,15,27]. For
the accumulated gas, the retained gas and the generated gas in the YC23 Well, the gas
fractionation of CH4 and C2H6 was very significant (Figure 12c). However, the carbon
isotopes of CH4 and C2H6 showed a concentrated distribution, indicating poor gas frac-
tionation (Figure 12d). For the heavy gases including propane, and n-butane, there was
no gas fractionation (Figure 12e,f). This further proves that the difference in the values
of δ13C2 is not caused by gas migration, but is likely to be caused by the gas generation.
Similarly, the differences in the content of heavy gases is not caused by gas migration, but
by the gas generation.

Thus, it can be inferred that there are content differences among the gas compositions
stored in different locations due to gas migration. For the gas components, CH4 is easier to
migrate than heavy hydrocarbon gases; N2 is easier to migrate than CO2; δ13C1 is easier to
migrate than other carbon isotopes; and lighter δ13C1 is easier to migrate than heavier δ13C1.

7. Conclusions

The average volume of desorbed gas in Chang-7 shale is 1.25 m3/t. The Chang-7 shale
gas is an oil-type gas of thermogenic origin, and the parent material of Chang-7 shale gas is
mainly sapropel organic matter.

The Chang-7 shale gas in the YC23 Well can be sorted into three categories including
generated gas, retained gas and accumulated gas.



Minerals 2022, 12, 397 15 of 16

For the YC23 Well, shale gas in different locations has unique components due to
migration differences. The distribution of the gas components within the shale system is an
effective indicator of gas migration.
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