Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Crystal Chemical Characterization
3. Results
3.1. Mössbauer Spectroscopy (MS)
3.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.3. Optical Absorption Spectroscopy (OAS)
3.4. Chemical Data and Mineral Formula
- Sample LUI-AUS
- Sample LUI-USA
- Sample LUI-AUS: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH).
- Sample LUI-USA: Na(Mg2Al)Al6(Si6O18)(BO3)3(OH)3O.
3.5. Crystal Structure
4. Discussion
5. World Locations Where non Trigonal Fe-Mg-Tourmalines Occur
6. Conclusions
- R3m
- Cm
- R1 (or P1)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyawaki, R.; Hatert, F.; Pasero, M.; Mills, S.J. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC)–Newsletter 65. Eur. J. Mineral. 2022, 34, 143–148. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Nickel, E.H.; Grice, J.D. The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Can. Mineral. 1998, 36, 913–926. [Google Scholar]
- Bosi, F.; Naitza, S.; Skogby, H.; Secchi, F.; Conte, A.M.; Cuccuru, S.; Hålenius, U.; De La Rosa, N.; Kristiansson, P. Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints. Lithos 2018, 308–309, 395–411. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Plenum: New York, NY, USA, 1991; pp. 31–75. [Google Scholar]
- Prescher, C.; McCammon, C.; Dubrowinsky, L. MossA: A program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Crystallogr. 2012, 45, 329–331. [Google Scholar] [CrossRef]
- Gonzalez-Carreño, T.; Fernandez, M.; Sanz, J. Infrared and electron microprobe analysis in tourmalines. Phys. Chem. Miner. 1988, 15, 452–460. [Google Scholar] [CrossRef]
- Bosi, F.; Skogby, H.; Lazor, P.; Reznitskii, L. Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: A combined EMP, SREF, FTIR and Raman study. Phys. Chem. Miner. 2015, 42, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Mattson, S.M.; Rossman, G.R. Fe2+-Fe3+ interactions in tourmaline. Phys. Chem. Miner. 1987, 14, 163–171. [Google Scholar] [CrossRef]
- Smith, G. A reassessment of the role of iron in the 5000–30,000 cm−1 region of the electronic absorption spectra of tourmaline. Phys. Chem. Miner. 1978, 3, 343–373. [Google Scholar] [CrossRef]
- Taran, M.N.; Lebedev, A.S.; Platonov, A.N. Optical absorption spectroscopy of synthetic tourmalines. Phys. Chem. Miner. 1993, 20, 209–220. [Google Scholar] [CrossRef]
- Shtukenberg, A.; Rozhdestvenskaya, I.; Frank-Kamenetskaya, O.; Bronzova, J.; Euler, H.; Kirfel, A.; Bannova, I.; Zolotarev, A. Symmetry and crystal structure of biaxial elbaite-liddicoatite tourmaline from the Transbaikalia region, Russia. Am. Mineral. 2007, 92, 675–686. [Google Scholar] [CrossRef]
- Hughes, J.M.; Rakovan, J.; Ertl, A.; Rossman, G.R.; Baksheev, I.; Bernhardt, H.-J. Dissymmetrization in tourmaline: The atomic arrangement of sectorally zoned triclinic Ni-bearing dravite. Can. Mineral. 2011, 49, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Cámara, F.; Bosi, F.; Skogby, H.; Hålenius, U.; Celata, B.; Ciriotti, M.E. Schorl-1A from Langesundsfjord (Norway). J. Geosci. 2022. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Wright, S.E.; Foley, J.A.; Hughes, J.M. Optimization of site occupancies in minerals using quadratic programming. Am. Mineral. 2000, 85, 524–531. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Ungaretti, L.; Oberti, R. Site populations in minerals: Terminology and presentation of results of crystal-structure refinement. Can. Mineral. 1995, 33, 907–911. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kolitsch, U.; Husdal, T.A.; Brandstätter, F.; Ertl, A. New crystal-chemical data for members of the tourmaline group from Norway: Occurences of fluor-schorl and luinaite-(OH). Nor. Bergverksmus. Skr. 2011, 46, 17–24. [Google Scholar]
- Kolitsch, U.; Andresen, P.; Husdal, T.A.; Ertl, A.; Haugen, A.; Ellingsen, H.V.; Larsen, A.O. Tourmaline-group minerals from Norway, part II: Occurrences of luinaite-(OH) in Tvedalen, Larvik and Porsgrunn, and fluor-liddicoatite, fluor-elbaite and fluor-schorl at Ågskardet, Nordland. Nor. Bergverksmus. Skr. 2013, 50, 23–41. [Google Scholar]
Sample | δ | ΔEQ | Γ | % Area | Assignment |
---|---|---|---|---|---|
LUI-AUS | 1.10 | 2.56 | 0.23 | 22.4 | Fe2+ |
1.09 | 2.32 | 0.26 | 34.3 | Fe2+ | |
1.11 | 2.00 | 0.29 | 22.0 | Fe2+ | |
1.12 | 1.58 | 0.38 | 15.8 | Fe2+ | |
0.41 | 0.86 | 0.39 | 5.6 | Fe3+ | |
LUI-USA | 1.10 | 2.61 | 0.24 | 13.5 | Fe2+ |
1.10 | 2.38 | 0.28 | 30.7 | Fe2+ | |
1.11 | 1.98 | 0.41 | 28.1 | Fe2+ | |
1.14 | 1.61 | 0.43 | 14.5 | Fe2+ | |
0.42 | 0.86 | 0.44 | 13.2 | Fe3+ |
Constituent | LUI-AUS | LUI-USA |
---|---|---|
12 Spots | 12 Spots | |
SiO2 | 35.24 (67) | 36.01 (51) |
TiO2 | 0.09 (3) | 0.23 (12) |
B2O3(calc) a | 10.24 | 10.45 |
Al2O3 | 33.66 (65) | 33.69 (62) |
FeOtot | 12.51 (40) | 7.12 (71) |
MnO | 0.08 (4) | - |
MgO | 1.94 (39) | 5.62 (53) |
CaO | 0.18 (09) | 0.44 (13) |
Na2O | 1.78 (27) | 2.12 (16) |
K2O | 0.04 (1) | - |
F | 0.37 (10) | 0.06 (5) |
H2O(calc) a | 2.94 | 3.03 |
O=F | −0.16 | −0.03 |
Fe2O3 b | 0.77 | 1.04 |
FeO b | 11.82 | 6.18 |
Total | 99.00 | 98.85 |
- | LUI-AUS | LUI-USA |
---|---|---|
Crystal sizes (mm) | 0.07 × 0.10 × 0.18 | 0.09 × 0.12 × 0.19 |
a (Å) | 15.9513 (5) | 15.9084 (3) |
b | 15.9421 (5) | 15.9374 (3) |
c | 7.1921 (2) | 7.20839 (15) |
α (°) | 90.0354 (17) | 90.1073 (9) |
β | 89.9359 (16) | 89.9118 (9) |
γ | 119.8527 (14) | 119.9399 (7) |
V (Å3) | 1586.24 (9) | 1583.71 (6) |
Range for data collection, 2θ (°) | 5.08–72.07 | 5.11–74.14 |
Reciprocal space range hkl | −26 ≤ h ≤ 26 −20 ≤ k ≤ 26 −11 ≤ l ≤ 11 | −26 ≤ h ≤ 26 −26 ≤ k ≤ 26 −12 ≤ l ≤ 12 |
Set of measured reflections | 17,779 | 18,250 |
Unique reflections, Rint (%) | 8874, 3.51 | 9253, 2.83 |
Restraints, refined parameters | 6, 471 | 6, 471 |
Flack parameter | 0.05 (2) | 0.07 (3) |
wR2 (%) | 8.57 | 6.49 |
R1 (%) all data | 4.83 | 3.33 |
R1 (%) for I > 2σI | 3.83 | 2.94 |
GooF | 0.922 | 0.902 |
Diff. peaks (±e−/Å3) | 0.74; –0.75 | 0.47; –1.01 |
Site | Site Population | Mean Atomic Number | |
---|---|---|---|
- | Sample LUI-AUS | Observed | Calculated |
X | 0.59 Na + 0.01 K + 0.03 Ca + 0.37 ▯ | 7.82 (8) | 7.25 |
Ya | 0.34 Al + 0.43 Fe2+ + 0.11 Mg + 0.10 Fe3+ + 0.11 Mn + 0.12 Ti4+ | 19.83 (14) | 19.93 |
Yb | 0.54 Al + 0.42 Fe2+ + 0.04 Mg | 18.30 (13) | 18.40 |
Yc | 0.57 Al + 0.38 Fe2+ + 0.06 Mg | 17.72 (12) | 17.82 |
Za | 0.95 Al + 0.03 Fe2+ + 0.02 Mg | 13.22 (8) | 13.32 |
Zb | 0.88 Al + 0.09 Fe2+ + 0.03 Mg | 13.98 (8) | 14.08 |
Zc | 0.97 Al + 0.02 Fe2+ + 0.01 Mg | 13.16 (8) | 13.26 |
Zd | 0.78 Al + 0.14 Fe2+ + 0.08 Mg | 14.61 (9) | 14.71 |
Ze | 0.92 Al + 0.05 Fe2+ + 0.03 Mg | 13.57 (8) | 13.67 |
Zf | 0.77 Al + 0.13 Fe2+ + 0.10 Mg | 14.52 (9) | 14.62 |
Ta,b,c,d,e | 6 Si | 14 c | 14 |
Tf | 5.98 Si + 0.02 Al | 14 c | 14 |
B1,2,3 | 3 B | 5 c | 5 |
- | Sample LUI-USA | Observed | Calculated |
X | 0.68 Na + 0.08 Ca + 0.24 ▯ | 9.78 (6) | 9.09 |
Ya | 0.57 Al + 0.26 Fe2+ + 0.17 Mg | 16.24 (6) | 16.21 |
Yb | 0.43 Al + 0.15 Fe2+ + 0.27 Mg + 0.13 Fe3+ + 0.03 Ti4+ | 16.63 (7) | 16.60 |
Yc | 0.66 Al + 0.18 Fe2+ + 0.16 Mg | 15.18 (6) | 15.17 |
Za | 0.95 Al + 0.02 Fe2+ + 0.03 Mg | 13.21 (5) | 13.18 |
Zb | 0.76 Al + 0.07 Fe2+ + 0.17 Mg | 13.75 (5) | 13.73 |
Zc | 0.94 Al + 0.02 Fe2+ + 0.04 Mg | 13.29 (5) | 13.26 |
Zd | 0.72 Al + 0.06 Fe2+ + 0.22 Mg | 13.60 (5) | 13.57 |
Ze | 0.80 Al + 0.05 Fe2+ + 0.15 Mg | 13.55 (5) | 13.52 |
Zf | 0.77 Al + 0.05 Fe2+ + 0.18 Mg | 13.55 (5) | 13.52 |
Ta | 5.99 Si + 0.01 Al | 14 c | 14 |
Tb,c,d,e,f | 6 Si | 14 c | 14 |
B1,2,3 | 3 B | 5 c | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosi, F.; Skogby, H.; Hålenius, U.; Ciriotti, M.E.; Mills, S.J. Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited. Minerals 2022, 12, 430. https://doi.org/10.3390/min12040430
Bosi F, Skogby H, Hålenius U, Ciriotti ME, Mills SJ. Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited. Minerals. 2022; 12(4):430. https://doi.org/10.3390/min12040430
Chicago/Turabian StyleBosi, Ferdinando, Henrik Skogby, Ulf Hålenius, Marco E. Ciriotti, and Stuart J. Mills. 2022. "Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited" Minerals 12, no. 4: 430. https://doi.org/10.3390/min12040430
APA StyleBosi, F., Skogby, H., Hålenius, U., Ciriotti, M. E., & Mills, S. J. (2022). Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited. Minerals, 12(4), 430. https://doi.org/10.3390/min12040430