Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China
Abstract
:1. Introduction
2. Description of the Study Area
2.1. Geological Setting
2.2. Regional Mineral Characteristics
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Data Analysis and Quality
3.2.2. Data Processing
3.2.3. Weak Geochemical Anomalies Extraction
3.2.4. Selection of Element Combinations of the Typical Deposits
3.2.5. Similarity Coefficient Calculation
3.2.6. Mineral Resource Prediction
3.2.7. Estimation of the Degree of Denudation
3.2.8. Methods for Resource Prediction
4. Results
4.1. Weak Anomaly Extraction
4.2. Element Combinations Characteristics of the Typical Deposits
4.3. The Contour Map of the Similarity Coefficient
4.4. Metallogenic Prediction Area Delineation
4.4.1. The Criteria of the Metallogenic Prediction Area Delineation
4.4.2. The Result of the Metallogenic Prediction Area Delineation
4.5. Estimation Results of Denudation Degree
4.6. Resources Prediction Results
4.7. Verification of the Prediction Areas and Reliability Analysis for the Prediction Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilankoon, I.M.S.K.; Tang, Y.; Ghorbani, Y.; Northey, S.; Yellishetty, M.; Deng, X.Y.; McBride, D. The current state and future directions of percolation leaching in the Chinese mining industry: Challenges and opportunities. Miner. Eng. 2018, 125, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Pasha, S.; Wenner, M.D.; Clarke, D. Toward the Greening of the Gold Mining Sector of Guyana: Transition Issues and Challenges; IDB Technical Note (Country Department Caribbean Group): Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Qiu, K.F.; Taylor, R.D.; Song, Y.H.; Yu, H.C.; Song, K.R.; Li, N. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper-molybdenum deposit, Western Qinling Orogenic Belt, China. Gondwana Res. 2016, 35, 40–58. [Google Scholar] [CrossRef]
- Qiu, K.F.; Song, K.R.; Song, Y.H. Magmatic-hydrothermal fluid evolution of the Wenquan porphyry molybdenum deposit in the north margin of the West Qinling, China. Acta Petrol. Sin. 2015, 31, 3391–3404, (In Chinese with English Abstract). [Google Scholar]
- Ribeiro, M.C.; Ferreira, R.; Pereira, E.; Soares, J. Scientific, technical and legal challenges of deep sea mining. Vis. Port. Conf. Report. Mar. Policy 2020, 114, 103338. [Google Scholar] [CrossRef]
- Saunders, R. High-Value Minerals and Resource Bargaining in a Time of Crisis: A Case Study on the Diamond Fields of Marange, Zimbabwe; UNRISD Working Paper: Geneva, Switzerland, 2018; p. 1. Available online: http://hdl.handle.net/10419/186111 (accessed on 7 December 2021).
- Yang, F.; Xie, S.Y.; Carranza, E.J.M.; Yao, L.Y.; Tian, H.; Chen, Z.J. Vertical distribution of major ore-forming elements and the speciation in the semiarid system above the concealed Baiyinnuoer Pb-Zn deposit in inner Mongolia, China. Geochem. Explor. Environ. Anal. 2019, 19, 46–57. [Google Scholar] [CrossRef]
- Jordan, G. Sustainable Mineral Resources Management: From Regional Mineral Resources Exploration to Spatial Contamination Risk Assessment of Mining. Environ. Earth Sci. 2009, 58, 153–169. [Google Scholar] [CrossRef]
- Scholz, R.W.; Wellmer, F.W. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Glob. Environ. Change-Hum. Policy Dimens. 2013, 23, 11–27. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J. Petrogenesis of granitoids in the Dewulu skarn copper deposit: Implications for the evolution of the Paleotethys ocean and mineralization in Western Qinling, China. Ore Geol. Rev. 2017, 90, 1078–1098. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Taylor, R.D.; Song, K.R.; Song, Y.H.; Li, Q.Z.; Goldfarb, R.J. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China. J. Asian Earth Sci. 2016, 122, 20–40. [Google Scholar] [CrossRef]
- Qiu, K.F.; Li, N.; Taylor, R.D.; Song, Y.H.; Song, K.R.; Han, W.Z.; Zhang, D.X. Timing and duration of metallogeny of the Wenquan deposit in the West Qinling, and its constraint on a proposed classification for porphyry molybdenum deposits. Acta Petrol. Sin. 2014, 30, 2631–2643, (In Chinese with English Abstract). [Google Scholar]
- Qiu, K.F.; Yang, L.Q. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrol. Sin. 2011, 27, 2721–2732, (In Chinese with English Abstract). [Google Scholar]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.N.; Goldfarb, R. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic- or metamorphic- hydrothermal origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Gou, Z.Y.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Mineral. J. Earth Planet. Mater. 2019, 104, 1487–1502. [Google Scholar] [CrossRef]
- Xie, X.J.; Sun, H.Z.; Ren, T.X. Regional geochemistry—national reconnaissance project in China. J. Geochem. Explor. 1989, 33, 1–9. [Google Scholar] [CrossRef]
- Xi, X.H. Natural resources period: Big data and systematic science of the earth -More on exploration geochemistry during the overall development period. Geophys. Geochem. Explor. 2019, 43, 449–460, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.Q.; Zhang, L.N.; Zhao, B.B. Identification of the anomaly component using BEMD combined with PCA from element concentrations in the Tengchong tin belt, SW China. Geosci. Front. 2019, 10, 1561–1576. [Google Scholar] [CrossRef]
- Ilina, S.M.; Lapitskiy, S.A.; Alekhin, Y.V.; Viers, J.; Benedetti, M.; Pokrovsky, O.S. Speciation, Size Fractionation and Transport of Trace Elements in the Continuum Soil Water–Mire–Humic Lake–River–Large Oligotrophic Lake of a Subarctic Watershed. Aquat. Geochem. 2016, 22, 65–95. [Google Scholar] [CrossRef]
- Luo, D.W.; Zeng, G.P. Application and effects of singularity analysis in evaluating the denudation degree of Carlin-type gold deposits in southwest Guizhou, China. Ore Geol. Rev. 2018, 96, 164–180. [Google Scholar] [CrossRef]
- Cheng, Q.M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 2012, 122, 55–70. [Google Scholar] [CrossRef]
- Zuo, R.G. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas. J. Geochem. Explor. 2014, 136, 93–101. [Google Scholar] [CrossRef]
- Zuo, R.G.; Wang, J.; Chen, G.X.; Yang, M.G. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 2015, 148, 12–24. [Google Scholar] [CrossRef]
- Wu, R.Y.; Chen, J.L.; Zhao, J.N.; Chen, J.D.; Chen, S.Y. Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals 2020, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, B.L.; Guo, K.; Li, B.B.; Kong, Y.H. Regional Geochemical Anomaly Identification Based on Multiple-Point Geostatistical Simulation and Local Singularity Analysis—A Case Study in Mila Mountain Region, Southern Tibet. Minerals 2021, 11, 1037. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Santosh, M. Anatomy of a large Ag–Pb–Zn deposit in the Great Xing’an Range, northeast China: Metallogeny associated with Early Cretaceous magmatism. Int. Geol. Rev. 2013, 55, 411–429. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.S.; Zhao, D.S.; Ren, X.G. Ore-forming fluids and ore genesis of the large Bayanbaolege Ag polymetallic deposit, Southern Great Xing’an Range, NE China. Ore Geol. Rev. 2019, 111, 102987. [Google Scholar] [CrossRef]
- Wu, X.l.; Mao, J.W.; Zhou, Z.H.; Ouyang, H.G. H-O-S-Pb isotopic components of the Budunhua Cu deposit in the middle-south part of the Da Hinggan Mountains and their implications for the ore-forming process. Geol. China 2012, 39, 1812–1829, (In Chinese with English Abstract). [Google Scholar]
- Zhang, M.; Di, Y.S.; Shen, C.L.; Liu, Y.H.; Yang, S.S.; Di, D.G.; Yao, M.J.; Wang, J.B.; Wang, S.G.; Gao, Z.X.; et al. Metallogenic System of Copper Polymetallic Deposits in the Middle-southern Part of Da Hinggan Mountains, China. Geoscience 2011, 25, 819–831, (In Chinese with English Abstract). [Google Scholar]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Qiu, K.F.; Goldfarb, R.J.; Deng, J.; Yu, H.C.; Gou, Z.Y.; Ding, Z.J.; Wang, Z.K.; Li, D.P. Gold deposits of the Jiaodong Peninsula, eastern China. SEG Spec. Publ. 2020, 23, 753–773. [Google Scholar]
- Chen, Y.P.; Wei, C.J.; Zhang, J.R.; Chu, H. Metamorphism and zircon U–Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Chin. Sci. Bull. 2015, 60, 1698–1707. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhao, P.; Wang, Y.Y.; Liao, W.; Luo, Z.W.; Bao, Q.Z.; Zhou, Y.H. The pre-Devonian tectonic framework of Xing’an-Mongolia orogenic belt (XMOB) in north China. J. Asian Earth Sci. 2015, 97, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.D.; Sun, F.Y.; Li, L.; Li, R.H.; Wang, J.; Xin, W. Geochronology, geochemistry, and geological implications of late Carboniferous—Early Permian mafic and felsic intrusive rocks from Urad Zhongqi, western Inner Mongolia. Geol. Mag. 2015, 152, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.M.; Guo, F.; Wang, Y.J.; Lin, G. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J. Volcanol. Geotherm. Res. 2003, 121, 115–135. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhang, R.; Zhang, Q.Z. The regional metallogeny of Da Hinggan line, China. Earth Sci. Front. 2004, 11, 269–277, (In Chinese with English Abstract). [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Zhang, Z.L.; Jia, C.S.; Yu, C.M.; Ye, J.; Liu, H.T. Geology and Lead-Isotope Study of the Baiyinnuoer Zn-Pb-Ag Deposit, South Segment of the Da Hinggan Mountains, Northeastern China. Resour. Geol. 2009, 59, 170–180. [Google Scholar] [CrossRef]
- Yan, G.H.; Xu, B.L.; Mu, B.L.; Wang, G.Y.; Chang, Z.S.; Chen, T.L.; Zhao, Y.C.; Wang, X.F.; Zhang, R.H.; Qiao, G.S.; et al. Alkaline intrusives at the east foot of the Taihang-Da Hinggan Mountains: Chronology, Sr, Nd and Pb isotopic characteristics and their implications. Acta Geol. Sin. -Engl. Ed. 2000, 74, 774–780. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Hetherington, C.J.; Chew, D.; Huang, Y.Q.; He, D.Y.; Geng, J.Z.; Xian, H.Y. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib. Mineral. Petrol. 2021, 176, 68. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, K.F.; Müller, A.; Hou, Z.L.; Zhu, Z.H.; Yu, H.C. Machine Learning Prediction of Quartz Forming- Environments. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021925. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Mineral. J. Earth Planet. Mater. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Wu, D.T.; Li, Z.M.; Lv, J.C.; Xu, J.; Shu, G.L. Redetermination of the Zalantun Group in the ARong Qi Area of Da Hinggan Mountains (Northeastern China): Evidence from Petrology, Geochronology and Geochemistry. Minerals 2022, 12, 197. [Google Scholar] [CrossRef]
- Zhang, J.H.; Ge, W.C.; Wu, F.Y.; Liu, X.M. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance: Zircon U-Pb age and Hf isotopic constraints. Acta Geol. Sin. Engl. Ed. 2006, 80, 58–69. [Google Scholar] [CrossRef]
- Jiang, S.H.; Chen, C.L.; Bagas, L.; Liu, Y.; Han, N.; Kang, H.; Wang, Z.H. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages. J. Asian Earth Sci. 2017, 144, 339–367. [Google Scholar] [CrossRef]
- Liu, J.M.; Ye, J.; Li, Y.B.; Chen, X.S.; Zhang, R.B. A Preliminary Study on Exhalative Mineralization in Permian Basins, the Southern Segment of the Da Hinggan Mountains, China–Case Studies of the Huanggang and Dajing Deposits. Resour. Geol. 2001, 51, 345–358. [Google Scholar] [CrossRef]
- Zhao, P.Z. Regional geochemical background and division of metallogenic belt in north Da Hinggan Mountain. Acta Geol. Sin. 2014, 88, 99–108, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.B.; Wang, Y.W.; Wang, L.J.; Uemoto, T. Tin–polymetallic Mineralization in the Southern Part of the Da Hinggan Mountains, China. Resour. Geol. 2001, 51, 283–291. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J.; Liu, Y.F.; Yun, F. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Miner. Depos. 2010, 29, 101–112, (In Chinese with English Abstract). [Google Scholar]
- Jiang, B.B.; Zhu, X.Y.; Huang, X.K.; Zou, T.; Xu, Q.; Liu, Z. Determination of metallogenic age and prospecting significance of the Baiyinnuoer lead-zinc deposit in the southern Da Hinggan Mountains. Acta Geol. Sin. 2020, 94, 2844–2855, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, X.D. Magmatism and Mineralization of Ag-Pb-Zn Ploymetallic Deposits in the Lingdong District, Inner Mongolia. Ph.D. Thesis, China University of Geosciences (Wuhan), Wuhan, China, 2017; p. 107, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.Y. Lead-Zinc polymetallic metallogenic series and prospecting direction of Huanggangliang—Ganzhuermiao metallogenic belt, Inner Mongolia. Ph.D. Thesis, Jilin University, Changchun, China, 2015; p. 124, (In Chinese with English Abstract). [Google Scholar]
- Sun, X.G.; Li, Y.B. Characteristics of fluid inclusions of barite in the Longtoushan polymetallic sulfide deposit, Inner Mongolia: Evidence for submarine hydrothermal sedimentary origin. Acta Petrol. Et Mineral. 2011, 30, 637–644, (In Chinese with English Abstract). [Google Scholar]
- Niu, S.Y.; Sun, A.Q.; Guo, L.J.; Wang, B.D.; Hu, H.B.; Liu, J.M. Ore-control structures and prospecting for the Baiyinnuo’er Pb-Zn deposit in the Da Hinggan Range. Geotecton. Metallog. 2008, 32, 72–80, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.Q.; Zhou, D.; Guo, L.F. Genetic study on the Huaaobaote Pb-Zn-Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes. J. Jiliin Univ. Earth Sci. Ed. 2014, 44, 1478–1491. [Google Scholar] [CrossRef]
- Na, F.C. Regional Volcanic Bodies and Their Ore-Controlling Characteristics of the Trees Ditch. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2012; p. 107, (In Chinese with English Abstract). [Google Scholar]
- Ouyang, H.G. Metallogenesis of Bairendaba—Weilasituo silver—Polymetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing’an Range, NE China. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2013; pp. 31–34, (In Chinese with English Abstract). [Google Scholar]
- Zeng, Q.D.; Liu, J.M.; Liu, H.T. Geology and Geochemistry of the Bianbianshan Au-Ag-Cu-Pb-Zn Deposit, Southern Da Hinggan Mountains, Northeastern China. Acta Geol. Sin. Engl. Ed. 2012, 86, 630–639. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Wang, J.P.; Yao, M.J.; Wu, S.H.; Fu, C.; Liu, Z.J.; Wang, S.G.; Li, Y.X. Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: Mineralogical, fluid inclusion, and stable isotopic evidence. Int. Geol. Rev. 2013, 55, 204–224. [Google Scholar] [CrossRef]
- Wang, J.B.; Wang, Y.W.; Wang, L.J. Copper metallogenic setting and prospecting potential in the middle-southern part of Da Hinggan Mountains. Geol. Prospect. 2000, 36, 1–4, (In Chinese with English Abstract). [Google Scholar]
- MLR (Ministry of Land and Resources of the People’s Republic of China). Specifications for Geochemical Reconnaissance Survey (1∶50 000) (DZ/T0011-2015); Geological Publishing House: Beijing, China, 2015; pp. 1–35. (In Chinese)
- MLR (Ministry of Land and Resources of the People’s Republic of China). Code of Practice for Soil Geochemical Survey (DZ/T0145-2017); Geological Publishing House: Beijing, China, 2015; pp. 1–38. (In Chinese)
- China Geological Survey. Specifications for Regional Geochemistry Exploration (DZ/T0167-2006). In China Geological Survey; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Xie, X.J.; Shao, Y.; Wang, X.Q. Mineral Exploiting and Geochemistry in 21st Century; Geological Publishing House: Beijing, China, 1999; pp. 3–11, 35–41, (In Chinese with English Abstract). [Google Scholar]
- Xie, X.J.; Yan, M.C.; Li, L.Z.; Shen, H.J. Usable values for Chinese standard reference samples of stream sediments, soils, and rocks: GSD 9–12, GSS 1–8 and GSR 1–6. Geostand. Geoanalytical Res. 1985, 9, 277–280. [Google Scholar] [CrossRef]
- Xie, X.J.; Yan, M.C.; Wang, C.S.; Li, L.Z.; Shen, H.J. Geochemical standard reference samples GSD 9–12, GSS 1–8 and GSR 1–6. Geostand. Newsl. 1989, 13, 83–179. [Google Scholar] [CrossRef]
- Wang, C.S.; Gu, T.X.; Chi, Q.H.; Yan, W.D.; Yan, M.C. New geochemical standard materials for rocks and stream sediments. Geophys. Geochem. Explor. 2000, 24, 246–249, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ye, J.Y. Quality monitoring and quality control of sample analysis in regional geochemical survey. Geophys. Geochem. Explor. 2002, 21, 6–11, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Bai, J.F.; Wang, Y. Analytical scheme and quality monitoring system for China Geochemical Baselines. Earth Sci. Front. 2012, 19, 33–42, (In Chinese with English Abstract). [Google Scholar]
- Lancianese, V.; Dinelli, E. Different spatial methods in regional geochemical mapping at high density sampling: An application on stream sediment of Romagna Apennines, Northern Italy. J. Geochem. Explor. 2015, 154, 143–155. [Google Scholar] [CrossRef]
- Yang, F.; Kong, M.; Liu, H.Z.; Yu, J.S.; Yang, S.P.; Hao, Z.H.; Zhang, D.H.; Cen, K. Discovery of Wolitu Pb-Zn deposit through geochemical prospecting under loess cover in Inner Mongolia, China. Geosci. Front. 2017, 8, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Chen, J.G.; Zhang, Z.Y.; Wang, C.B.; Wu, G.M.; Agterberg, F.P. Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. J. Geochem. Explor. 2012, 122, 90–100. [Google Scholar] [CrossRef]
- Chen, J.; Chen, R.Y.; Mao, Z.X.; Yang, H.Z.; Zhang, C.P.; Han, R.P. Regional mineral resources assessment based on rasterized geochemical data: A case study of porphyry copper deposits in Manzhouli, China. Ore Geol. Rev. 2016, 74, 15–25. [Google Scholar] [CrossRef]
Typical Deposit | Resources (×104 Tons) | AD | AP |
---|---|---|---|
Bairendaba | 132.56 | 9516.51 | 8507.1 |
Huaaobaote | 42.82 | 6439.69 | 5747.28 |
Haobugao | 63.26 | 4143.2 | 3306.71 |
Baiyinnuoer | 123.06 | 2831.09 | 2281.82 |
Dajing | 50 | 2378.83 | 1934.45 |
Longtoushan | 53.12 | 4713.7 | 4451.98 |
Name of Deposit | Indicator Element Combination (the Mean Value of the Inner Zones of Geochemical Anomalies). The Concentration of Elements Is 10−6 g/g; That of Ag and Cd Is 10−9 g/g. |
---|---|
Bairendaba | Ag(784.00) + Bi(8.58) + Cd(283.80) + Mo(7.07) + Sb(50.19) + Zn(249.38) |
Huaaobaote | Ag(2263.13) + As(313.36) + Cd(971.10) + Mo(6.22) + Sb(26.17) + W(33.42) + Zn(500.96) |
Haobugao | Ag(1416.80) + As(486.82) + Bi(2.88) + Cd(9507.90) + Cu(66.07) + Pb(245.44) + Sb(8.28) + Sn(41.98) + W(9.24) + Zn(1191.31) |
Baiyinnuoer | As(265.70) + Bi(3.17) + Cd330.50) + Pb(44.42) + Sn(25.10) |
Dajing | Ag(1506.50) + As(210.94) + Cd(1014.00) + Pb(644.03) + Sb(4.45) + Zn(83.97) |
Longtoushan | Ag(4005.00) + As(609.35) + Bi(43.86) + Cd(713.77) + Mo(300.90) + Pb(560.47) + Sb(17.92) + Zn(2517.98) |
Number | Pr1 | Pr2 | PR |
---|---|---|---|
A01 | 0.94 | 0.58 | 0.8 |
A02 | 4.01 | 2.76 | 3.51 |
A03 | 1.05 | 0.78 | 0.94 |
B01 | 9.36 | 7.71 | 8.7 |
B02 | 9.54 | 7.13 | 8.58 |
B03 | 5.83 | 4.13 | 5.15 |
B04 | 20.69 | 16.23 | 18.9 |
B05 | 25.51 | 25.92 | 25.67 |
B06 | 28.11 | 19.85 | 24.8 |
B07 | 9.67 | 6.6 | 8.44 |
B08 | 3.61 | 2.47 | 3.15 |
B09 | 21.17 | 17.47 | 19.69 |
B10 | 2.2 | 1.61 | 1.96 |
B11 | 9.06 | 6.24 | 7.93 |
B12 | 17.98 | 17.26 | 17.69 |
B13 | 24.83 | 22.84 | 24.03 |
B14 | 5.6 | 3.78 | 4.88 |
B15 | 11.38 | 7.85 | 9.97 |
B16 | 5.26 | 3.59 | 4.59 |
B17 | 3.8 | 3.27 | 3.59 |
B18 | 5.68 | 3.53 | 4.82 |
B19 | 3.89 | 2.66 | 3.4 |
B20 | 9.83 | 8.52 | 9.31 |
B21 | 3.56 | 2.26 | 3.04 |
B22 | 1.52 | 0.93 | 1.28 |
B23 | 22.26 | 19.2 | 21.04 |
B24 | 15.89 | 10.95 | 13.91 |
B25 | 1.73 | 1.16 | 1.5 |
B26 | 12.9 | 9.75 | 11.64 |
B27 | 1.47 | 0.92 | 1.25 |
B28 | 1.83 | 1.73 | 1.79 |
B29 | 10.83 | 1.94 | 7.27 |
B30 | 10.24 | 8.26 | 9.45 |
B31 | 5.19 | 3.77 | 4.62 |
B32 | 7.19 | 6.23 | 6.81 |
B33 | 3.99 | 3.09 | 3.63 |
Number | Pr1 | Pr2 | PR | P |
---|---|---|---|---|
B23 | 22.26 | 19.2 | 21.04 | 10.17 |
B29 | 10.83 | 1.94 | 7.27 | 6.57 |
B33 | 3.99 | 3.09 | 3.63 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Xie, S.; Hao, Z.; Carranza, E.J.M.; Song, Y.; Liu, Q.; Xu, R.; Nie, L.; Han, W.; Wang, C.; et al. Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China. Minerals 2022, 12, 434. https://doi.org/10.3390/min12040434
Yang F, Xie S, Hao Z, Carranza EJM, Song Y, Liu Q, Xu R, Nie L, Han W, Wang C, et al. Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China. Minerals. 2022; 12(4):434. https://doi.org/10.3390/min12040434
Chicago/Turabian StyleYang, Fan, Shuyun Xie, Zhihong Hao, Emmanuel John M. Carranza, Yuntao Song, Qingqing Liu, Renting Xu, Lanshi Nie, Wei Han, Chengwen Wang, and et al. 2022. "Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China" Minerals 12, no. 4: 434. https://doi.org/10.3390/min12040434
APA StyleYang, F., Xie, S., Hao, Z., Carranza, E. J. M., Song, Y., Liu, Q., Xu, R., Nie, L., Han, W., Wang, C., & Wang, Q. (2022). Geochemical Quantitative Assessment of Mineral Resource Potential in the Da Hinggan Mountains in Inner Mongolia, China. Minerals, 12(4), 434. https://doi.org/10.3390/min12040434