Assessing the Magnetic Mineralogy of the Pre-Variscan Manteigas Granodiorite: An Unexpected Case of a Magnetite-Series Granitoid in Portugal
Abstract
:1. Introduction
- (a)
- Diamagnetic—in iron-free minerals (e.g., quartz and feldspars), where Km is negative and around −10−6 SI;
- (b)
- Paramagnetic—in minerals with magnetic moments that tend to align along an applied magnetic field but do not have a spontaneous magnetic order (e.g., biotite and ilmenite), Km is positive with a magnitude between 10−5 and 10−3 SI;
- (c)
- Ferromagnetic (s.l.)—characterized by the hysteresis curve, occurring in minerals that show spontaneous magnetization even in the absence of an external field (e.g., magnetite, hematite, and martite). In this case, the induced field returns to zero and unlike the diamagnetic and paramagnetic behaviors, residual magnetization is recorded, known as remanent magnetization [4].
2. Geologic Setting
2.1. Regional Geologic Setting
- (a)
- Biotitic granitoids (biotite >> muscovite)—originated at a high depth of the earth’s crust. If they have muscovite, it is usually of secondary origin. The intrusion and distribution of these granites are mainly controlled by the D3 shear zones and the late-Variscan tectonic structures, which means that they can be syn-D3 (320–313 Ma), late-D3 (311–306 Ma), late- to post-D3 (300 Ma), or post-D3 (299–290 Ma);
- (b)
2.2. Geographic and Geologic Setting
3. Materials and Methods
3.1. Fieldwork and Sampling
3.2. Petrographic Studies
3.3. Magnetic Susceptibility (Km) Measurements
3.4. Isothermal Remanent Magnetization (IRM) Studies
3.5. Frequency-Dependent Susceptibility (KfD%)
4. Results and Discussion
4.1. Petrographic Studies
4.2. Magnetic Susceptibility (Km)
4.3. IRM Studies
4.4. Magnetic Grain Size Determinations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes, 1st ed.; Blackwell Scientific Publication: Boston, MA, USA, 1992; p. 319. [Google Scholar]
- Tauxe, L.; Banerjee, S.K.; Butler, R.F.; van der Voo, R. Essentials of Paleomagnetism, 5th ed.; Scripps Institution of Oceanography: La Jolla, CA, USA, 2018; Available online: https://earthref.org/MagIC/books/Tauxe/Essentials/ (accessed on 30 June 2021).
- Bouchez, J.L. Granite is Never Isotropic: An Introduction to AMS Studies of Granitic Rocks. In Granite: From Melt to Emplacement Fabrics; Bouchez, J.L., Hutton, D.H.W., Stephens, W.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 95–112. [Google Scholar]
- Nédélec, A.; Bouchez, J.L. Granites: Petrology, Structure, Geological Setting, and Metallogeny; Oxford University Press: Oxford, UK, 2015; p. 335. [Google Scholar]
- Robertson, D.J.; France, D.E. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Inter. 1994, 84, 297–312. [Google Scholar] [CrossRef]
- Kruiver, P.P.; Dekkers, M.J.; Heslop, D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett. 2001, 189, 269–276. [Google Scholar] [CrossRef]
- Maxbauer, D.P.; Feinberg, J.M.; Fox, L.D. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Comput. Geosci. 2016, 95, 140–145. [Google Scholar] [CrossRef]
- Cruz, C. Post-Tectonic Variscan Magmatism from Northwest Iberia. Implications for W-Mo Metallogeny. Case study of Lamas de Olo Pluton. Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2020; p. 327. [Google Scholar]
- Thompson, R.; Oldfield, F. Environmental Magnetism; Allen & Unwin: London, UK, 1986; p. 227. [Google Scholar]
- Sandgren, P.; Thompson, R. Mineral magnetic characteristics of podzolic soils developed on sand dunes in the Lake Gosciaz catchment, central Poland. Phys. Earth Planet. Inter. 1990, 60, 297–313. [Google Scholar] [CrossRef]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L. Mapa Tectónico de la Península Ibérica y Baleares; Escala 1: 1000 000; Instituto Geológico y Minero de España: Madrid, Spain, 1974; p. 113. [Google Scholar]
- Farias, P.; Gallastegui, G.; Francisco, G.; Marquínez, J.; Martín-Parra, L.; Catalán, J.R.; Maciá, J.G.; Rodríguez-Fernández, L. Aportaciones al Conocimiento de la Litoestratigrafia y Estructura de Galicia Central. In IX Reunião Sobre a Geologia do Oeste Peninsular; Faculdade de Ciências, Museu e Laboratório Mineralógico e Geológico; Universidade do Porto: Porto, Portugal, 1987; Volume 1, pp. 411–431. [Google Scholar]
- Ribeiro, A.; Pereira, E.; Dias, R. Structure in the Northwest of the Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez Garcia, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 220–236. [Google Scholar]
- Franke, W. Variscan plate tectonics in Central Europe–current ideas and open questions. Tectonophysics 1989, 169, 221–228. [Google Scholar] [CrossRef]
- Kroner, U.; Romer, R.L. Two plates-Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Catalán, J.R.M.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez, A.G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef] [Green Version]
- Castiñeiras, P.; Villaseca, C.; Barbero, L.; Romera, M.C. SHRIMP U–Pb zircon dating of anatexis in high-grade migmatite complexes of Central Spain: Implications in the Hercynian evolution of Central Iberia. Int. J. Earth Sci. 2008, 97, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Martínez Catalán, J.R.; Rubio Pascual, F.J.; Montes, A.D.; Fernández, R.D.; Barreiro, J.G.; Dias Da Silva, Í.; Clavijo, E.G.; Ayarza, P.; Alcock, J.E. The late Variscan HT/LP metamorphic event in NW and Central Iberia: Relationships to crustal thickening, extension, orocline development and crustal evolution. Geol. Soc. Lond. Spec. Publ. 2014, 405, 225–247. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Arenas, R.; Pereira, M.F.; Sánchez-Martínez, S.; Albert, R.; Martín Parra, L.-M.; Rubio Pascual, F.-J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny). Int. J. Earth Sci. 2018, 107, 251–267. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Martins, H.; Noronha, F. Granitos Variscos portugueses oxidados e reduzidos e sua associação com mineralizações hidrotermais de W e Sn: Resultados de suscetibilidade magnética. Comun. Geol. 2013, 100, 33–39. [Google Scholar]
- Sant’Ovaia, H.; Olivier, P.; Ferreira, N.; Noronha, F.; Leblanc, D. Magmatic structures and kinematics emplacement of the Variscan granites from Central Portugal (Serra da Estrela and Castro Daire areas). J. Struct. Geol. 2010, 32, 1450–1465. [Google Scholar] [CrossRef]
- Capdevila, R.; Floor, P. Les différents types de granites hercyniens et leur distribution dans le nord ouest de l’Espagne. Bol. Geol. Min. De España 1970, 81, 215–225. [Google Scholar]
- Capdevila, R.; Castañón, L.; Floor, P. Les granitoides Varisques de la Méséta Ibérique. Bull. Soc. Geol. Fr. 1973, 7, 209–228. [Google Scholar] [CrossRef]
- Neiva, A.M.R.; Williams, I.S.; Ramos, J.M.F.; Gomes, M.E.P.; Silva, M.M.V.G.; Antunes, I.M.H.R. Geochemical and Isotopic Constraints on the Petrogenesis of Early Ordovician Granodiorite and Variscan Two-Mica Granites from the Gouveia Area, Central Portugal. Lithos 2009, 111, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Solá, A.R.; Montero, P.; Ribeiro, M.L.; Neiva, A.M.R.; Zinger, T.; Bea, F. Pb/Pb zircon age of Carrascal Massif, central Portugal. Geochim. Cosmochim. Acta 2005, 69, A856. [Google Scholar]
- Solá, A.R. Relações Petrogeoquímicas dos Maciços Graníticos do NE Alentejano. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2007; p. 405. [Google Scholar]
- Solá, A.R.; Pereira, M.F.; Williams, I.S.; Ribeiro, M.L.; Neiva, A.M.R.; Montero, P.; Bea, F.; Zinger, T. New insights from U–Pb zircon dating of Early Ordovician magmatism on the northern Gondwana margin: The Urra Formation (SW Iberian Massif, Portugal). Tectonophysics 2008, 461, 114–129. [Google Scholar] [CrossRef]
- Antunes, I.M.H.R.; Neiva, A.M.R.; Silva, M.M.V.G.; Corfu, F. The genesis of I- and S-type granitoid rocks of the Early Ordovician Oledo pluton, Central Iberian Zone (Central Portugal). Lithos 2009, 111, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Crispim, L.; Chichorro, M.; Bento dos Santos, T.M.; Linnemann, U.; Hofmann, M.; Neto de Carvalho, C. U-Pb Zircon Geochronology of Metasedimentary and Igneous Rocks from Penha Garcia-Salvaterra do Extremo Sector, Central Iberian Zone. In Ossa-Morena and Beyond: A Tribute to Teodoro Palacios; Jensen, S., Ed.; University of Extremadura: Badajoz, Spain, 2022; pp. 9–10. [Google Scholar]
- Rubio-Ordóñez, A.; Valverde-Vaquero, P.; Corretgé, L.G.; Cuesta-Fernández, A.; Gallastegui, G.; Fernández- González, M.; Gerdes, A. An Early Ordovician tonalitic–granodioritic belt along the Schistose-Greywacke Domain of the Central Iberian Zone (Iberian Massif, Variscan Belt). Geol. Mag. 2012, 149, 927–939. [Google Scholar] [CrossRef]
- Pereira, M.F.; Castro, A.; Fernández, C.; Rodríguez, C. Multiple Paleozoic magmatic-orogenic events in the Central Extremadura batholith (Iberian Variscan Belt, Spain). J. Iber. Geol. 2018, 44, 309–333. [Google Scholar] [CrossRef]
- Ferreira, N.; Iglésias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e Seu Enquadramento Geodinâmico. In Geología de los Granitoides y Rocas Asociadas del Macizo Hesperico: Libro de Homenaje a L.C. García de Figuerola; Bea, F., Carnicero, A., Gonzalo, J., Lopez Plaza, M., Rodriguez Alonso, M., Eds.; Editorial Rueda: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Azevedo, M.R.; Valle Aguado, B. Origem e Instalação de Granitóides Variscos na Zona Centro-Ibérica. In Geologia de Portugal no Contexto da Ibéria; Dias, R., Araújo, A., Terrinha, P., Kulberg, J.C., Eds.; Universidade de Évora: Évora, Portugal, 2006; pp. 107–121. [Google Scholar]
- Município de Manteigas. Geografia. Available online: https://cm-manteigas.pt/concelho/geografia/ (accessed on 30 June 2021).
- Ferreira, N.; Vieira, G. Guia Geológico e Geomorfológico do Parque Natural da Serra da Estrela/Carta Geológica Simplificada do Parque Natural da Serra da Estrela; Instituto da Conservação da Natureza; Instituto Geológico e Mineiro: Lisboa, Portugal, 1999. [Google Scholar]
- Teixeira, C.; Brito de Carvalho, L.H.; Santos, J.P.; Peres, A.M.; Figueiredo de Barros, R. Notícia Explicativa da Folha 17-D (Gouveia) da Carta Geológica de Portugal: 1:50 000, 1st ed.; Serviços Geológicos de Portugal: Lisboa, Portugal, 1967; p. 28. [Google Scholar]
- Teixeira, C.; Santos, J.P.; Carvalho, H.F. Notícia Explicativa da Folha 20-B (Covilhã) da Carta Geológica de Portugal: 1:50 000, 1st ed.; Serviços Geológicos de Portugal: Lisboa, Portugal, 1975; p. 52. [Google Scholar]
- Sant’Ovaia, H.; Cruz, C.; Gonçalves, A.M.; Noronha, F. Anisotropia da Suscetibilidade Magnética em Granitos Variscos Portugueses: 20 Anos de Investigação. In Uma Visão Holística da Terra e do Espaço nas Suas Vertentes Naturais e Humanas. Homenagem à Professora Celeste Romualdo; CITEUC: Coimbra, Portugal, 2020; pp. 125–146. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Abrajevitch, A.; Kodama, K. Diagenetic sensitivity of paleoenvironmental proxies: A rock magnetic study of Australian continental margin sediments. Geochem. Geophys. Geosystems 2011, 12, 18. [Google Scholar] [CrossRef]
- Font, E.; Veiga-Pires, C.; Pozo, M.; Carvallo, C.; Carlos, A.; De Siqueira, N.; Camps, P.; Fabre, S.; Mirao, J. Magnetic fingerprint of southern Portuguese speleothems and implications for paleomagnetism and environmental magnetism. J. Geophys. Res. 2014, 119, 7993–8020. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 1997; p. 573. [Google Scholar]
- Villaseca, C.; Ruiz-Martínez, V.C.; P’erez-Soba, C. Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma. Geol. Acta 2017, 15, 379–394. [Google Scholar] [CrossRef]
- Gonçalves, A.; Sant’Ovaia, H.; Noronha, H. Emplacement mechanism of Caria-Vila da Ponte Pluton (Northern Portugal): Building and internal magmatic record. J. Struct. Geol. 2019, 124, 91–111. [Google Scholar] [CrossRef]
- Cruz, C.; Sant’Ovaia, H.; Bartolomeu Raposo, M.I.; Lourenço, J.M.; Almeida, F.; Noronha, F. Unraveling the emplacement history of a Portuguese post-tectonic Variscan pluton using magnetic fabrics and gravimetry. J. Struct. Geol. 2021, 153, 1–22. [Google Scholar] [CrossRef]
- Ishihara, S. The Magnetite-series and Ilmenite-series Granitic Rocks. Min. Geol. 1977, 27, 292–305. [Google Scholar]
- Sant’Ovaia, H.; Martins, H.C.B.; Noronha, F. Oxidized and reduced Portuguese Variscan granites associated with W and Sn hydrothermal lode deposits: Magnetic susceptibility results. Comun. Geológicas 2013, 100, 33–39. [Google Scholar]
- Cruz, C.; Sant’Ovaia, H.; Noronha, F. Magnetic mineralogy of Variscan granites from northern Portugal: An approach to their petrogenesis and metallogenic potential. Geol. Acta 2020, 18, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Noronha, F. Fluids and Variscan metallogenesis in granite related systems in Portugal. Procedia Earth and Planetary Science. Procedia Earth Planet. Sci. 2017, 17, 1–4. [Google Scholar] [CrossRef]
Site | Km (μSI) | Method | Component 1—Magnetite and/or Titanomagnetite | S-Ratio 300 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SIRM A/m | SIRM/Km (kA/m) | Bh (mT) | B1/2 (mT) | DP | S | Contribution (%) | ||||
ES18-A1 | 16,826.6 | MAX UnMix | n.a. | n.a. | 1.60 | 39.81 | 0.42 | 0.86 | 100 | n.a. |
IRM-CLG | 18.00 | 1.070 | 1.61 | 40.74 | 0.41 | n.a. | 100 | 0.966 | ||
ES18-B2 | 14,739.5 | MAX UnMix | n.a. | n.a. | 1.60 | 39.81 | 0.41 | 0.90 | 100 | n.a. |
IRM-CLG | 16.40 | 1.113 | 1.60 | 39.81 | 0.41 | n.a. | 100 | 0.968 | ||
ES19-A1 | 327.8 | MAX UnMix | n.a. | n.a. | 1.80 | 63.10 | 0.32 | 1.02 | 83 | n.a. |
IRM-CLG | 5.70 | 17.387 | 1.78 | 60.26 | 0.33 | n.a. | 85 | n.a. | ||
ES87-C2 | 18,837.0 | MAX UnMix | n.a. | n.a. | 1.39 | 24.55 | 0.49 | 0.70 | 100 | n.a. |
IRM-CLG | 12.35 | 0.656 | 1.45 | 28.18 | 0.48 | n.a. | 100 | 0.969 |
Site | Km (μSI) | Method | Component 2—Hematite | S-Ratio 300 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SIRM A/m | SIRM/Km (kA/m) | Bh (mT) | B1/2 (mT) | DP | S | Contribution (%) | ||||
ES18-A1 | 16,826.6 | MAX UnMix | not observed | n.a. | ||||||
IRM-CLG | n.a. | |||||||||
ES18-B2 | 14,739.5 | MAX UnMix | not observed | n.a. | ||||||
IRM-CLG | n.a. | |||||||||
ES19-A1 | 327.8 | MAX UnMix | n.a. | n.a. | 2.23 | 169.82 | 0.16 | 0.90 | 0.17 | n.a. |
IRM-CLG | 1.00 | 3.050 | 2.24 | 173.78 | 0.18 | n.a. | 0.15 | 0.943 | ||
ES87-C2 | 18,837.0 | MAX UnMix | not observed | n.a. | ||||||
IRM-CLG | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, J.M.; Cruz, C.; Sant’Ovaia, H.; Noronha, F. Assessing the Magnetic Mineralogy of the Pre-Variscan Manteigas Granodiorite: An Unexpected Case of a Magnetite-Series Granitoid in Portugal. Minerals 2022, 12, 440. https://doi.org/10.3390/min12040440
Dias JM, Cruz C, Sant’Ovaia H, Noronha F. Assessing the Magnetic Mineralogy of the Pre-Variscan Manteigas Granodiorite: An Unexpected Case of a Magnetite-Series Granitoid in Portugal. Minerals. 2022; 12(4):440. https://doi.org/10.3390/min12040440
Chicago/Turabian StyleDias, Joana M., Cláudia Cruz, Helena Sant’Ovaia, and Fernando Noronha. 2022. "Assessing the Magnetic Mineralogy of the Pre-Variscan Manteigas Granodiorite: An Unexpected Case of a Magnetite-Series Granitoid in Portugal" Minerals 12, no. 4: 440. https://doi.org/10.3390/min12040440
APA StyleDias, J. M., Cruz, C., Sant’Ovaia, H., & Noronha, F. (2022). Assessing the Magnetic Mineralogy of the Pre-Variscan Manteigas Granodiorite: An Unexpected Case of a Magnetite-Series Granitoid in Portugal. Minerals, 12(4), 440. https://doi.org/10.3390/min12040440