Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Concentrates
2.2. Microorganisms
2.3. Bioleaching of Dirty Concentrates DC-I, DC-II and DC-III
3. Results and Discussion
3.1. Characterization of Dirty Concentrates
3.2. Bioleaching
3.2.1. Concentrate DC-I ([Py]/[Ena] = 0.7)
3.2.2. Concentrate DC-II ([Py]/[Ena] = 1.3)
3.2.3. Concentrate DC-III ([Py]/[Ena] = 2.4)
3.3. As Immobilization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, G.; Peng, Y.; Bradshaw, D. A review of copper–arsenic mineral removal from copper concentrates. Miner. Eng. 2012, 36–38, 179–186. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Arribas, A., Jr. Characteristics of high sulfidation epithermal deposits and their relation to magmatic fluid. In Magmas, Fluids and Ore Deposits; Thompson, J.F.H., Ed.; Mineralogical Association of Canada Short Course: Ottawa, ON, Canada, 1995; Volume 23, pp. 419–454. [Google Scholar]
- Lattanzi, P.; Da Pelo, S.; Musu, E.; Atzei, D.; Elsener, B.; Fantauzzi, M.; Rossi, A. Enargite oxidation: A review. Earth-Sci. Rev. 2008, 86, 62–88. [Google Scholar] [CrossRef]
- Oyama, K.; Shimada, K.; Ishibashi, J.; Sasaki, K.; Miki, H.; Okibe, N. Catalytic mechanism of activated carbon-assisted bioleaching of enargite concentrate. Hydrometallurgy 2020, 196, 105417. [Google Scholar] [CrossRef]
- Oyama, K.; Takamatsu, K.; Hayashi, K.; Aoki, Y.; Kuroiwa, S.; Hirajima, T. Carbon-assisted bioleaching of chalcopyrite and three chalcopyrite/enargite-bearing complex concentrates. Minerals 2021, 11, 432. [Google Scholar] [CrossRef]
- Oyama, K.; Shimada, K.; Ishibashi, J.; Miki, H.; Okibe, N. Silver-catalyzed bioleaching of enargite concentrate using moderately thermophilic microorganisms. Hydrometallurgy 2018, 177, 197–204. [Google Scholar] [CrossRef]
- Gericke, M.; Govender, Y.; Pinches, A. Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy 2010, 104, 414–419. [Google Scholar] [CrossRef]
- Masaki, Y.; Hirajima, T.; Sasaki, K.; Miki, H.; Okibe, N. Microbiological redox potential control to improve the efficiency of chalcopyrite bioleaching. Geomicrobiol. J. 2018, 35, 648–656. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Tsunekawa, M.; Okamoto, H.; Nakayama, R.; Kuroiwa, S. Improved chalcopyrite leaching through optimization of redox potential. Can. Metall. Q. 2008, 47, 253–258. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Kitagawa, H.; Tsunekawa, M. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 2008, 91, 144–149. [Google Scholar] [CrossRef]
- Escobar, B.; Huenupi, E.; Godoy, I.; Wiertz, J.V. Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70 °C. Biotechnol. Lett. 2000, 22, 205–209. [Google Scholar] [CrossRef]
- Sasaki, K.; Takatsugi, K.; Kaneko, K.; Kozai, N.; Ohnuki, T.; Tuovinen, O.H.; Hirajima, T. Characterization of secondary arsenic-bearing precipitates formed in the bioleaching of enargite by Acidithiobacillus ferrooxidans. Hydrometallurgy 2010, 104, 424–431. [Google Scholar] [CrossRef]
- Takatsugi, K.; Sasaki, K.; Hirajima, T. Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic. Hydrometallurgy 2011, 109, 90–96. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamaji, Y.; Fukano, Y.; Shimada, K.; Ishibashi, J.-I.; Hirajima, T.; Sasaki, K.; Sawada, M.; Okibe, N. Biooxidation of gold-, silver, and antimony-bearing highly refractory polymetallic sulfide concentrates, and its comparison with abiotic pretreatment techniques. Geomicrobiol. J. 2015, 32, 538–548. [Google Scholar] [CrossRef]
- Okibe, N.; Koga, M.; Morishita, S.; Tanaka, M.; Heguri, S.; Asano, S.; Sasaki, K.; Hirajima, T. Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 2014, 143, 34–41. [Google Scholar] [CrossRef]
- Okibe, N.; Morishita, S.; Tanaka, M.; Sasaki, K.; Hirajima, T.; Hatano, K.; Ohata, A. Bioscorodite crystallization using Acidianus brierleyi: Effects caused by Cu(II) present in As(III)-bearing copper refinery wastewaters. Hydrometallurgy 2017, 168, 121–126. [Google Scholar] [CrossRef]
- Tanaka, M.; Okibe, N. Factors to enable crystallization of environmentally stable bioscorodite from dilute As(III)-contaminated waters. Minerals 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Sasaki, K.; Okibe, N. Behavior of sulfate ions during biogenic scorodite crystallization from dilute As(III)-bearing acidic waters. Hydrometallurgy 2018, 180, 144–152. [Google Scholar] [CrossRef]
- Okibe, N.; Nishi, R.; Era, Y.; Sugiyama, T. The effect of heterogeneous seed crystals on arsenite removal as biogenic scorodite. Mater. Trans. 2020, 61, 387–395. [Google Scholar] [CrossRef]
- Okibe, N.; Fukano, Y. Bioremediation of highly toxic arsenic via carbon-fiber-assisted indirect As(III) oxidation by moderately thermophilic, acidophilic Fe-oxidizing bacteria. Biotechnol. Lett. 2019, 41, 1403–1413. [Google Scholar] [CrossRef]
- Muñoz, J.A.; Blázquez, M.L.; González, F.; Ballester, A.; Acevedo, F.; Gentina, J.C.; González, P. Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms. Hydrometallurgy 2006, 84, 175–186. [Google Scholar] [CrossRef]
- Escobar, B.; Huenupi, E.; Wiertz, J.V. Chemical and biological leaching of enargite. Biotechnol. Lett. 1997, 19, 719–722. [Google Scholar] [CrossRef]
- Sasaki, K.; Nakamuta, Y.; Hirajima, T.; Tuovinen, O.H. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 2009, 95, 153–158. [Google Scholar] [CrossRef]
- Boekestein, A.; Stadhouders, A.M.; Stols, A.L.H.; Roomans, G.M. A comparison of ZAF-correction methods in quantitative X-ray microanalysis of light-element specimens. Ultramicroscopy 1983, 12, 65–68. [Google Scholar] [CrossRef]
- Okibe, N.; Johnson, D.B. Toxicity of flotation reagents to moderately thermophilic bioleaching microorganisms. Biotechnol. Lett. 2002, 24, 2011–2016. [Google Scholar] [CrossRef]
- Hao, X.; Liu, X.; Zhu, P.; Chen, A.; Liu, H.; Yin, H.; Qiu, G.; Liang, Y. Carbon material with high specific surface area improves complex copper ores’ bioleaching efficiency by mixed moderate thermophiles. Minerals 2018, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yang, Y.; Gao, X.; Fan, R.; Chen, M. The galvanic effect of pyrite enhanced (bio)leaching of enargite (Cu3AsS4). Hydrometallurgy 2021, 202, 105613. [Google Scholar] [CrossRef]
% (w/w) (Elemental Ratio Relative to As) | DC-I | DC-II | DC-III |
---|---|---|---|
Cu | 27.3 ± 0.5% (3.8) | 20.4 ± 0.9% (3.7) | 14.7 ± 0.2% (3.7) |
As | 8.5 ± 0.2% (1.0) | 6.6 ± 0.4% (1.0) | 4.7 ± 0.1% (1.0) |
Fe | 15.4 ± 0.6% (2.5) | 21.2 ± 1.0% (4.3) | 29.0 ± 0.6% (8.4) |
(As/Cu) | (0.26) | (0.27) | (0.27) |
D50 (µm) | 57.7 | 62.8 | 81.2 |
No. | S | Sb | Pb | As | Cu | Fe | Zn | Expected Mineral | |
---|---|---|---|---|---|---|---|---|---|
1 | 1.8 | 0 | 0 | 0 | 0 | 1.0 | 0 | FeS2 | |
2 | 2.0 | 0 | 0 | 0 | 0 | 1.0 | 0 | FeS2 | |
3 | 1.3 | 0 | 0.2 | 1.0 | 0.5 | 1.5 | 0 | Secondary precipitates | |
4 | 2.1 | 0 | 0 | 0 | 0 | 1.0 | 0 | FeS2 | |
5 | 2.0 | 0 | 0 | 0 | 0 | 1.0 | 0 | FeS2 | |
6 | 1.9 | 0 | 0.1 | 1.0 | 0.4 | 1.2 | 0 | Secondary precipitates | |
7 | 2.8 | 0.2 | 0 | 1.0 | 2.4 | 0.3 | 0.3 | Cu3AsS4 | |
8 | 1.8 | 0 | 0.1 | 1.0 | 0.7 | 1.1 | 0 | Secondary precipitates | |
9 | 3.9 | 0.2 | 0 | 1.0 | 3.1 | 0.6 | 0.2 | Cu3AsS4 | |
10 | 5.5 | 0 | 0 | 1.0 | 0.4 | 4.3 | 0 | Secondary precipitates | |
11 | 5.9 | 0 | 0 | 1.0 | 0.5 | 4.6 | 0 | Secondary precipitates | |
12 | 4 | 0.1 | 0 | 1.0 | 3 | 0.2 | 0.0 | Cu3AsS4 | |
13 | 2.1 | 0 | 0 | 0 | 0 | 1.0 | 0 | FeS2 | |
14 | 13 | 0 | 0 | 1.0 | 0.4 | 6.9 | 0 | Secondary precipitates |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okibe, N.; Hayashi, K.; Oyama, K.; Shimada, K.; Aoki, Y.; Suwa, T.; Hirajima, T. Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization. Minerals 2022, 12, 449. https://doi.org/10.3390/min12040449
Okibe N, Hayashi K, Oyama K, Shimada K, Aoki Y, Suwa T, Hirajima T. Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization. Minerals. 2022; 12(4):449. https://doi.org/10.3390/min12040449
Chicago/Turabian StyleOkibe, Naoko, Kaito Hayashi, Keishi Oyama, Kazuhiko Shimada, Yuji Aoki, Takahiro Suwa, and Tsuyoshi Hirajima. 2022. "Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization" Minerals 12, no. 4: 449. https://doi.org/10.3390/min12040449
APA StyleOkibe, N., Hayashi, K., Oyama, K., Shimada, K., Aoki, Y., Suwa, T., & Hirajima, T. (2022). Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization. Minerals, 12(4), 449. https://doi.org/10.3390/min12040449