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Abstract: The synthesis and structural characterization of synthetic zinc oxide and halloysite-based
zinc oxide nanocomposites (with 2–28 m/m% ZnO content) are presented. The chemical precipitation
of zinc hydroxide precursors and its subsequent drying at 80 ◦C yielded dominantly zinc oxide
(zincite). Thermal treatment at 350 ◦C completely transformed the remaining precursor to ZnO with-
out causing structural dehydroxylation of the halloysite support. The procedure yielded zinc oxide
nanoparticles with 10–22 nm average size having quasi-spherical scale-like morphology. The specific
surface area of the synthetic zinc oxide was found to be low (13 m2/g), which was significantly
enhanced after nanocomposite preparation (27–47 m2/g). The photocatalytic activity of the prepared
nanocomposites was probed by the degradation of a phenolic compound (4-nitrophenol) upon UV
irradiation in liquid phase. Compared to their individual constituents, an increased activity of the
nanocomposites was observed, while the SSA-normalized photocatalytic activity revealed a synergic
effect in nanocomposites above 9 m/m% ZnO content. The nanocomposites were found to be stable
at pH = 5.6, with a minor and major mobilization of zinc ions at pH = 12.4 and pH = 1.9, respectively.
The toxicity of leachates in different pH environments by Vibrio fischeri bioluminescence indicated low
toxicity for ZnO nanoparticles and insignificant toxicity for the nanocomposites. The enhanced pho-
tocatalytic activity together with the lower toxicity of the halloysite-ZnO nanocomposites highlight
their application potential in water treatment.

Keywords: halloysite; zinc oxide; nanocomposite; structural characterization; photocatalytic activity

1. Introduction

Halloysite, the hydrated polymorph of kaolinite, is an abundant natural clay mineral
belonging to the serpentine-kaolin group of layered silicates (1:1 type phylloaluminosili-
cates). Its dual-layered structure consists of an interconnected silicon-centered tetrahedral
(T) and an aluminum-centered octahedral (O) layers. The TO layers are typically charge-
neutral to the external environment; however, local charges can be present, resulting from
the protolysis of OH groups on their outer and fractured surfaces and rarely from the
substitution of octahedral Al3+ ions. The TO layers have a dipole moment and are con-
nected together by numerous weak hydrogen bonds perpendicular to their surface. In
halloysites, interlayer water is usually present between the TO layers, giving rise to a
hydrated halloysite structure (Al2Si2O5(OH)4·2H2O) which can be irreversibly removed to
yield the dehydrated form (Al2Si2O5(OH)4). Consequently, halloysites most often display a
typical nanoscrolled morphology due to the weakening effect of interlayer water molecules.
Halloysite nanoscrolls typically have a cc. 50–200 nm thickness and 10–100 nm internal
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diameter (called the lumen), which results in a catalytically favorable porosity and specific
surface area [1–3].

Clay minerals are considered to be very promising materials in the cleaning and
remediation of environmental elements, especially in their use as adsorbents and photocat-
alysts [4]. A remarkable achievement of clay mineral research has been the report of the
photochemical activity of 1:1 type clay minerals, which highlighted their potential applica-
tion in the removal of environmental pollutants such as methylene-blue and toluene [5],
potassium-benzene-sulfonate [6], dyes [7], and small molecule organic acids [8].

Due to their natural origin, mined clay minerals often contain varying amounts of
mineral contaminants (such as Fe2O3, FeOOH, and TiO2) that can significantly affect their
photocatalytic activity. Clay minerals with mineral oxide impurities can be regarded as
natural composites. Iron-bearing kaolins are advantageously applied in the photocatalytic
degradation of persistent pesticides [9] and their catalytic activity can be significantly im-
proved by the modification of the constituents by means such as controlled acidification [10]
or artificial introduction of transition-metal oxide impurities [11].

Nanoscrolled halloysites, with an advantageous porosity, are particularly promising
supports for efficient, robust, and environmentally friendly photoactive catalysts. Hal-
loysite nanocomposites can be artificially prepared by surface-attachment of photoactive
transition metal oxides (e.g., TiO2, ZnO), resulting in a significant increase of photocatalytic
activity [12–15]. The increased photoactivity is mostly due to their increased surface area,
the more advantageous particle size distribution, and more favorable dispersity of the
semiconductor components and the enhanced adsorption enabled by the clay mineral
surface [16]. The controlled formation of structural aluminum defect sites via the gener-
ally applied heat-treatment during synthesis can also contribute to the enhancement of
photoactivity [8,17].

Zinc oxide is an n-type metal-oxide photocatalyst with an optical band gap of
3.1–3.3 eV [18,19] and a wide-range adsorption property. ZnO nanoparticles can be advan-
tageously used in heterogeneous photocatalysis in the degradation of various pollutants in
aqueous phase such as aromatic and aliphatic organic compounds, dyes, pharmaceutical
compounds, or persistent organics and pesticides [20–22]. Their major disadvantage is
the susceptibility to photocorrosion. ZnO nanoparticles can be synthesized by various
methods, such as sol gel [23], precipitation [24], hydrothermal [25], wet chemical [26], or
biosynthesis [27], among others. Synthesis conditions significantly affect the properties of
ZnO nanoparticles, influencing their morphology [28], band-gap [29], and consequently,
their potential field of applications [30]. The synthesis of clay-based ZnO nanocomposites
are currently in the focus of photocatalyst research [31,32].

The structural properties of halloysite-based ZnO nanocomposites, along with the
toxicity of the constituents, are quite well understood [33]. Halloysite is considered a
non-toxic biocompatible material [34–36], while the toxicity of zinc nanoparticles may
be of concern to the biosphere and the environment [37,38]. The toxic nature of ZnO in
nanocomposites can be beneficial due to the inherent antibacterial properties [39]; however,
their impact on the aqueous phase is not yet well understood. The stability and toxicity of
halloysite-based zinc oxide nanocomposites can be of outmost importance for a practical
application by potentially decreasing the mobility of surface attached zinc nanoparticles
in order to avoid liberation of secondary pollutants and to pose a risk to the biosphere.
The aims of this study were (1) to synthesize surface deposited zinc oxide nanoparticles
on a natural halloysite-based support in a relatively low concentration (2–28 m/m%) as
potential photocatalysts, (2) investigate the structural and photocatalytic properties of the
synthesized nanocomposites, and (3) investigate the stability and short-term toxicity of the
synthesized nanocomposite photocatalysts in aqueous phase.
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2. Materials and Methods

The following materials and methods were utilized during the research.

2.1. Samples and Prepared Composites

The used natural halloysite (Hal) was from Balikesir, Turplu (Turkey). Zinc-nitrate-
hexahydrate (Zn(NO3)2·6H2O, 99%, Sigma-Aldrich), sodium hydroxide (NaOH, 99%,
Scharlab), and MilliQ water (conductivity <0.056 µS/cm) were used for the composite synthesis.

The prepared halloysite-ZnO composites are listed in Table 1. The designation of the
samples is as follows: H-m%, where m% is the Zn content given in ZnO (m/m%), and
is varied between 2–28%. The heat treatment of the composite samples (T = 350 ◦C) is
not designated further. Any different heat treatment temperatures are given separately in
brackets (T ◦C).

Table 1. Designation and composition of samples.

Sample
Designation

Halloysite
(mg)

ZnO
(mg)

ZnO
(m/m%)

ZnO-100% - 200 100%
H-ZnO-28% 500 191 28%
H-ZnO-16% 500 96 16%
H-ZnO-9% 500 48 9%
H-ZnO-5% 500 24 5%
H-ZnO-2% 500 12 2%

Hal 500 - -

Samples were prepared by mixing the halloysite in 0.1 M Zn(NO3)2 solution and
stirring for 30 min with a magnetic stirrer. Then 0.2 M NaOH was added to the solution
and mixing was continued for an additional 60 min. After separation by centrifugation
(5000 rpm, 5 min), the resulting solid phase was washed 3 times with MilliQ water, dried
at room temperature for 12 h and 2 h at 80 ◦C, and carefully ground in an agate mortar.
Nanocomposites were formed by subsequent heat treatment at 350 ◦C for 2 h. The heat
treatment temperature was determined to be 350 ◦C (with 2 h isotherm) by thermal analysis
(see Section 3.1.3) to ensure Zn(OH)2 → ZnO + H2O transformation without causing
major structural changes in the halloysite. The applied synthesis route minimizes pollutant
generation, with the by-products of soluble NaNO3 and H2O.

2.2. Analytical Methods

X-ray powder diffraction (XRD) measurements were carried out using a Philips PW
3710-type instrument (CuKα radiation, λ = 1.54056 Å, 50 kV, 40 mA) in the range of 4–70◦

2θwith a scanning speed of 0.02◦/s and 1 s dwell time. Preferential particle orientation was
minimized by loading the finely ground samples into backpacked mounts. Calcined Al2O3
was used as standard sample for estimating the instrumental broadening in the calculation
of average crystallite sizes.

Infrared spectra were recorded using a Bruker Vertex 70 type Fourier-transform in-
frared (FTIR) spectrometer equipped with a Bruker Diamond ATR sample compartment,
operated at a resolution of 2 cm−1 with a room temperature DTGS detector. Final spectra
were acquired by averaging 512 scans.

Thermoanalytical measurements were carried out in a Netzsch TG-209 type thermobal-
ance. Grounds samples in ceramic crucibles were heated to 1000 ◦C (at 10 ◦C/min heating
rate) in dynamic argon flow (99.998%), and the thermogravimetric (TG) and derivative
thermogravimetric (DTG) curves were recorded.

The specific surface area (SSA) was determined by using the Brunauer-Emmett-
Teller (BET) [40] and Barret–Joyner–Halenda (BJH) models [41], while the latter was
used to determine the pore-volume distribution from nitrogen adsorption and desorp-
tion isotherms (N2, Messer 99.995%). SSA values were calculated utilizing the linear range
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(p/p0 = 0.0041–0.2123). The measurements were carried out using a Micromeritics ASAP
2000-type instrument. Prior to measurement, the samples were outgassed in vacuum at
60 ◦C until the vacuum dropped below 10 µtorr.

Transmission electron microscopic (TEM) measurement were carried out in a FEI Talos
F200X type electron microscope (X-FEG electron source, operated at 200 kV accelerator
potential). Samples were dispersed in MilliQ water and drop-dried at 60 ◦C onto a lacy
carbon-coated copper grid. Images of the samples were recorded in transmission (TEM)
and scanning (STEM) modes. Elemental composition was determined by recording the
energy dispersive X-ray spectra, using SuperX EDX detectors.

UV-Vis absorbance spectra were recorded in a double-beam Thermo Nicolet Evolution
500 equipment using 0.5 cm quartz cuvettes, 1 nm resolution in the 190–800 nm range. W-
lamp and deuterium lamp were the light sources in the visible and UV range, respectively,
and MilliQ water was used as background.

Zn concentrations were determined by means of a Spectroflame Modula E type ICP-
OES equipment (Spectro GmbH, Germany), applying a horizontal plasma torch with axial
detection using the 213.856 nm emission line.

2.2.1. Investigation of the Photocatalytic Activity

The photocatalytic activity of the samples was investigated by the degradation of
4-nitrophenol (4-NF, O2NC6H4OH, >99%, Alfa Aesar) test compound in aqueous phase
(at 40 ppm concentration) upon irradiation of λmax = 365 nm UV light. For the experi-
ments, 50 mg catalyst sample was mixed into 50 mL of 4-NF solution and placed in an
UV-transparent closed photoreactor under stirring at limited oxygen availability conditions
without air purging. After 20 min allowing for adsorption equilibrium, the UV light was
switched on. Samples were collected in 60 min intervals up to 300 min irradiation time. Col-
lected samples were filtered (PTFE, 0.2 µm) before measurement by UV-Vis spectroscopy.

2.2.2. Investigation of Nanocomposite Stability by Zinc Dissolution

100 mg sample was suspended in 10 mL liquid and vigorously mixed for 1 h by a
magnetic stirrer. The sample was then centrifuged and filtered through a 0.45 µm PTFE
filter before measurement. The investigated liquids were: 0.01M HCl (pH = 1.9), 0.01M
NaOH (pH = 12.4), and pure MilliQ water (<0.054 µS/cm, pH = 5.6).

2.2.3. Toxicology of Nanocomposites

The toxicity of the filtered leachates previously in contact with the catalysts was
measured in liquid form. Samples were prepared similarly to as described in Section 2.2.2.
The indirect antibacterial effect of the halloysite-metal oxide nanocomposite catalysts was
evaluated by using a bioluminescence method in the presence of Vibrio fischeri strain,
a Gram-negative marine bacterium. The test bacteria (NRRL-B-11177) suspension was
prepared following the manufacturer’s instructions (Hach Lange Co.). Test solutions were
prepared by adding 300 µL filtered leachate from the samples to 200 µL reconstitution
solution containing the Vibrio fischeri promptly before measurement. The luminescent
intensity of Vibrio fischeri was measured by a Toxalert 100 device after 0, 30, and 60 min
of exposure.

3. Results and Discussion
3.1. Synthesis and Characterization of Nanocomposites
3.1.1. X-ray Diffraction

The XRD patterns of the untreated halloysite (Hal), the synthetic Zn(OH)2 sample
and the various zinc-containing composites are given in Figure A1, while their 350 ◦C
heat-treated derivatives are shown in Figure 1. Mineral composition was identified using
the following Powder Diffraction File cards: halloysite (7Å: 00-029-1487), ZnO (zincite,
00-005-0664 and 01-075-7917), Zn(OH)2 (01-089-0138), and Zn3(OH)4(NO3)2 (00-052-0627)
quartz (00-033-1161). Halloysite in its fully hydrated form (having a water monolayer in
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between the 1:1 double layers) can be characterized with a layer distance of d(001) = 10.0Å
(Al2Si2O5(OH)4.2H2O). This water can be removed by drying or heating, yielding the
dehydrated halloysite structure with d(001) = 7.2Å (Al2Si2O5(OH)4) [3]. The compositional
analysis revealed that the natural halloysite sample (Figure 1/Hal) dominantly consisted
of partially dehydrated halloysite, based on the position of the 001 reflection of halloysite
(d(001) = 7.4Å, 11.95◦ 2theta). Only minor amounts of crystalline quartz was identified as
mineral pollutant in the halloysite sample, as indicated by the 011 and 101 reflection of
quartz, simultaneously detected at 26.6◦2theta [42].
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Figure 1. Structural and compositional characterization of the untreated halloysite, Zn(OH)2 sample
and their heat-treated composites (T = 350 ◦C) with different Zn content by powder X-ray diffraction
measurements. The most intense reflections of quartz and zincite are designated along with the
corresponding Miller indices while the dashed line indicates the d(001) value of halloysite and its shift
upon dehydration.

Surprisingly, the major intense reflections in the pure as-synthesized Zn(OH)2 sample
(Figure 1/Zn(OH)2 (80 ◦C)) could be identified as zinc oxide in zincite form based on the
presence of the intense 31.8◦, 34.5◦, 36.3◦, and 47.5◦ 2theta reflections belonging to the 100,
002, 101, and 102 reflections of zincite [43]. The small intensity reflections at 12.84◦ and
59.58◦ 2theta could be indicative of a minor impurity, due to nitrate ions incorporating the
zinc hydroxide structure to form zinc hydroxide-nitrate [44,45]. The simultaneous presence
of both hydroxide and oxide phases can be explained by the low temperature solid-phase
transformation of Zn(OH)2 to ZnO during the 80 ◦C heating of synthesis procedure [46].

After heat treatment at 350 ◦C, the reflections belonging to zinc hydroxide-nitrate
disappeared and only the ZnO peaks remained visible (Figure 1/ZnO-100%). In case
of the synthesized nanocomposites (Figure A1/H-ZnO-2%-28%), the presence of these
ZnO reflections indicated successful synthesis [31]. Their intensity increased parallel with
the increase of zinc content in the composites, as indicated by the 100% relative intensity
reflection of ZnO at 36.3◦2theta. The average crystallite size of the zinc oxides were
calculated by the Scherrer equation [47] and given in Table A1. In case of the synthetic ZnO
sample, the average crystallite size in the ‘a’-axis was found to be 20.5 nm, which gradually
increased up to 42.5 nm when deposited in increasing mass onto the halloysite surface in
the nanocomposites.

As expected at elevated temperatures [8,48], the gradual collapse of the partially hy-
drated halloysite structure to the dehydrated d(001) = 7.2 Å was observed as the interlayer
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water located between the halloysite TO layers were removed via the 350 ◦C heat treatment
of composites (Figure 1/H-ZnO-2%-28%). The intensity loss of the halloysite 001 reflection
at 12.26◦ 2theta and that of quartz at 26.6◦ 2theta was associated with the decreasing hal-
loysite content of the composites (Figure A1/H-ZnO-2%-28%). The dehydrated halloysite
001 reflection could be utilized to estimate the average crystallite size of halloysite in the
‘c’-axis by the Scherrer equation [49] along with the number of TO layers in a crystallite [50].
As observed on the XRD patterns, the results indicated (Table A1, Figure 1) that besides
the dehydration, insignificant structural changes and alterations related to the thermal
treatment of halloysite were taking place.

3.1.2. Infrared Spectroscopy (FTIR-ATR)

Infrared spectra of the as-prepared samples are given in Figure 2 and in Figure A2.
The unique features of the untreated halloysite (Figure 2/Hal) were the inner surface and
inner hydroxyl stretching (3695 cm−1, 3625 cm−1) as well as the hydroxyl deformation
(907 cm−1, 937 cm−1) vibrations of the alumina sheet, while the siloxane sheet could be
identified by the Si-O stretching vibrations (1019 cm−1, 1025 cm−1, and 1003 cm−1) [8,51].
The broad band of hydroxyl stretching in the 3000–3600 cm−1 region and its deformation
band at 1630 cm−1 indicated the water content of the halloysite sample. The absence of a
clear (water) band around 3550 cm−1 consolidated the dominantly dehydrated halloysite
form indicated by the XRD results (Figure 1/Hal, d(001) = 7.4 Å). The presence of quartz
could not be identified in the spectra as its band overlapped with that of the Si-O vibrations
of the halloysite [52].
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Figure 2. Infrared spectra of untreated halloysite and composite precursor samples prepared at 80 ◦C
in the 3800–3000 cm−1, 1700–1300 cm−1, and 1200–850 cm−1 spectral region.

Based on the XRD results, the as-prepared synthetic zinc hydroxide dominantly
consisted of zinc oxide, which was indicated by the high intensity baseline shift below
560 cm−1 assigned to the stretching vibrations of ZnO (Figure 2, Figure A2/Zn(OH)2).
The broad band centered around 3360 cm−1 was indicative of the hydroxyl stretching
vibrations of Zn(OH)2 [53], overlapped with the stretching vibration of surface-adsorbed
water, while the hydroxyl deformation (libration) vibrations of Zn(OH)2 were observed
in the 600–1200 cm−1 region [54,55] (Figure A2). The bands observed at 830, 1394, and
1481 cm−1 could be attributed to the presence of nitrate ions [56], incorporated into the
Zn(OH)2 crystal structure during the hydroxyl preparation from the nitrate precursor
salt [45].
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The infrared spectra of the prepared composites display the spectral features of their
constituents. The band intensities of the halloysite aluminosilicate framework decreased as
the Zn content increased in the samples (Figure 2/H-Zn(OH)2-2% to 28%). The presence
and attachment of Zn(OH)2/ZnO to the mineral was clearly indicated by the relative band
intensity changes and small shift of the halloysite silica sheet vibrations (1025/1003 cm−1

to 1035/1012 cm−1). No similar phenomenon was observed for the hydroxyl vibrations of
the alumina sheet.

3.1.3. Thermal Analysis (TG/DTG)

Results of the thermoanalytical measurements are given in Figure 3, while the detailed
thermogravimetric data are summarized in Table A2.
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The untreated halloysite sample showed three thermal decomposition stages
(Figure 3/Hal). The removal of weakly bound and adsorbed water took place in stage
I, while the low mass loss of stage II indicated the partially dehydrated halloysite struc-
ture with no prominent presence of interlayer water. Structural dehydroxylation of the
aluminosilicate framework was observed as a major mass loss in stage III (340–650 ◦C),
where the hydroxyl groups of the alumina sheet were removed via water liberation [57,58].
This structural alteration yielded amorphous meta-kaolinite (Al2Si2O7) [59] which was, in
the current study, not desirable for nanocomposite preparation due to the major loss of
surface hydroxyls and deteriorated porosity. However, a mild controlled dehydroxylation
could significantly increase the potential photoactivity of the halloysite surface [8]. The
dehydroxylation mass loss (∆m= −11.10%) could be utilized for assessing the halloysite
content of the composite sample: for this purpose, dehydroxylation was related to the
water-free dry sample mass (calculation is given in Appendix B). The dry sample-related
dehydroxylation mass loss (11.83%) was lower than the theoretical value (13.96% [59]),
indicating that another mineral, identified as quartz by XRD, was also present.

Three distinctive thermal stages were observed for the as-prepared Zn(OH)2 sample
(Figure 3/Zn(OH)2 (80 ◦C)). The first stage was assigned to the removal of surface adsorbed
water. Overlapping with this process, the thermal decomposition of zinc hydroxide [60]
and zinc-hydroxide-nitrates was expected between 80–250 ◦C [61,62]. Considering that a
similar solid-phase transformation (Zn(OH)2 → ZnO + H2O) already took place during
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the synthesis (see Section 3.1.1), it was not surprising that the observed mass loss (2nd
stage, ∆m= −5.12%) was significantly lower than the theoretical value expected from a
pure zinc hydroxide sample (∆mtheoretical= −18.12%).

The thermal behavior of the as-prepared halloysite-Zn(OH)2 precursors was also
investigated (Figure 3/H-Zn(OH)2 (80 ◦C) 5–28%). The thermal decomposition step of
zinc hydroxide was shifted to higher temperatures (Figure 3/H-Zn(OH)2 (80 ◦C) 5%,
stage II), indicating that the reagent was strongly bonded with halloysite, resulting in its
slightly increased thermal stability. This mass loss was increased and shifted to lower
temperatures as the zinc-content of the composite samples was increasing, along with the
parallel decreasing of the dehydroxylation mass loss with decreasing halloysite contents.
The observed shift in the thermal stability of zinc hydroxide was indicative of a possible
saturation of the binding sites on the halloysite surface and a subsequent formation of
individual non-surface attached formations.

A low temperature chemical precipitation synthesis yielded halloysite-based nanocom-
posites with minor Zn(OH)2 and a major ZnO content. The heat treatment temperature of
350 ◦C was adequate for the remaining surface-deposited zinc hydroxide transformation
to ZnO without thermal dehydroxylation of the halloysite structure. The heat-treatment
should be supplemented with an isothermal stage (2 h) to provide sufficient time for the
energy- and mass-transfer processes to proceed and achieve a suitable ZnO formation rate.

3.1.4. Porosity and Morphology

Specific surface area (SSA) and pore volumes, crucial attributes for any catalyst, were
determined by nitrogen adsorption measurements (Figure A3A) utilizing the BET and BJH
methods. The results are summarized in Table 2, while the pore-volume distribution is
shown in Figure A3B. In harmony with reported values [63,64], the untreated halloysite
displayed a catalytically favorable high SSA. The majority of the observed halloysite pores
were mesopores (2–50 nm, Figure A3B), mostly due to the halloysite nanoscrolls having
their lumen size in this range [3,8]. The specific surface area and pore volume of the
nanocomposites increased as the synthetic ZnO content, generally having low-surface
area and porosity [65,66], decreased. This increment can be explained by the increased
population of mesopores (2–50 nm) due to the presence of halloysite and the formation
of new macropores (>50 nm) in the halloysite nanocomposites as the cumulative pore-
volumes were slightly shifted to the macropore range (Figure A3B). The differences in the
BET- and BJH-SSA values can be explained as the BJH method [41] approximate pores with
ideal cylindrical geometry, which would result in differences when pores with different
geometries are present.

Table 2. Specific surface area (SSA), pore-volume (V), and pore-size (D) data.

Sample
Designation

SSABET
(m2/g)

SSABJH
(m2/g)

SSAmicro
1

(m2/g)
Vmicro

1

(cm3/g)
Vmicro+meso

1

(cm3/g)
Daverage

(nm)

ZnO-100% 13 13 2.0 0.0009 0.0562 17.4
H-ZnO-28% 27 30 3.4 0.0014 0.0932 12.5
H-ZnO-16% 35 38 4.4 0.0018 0.1344 14.0
H-ZnO-9% 41 48 4.4 0.0017 0.1550 12.8
H-ZnO-5% 44 53 4.7 0.0018 0.1811 13.6
H-ZnO-2% 47 59 5.7 0.0023 0.1968 13.4

Hal 94 94 14 0.0058 0.2203 9.4
1 Pore-sizes: micro (1.7–2 nm), meso (2–50 nm).

Overall, the SSA and pore volume of the halloysite nanocomposites were signifi-
cantly greater than that of pure synthetic ZnO, which indicates a potential benefit in their
photocatalytic application.

The morphology of the synthetized zinc oxide and its halloysite-based nanocomposites
was investigated by transmission electron microscopy (TEM). The images are summarized
in Figure 4.
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Figure 4. TEM images of the investigated samples, (A–C): synthetic ZnO-100%, (D–F): H-ZnO-28%,
and (G–I): H-ZnO-5%.

Small quasi-spherical scale-like crystallites having 16 ± 6 nm average diameter and
their aggregated structures were identified in the synthetic ZnO sample (Figure 4A–C).
This is in good agreement with the calculated crystallite sizes determined from the XRD
measurements (Table A1). Generally, the synthesis conditions determine the dominant mor-
phology [60,67], while on the other hand, the morphology of ZnO nanoparticles strongly
influences their aggregation behavior, with the quasi-spherical morphology displaying
an increased tendency to aggregate [68]. However, the presence of both small, individ-
ual, and their aggregated structures can be catalytically advantageous in reduction and
degradation processes [69]. According to the elemental mappings by EDX measurement,
the ZnO-100% sample dominantly consisted of zinc and oxygen with minor impurities
(Figure A4, Table A3/ZnO-100%). The halloysite-ZnO nanocomposites showed features of
both the scroll-like tubular halloysite (Figure 4G) and the aggregated ZnO nanoparticles.
The occurrence of uncoated halloysites by zinc oxide nanoparticles decreased as the Zn
content increased in the composites (Figure 4D), which would increase the aggregation of
particles, resulting in the observed decreased surface area of the composites having higher
zinc content (Table 2).

3.2. Photochemical Characterization of Nanocomposites

Photocatalytic degradation of 4-nitrophenol (4-NF) is a complex reaction, which can un-
dergo oxidative or reductive photodegradation, depending on the reaction conditions [70,71].
The photochemical activity of the synthesized composite samples was investigated by the
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decomposition of 4-NF test compound upon 365 nm UV irradiation in a limited oxygen-
availability system. Changes of the typical absorbance bands of the 4-NF could be observed
after adsorption (Figure A5), as the adsorption maxima of 4-nitrophenol (317 nm) and
4-nitrophenolate (399 nm) was changed. This is due to its pH sensitivity as it can trans-
form (4-nitrophenol↔4-nitrophenolate), which results in the change of its molar extinction
coefficient and adsorption bands except in the isosbestic points [72,73]. This reduction in
presence of ZnO nanoparticles is reported in the literature [74,75]; however, the importance
of the isosbestic point is generally not highlighted, which could cause inconsistencies if
the degradation is evaluated upon the changes of the 4-nitrophenol or 4-nitrophenolate
absorption maxima rather than the isosbestic point. Therefore, the 348 nm isosbestic point
was used for the monitoring of the test compound degradation (Figure A5). The results are
given in Figure 5.
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Figure 5. Decomposition efficiency of 4-nitrophenol determined by UV absorption. (A): compared to
initial concentration, (B): normalized to specific surface area (BET-SSA).

The untreated halloysite showed insignificant photoactivity while the pure ZnO
nanoparticles displayed only minor activity (8%) in the degradation of the test compound
(Figure 5A Hal, ZnO-100%). The photoactivity of the prepared nanocomposites were en-
hanced significantly as the zinc oxide content increased, which could be followed by the
decline in the adsorption intensity at the isosbestic point of 348 nm (Figure A5). This could
be explained by the advantageous effect of the aluminosilicate support enhancing the pho-
toactivity, mostly by the dispersion of ZnO nanoparticles and more efficient adsorption of
4-NF [15,76]. The best performance was observed for the H-ZnO-28% sample by removing
39% of the initial 4-NF test compound after 300 min irradiation.
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The photocatalytic activity of the samples were strongly linked to their surface area.
Considering the decreasing tendency of their SSA as the ZnO content increased in the
composites (Table 2), the specific surface normalized photocatalytic activity could be given
(Figure 5B). This indicates the catalytic activity per unit surface and could be more beneficial
for comparison and evaluation of the performance potential of catalyst samples having
different SSA. The results indicated that the negligible photoactivity of halloysite could be
significantly improved by nanocomposite preparation; however, only the nanocomposites
having higher ZnO content (9–28%) could outperform the normalized activity of pure
synthetic zinc nanoparticles. The highest ZnO content sample was clearly the best candidate
for the photocatalytic 4-NF removal (Figure 5A,B).

3.3. Stability of the Nanocomposites and Their Toxicity

The stability of the halloysite-ZnO nanocomposites was tested via zinc dissolution
under various pH conditions. Acidic (pH = 1.9) and basic (pH = 12.4) conditions were
applied along with a pH = 5.6 simulating the slightly acidic natural conditions of unpolluted
rain waters. Mostly, pH governs the solubility of zinc; however, crystallinity and particle
size can also have an effect (increased solubility for nanoparticles [77]).

Independently of the zinc content of the samples, the mobilized Zn2+ content was
found relatively high in acidic conditions, as zinc is dissolved in low pH environments
(Table 3). ZnO nanoparticles were reported to be unstable in the pH 6–7 range [78,79];
however, the mobilized Zn2+ was found to be under the limit of detection in slightly acidic
media (pH = 5.6) and rather low in basic environments (Table 3). The results indicated
that the mobilization risk of zinc ions from the synthesized halloysite nanocomposites was
negligible under short-term contact in the pH conditions of surface waters, promoting the
possible use of these environmentally friendly photocatalysts in ambient applications.

Table 3. Mobility of Zn2+ ions determined by ICP-OES.

Composite
Designation

pH = 1.9 Zn2+

(mg/mL)
pH = 12.4 Zn2+

(mg/mL)
pH = 5.6 Zn2+

(mg/mL)

ZnO-100% 317 0.73 <0.46
H-ZnO-28% 320 0.71 <0.46
H-ZnO-16% 308 1.03 <0.46
H-ZnO-9% 316 0.66 <0.46
H-ZnO-5% 305 0.94 <0.46
H-ZnO-2% 320 1.11 <0.46

The mobility of zinc also governs its toxicity to microorganisms in aqueous phase;
therefore, its toxicity to aquatic microorganisms should also be assessed for a better evalua-
tion of its potential use in environmental application such as wastewater treatment.

The indirect toxicity of leached samples in different pH environments was estimated
by the bioluminescence suppression of a Vibrio fischeri bacteria strain. The commercially
available bioluminescent Vibrio fischeri bacteria is widely used for toxicity assessments [80];
however, it is susceptible to environmental conditions such as pH, temperature, and salin-
ity [81]. The acidic (pH = 1.9) and basic (pH = 12.4) conditions applied in the determination
of zinc mobility were adverse due to the pH sensitivity and subsequent luminescence sup-
pression; therefore, the toxicity measurements were focused on the pH = 5.6 environment.
The results are summarized in Figure 6.

Zinc oxide nanoparticles are reported to have anti-bacterial and -microbial proper-
ties [37], which explains the luminescence suppression of pure zinc nanoparticles
(Figure 6/ZnO-100%). Despite the slightly suboptimal pH of 5.6, only low toxicity was
observed after 30 and 60 min of exposure most probably due to the minor amounts of mobi-
lized Zn-ions [82] (Table 3). In harmony with the literature [34], no significant toxicity was
observed for the halloysite sample. The toxicity of the halloysite-zinc-oxide nanocompos-
ites was only marginal and within the uncertainty range of the measurement. This finding
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highlights the potential application of halloysite-zinc-oxide nanocomposites, as these mate-
rials showed increased photocatalytic efficiency with decreased toxicity compared to pure
ZnO nanoparticles.
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of Vibrio fischeri strain. Toxicity measurements were carried out after 0, 30, and 60 min of exposure to
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4. Conclusions

Halloysite nanocomposites containing surface-bound zinc oxide nanoparticles in low
concentrations (2–28 m/m%) were synthesized via a hydroxide precursor prepared by
chemical precipitation and subsequent thermal treatment. Structural elucidation investi-
gation of the zinc hydroxide precursor revealed that besides zinc-hydroxides, zinc oxide
could be dominantly synthesized via a low temperature (80 ◦C) heat treatment. Thermal
analysis highlighted the importance of the final heat treatment step, as 350 ◦C was found
to be adequate for the total zinc oxide transformation without causing major structural
alteration to the halloysite structure due to thermal dehydroxylation. The specific surface
area and porosity of halloysite-based zinc oxide nanocomposites increased advantageously
after nanocomposite preparation.

The importance of the isosbestic point in the determination of 4-NF was highlighted.
The halloysite-ZnO nanocomposites showed increased photocatalytic activity in the degra-
dation of 4-NF test compound compared to pure zinc oxide nanoparticles or halloysite
nanotubes. Specific surface area normalized photocatalytic activity enabled the direct
comparison of catalysts having different SSA values, and highlighted the synergic effect
above 9% ZnO content.

The stability of surface-bound zinc nanoparticles in the composites was investigated in
different pH environments (pH = 1.9, 5.6, and 12.4). No correlation was found between the
dissolved zinc ions and the zinc content of the composites as the pH mostly determined the
dissolution. The mobilization of zinc ions was found to be high (pH = 1.9), low (pH = 12.4),
and negligible at pH = 5.6, highlighting the application limits of the nanocomposites.
The short-term toxicity of leachates of the nanocomposites were evaluated by the Vibrio
fischeri bioluminescence suppression method, indicating that the low toxicity of ZnO
nanoparticles could be significantly decreased by surface attachment in the nanocomposites.
Considering the enhanced photocatalytic activity and their lower toxicity compared to
pure ZnO nanoparticles, the halloysite-ZnO nanocomposites can be promising materials
for environmental remediation applications.
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with different Zn content by powder X-ray diffraction measurements. The dashed line indicates the 
d(001) value of halloysite. The as-synthesized halloysite-Zn(OH)2 composite samples before heat-
treatment at 350 °C are denoted with “(80 °C)”. 
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Figure A1. Structural and compositional identification of the halloysite-Zn(OH)2 composite samples
with different Zn content by powder X-ray diffraction measurements. The dashed line indicates
the d(001) value of halloysite. The as-synthesized halloysite-Zn(OH)2 composite samples before
heat-treatment at 350 ◦C are denoted with “(80 ◦C)”.

Table A1. Average crystallite size (d) of halloysite and zincite. The determined d(001) interlayer
distance values were applied when the average number of halloysite TO layers (N) were calculated
by the Scherrer equation.

Halloysite (001) Zincite (100) Zincite (102)
Sample 2θ (◦) FWHM (◦) d (nm) N 2θ (◦) FWHM (◦) d (nm) 2θ (◦) FWHM (◦) d (nm)
Hal 11.91 0.842 12.2 16.4 - - - - - -
Hal-ZnO-2% 12.20 0.695 15.7 21.7 31.76 0.510 26.6 47.56 0.666 20.0
Hal-ZnO-5% 12.19 0.710 15.2 21.2 31.77 0.470 30.7 47.56 0.721 17.8
Hal-ZnO-9% 12.18 0.689 15.8 22.0 31.75 0.450 33.4 47.55 0.707 18.3
Hal-ZnO-16% 12.24 0.699 15.6 21.6 31.82 0.408 40.4 47.61 0.699 18.6
Hal-ZnO-28% 12.20 0.688 15.9 22.1 31.77 0.398 42.5 47.56 0.668 19.9
ZnO-100% - - - - 31.75 0.599 20.5 47.59 0.902 13.0



Minerals 2022, 12, 476 14 of 20

Minerals 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

Table A1. Average crystallite size (d) of halloysite and zincite. The determined d(001) interlayer dis-
tance values were applied when the average number of halloysite TO layers (N) were calculated by 
the Scherrer equation. 

Sample 
Halloysite (001) Zincite (100) Zincite (102) 

2θ (°) FWHM (°) d (nm) N 2θ (°) FWHM (°) d (nm) 2θ (°) FWHM (°) d (nm) 
Hal 11.91 0.842 12.2 16.4 - - - - - - 
Hal-ZnO-2% 12.20 0.695 15.7 21.7 31.76 0.510 26.6 47.56 0.666 20.0 
Hal-ZnO-5% 12.19 0.710 15.2 21.2 31.77 0.470 30.7 47.56 0.721 17.8 
Hal-ZnO-9% 12.18 0.689 15.8 22.0 31.75 0.450 33.4 47.55 0.707 18.3 
Hal-ZnO-16% 12.24 0.699 15.6 21.6 31.82 0.408 40.4 47.61 0.699 18.6 
Hal-ZnO-28% 12.20 0.688 15.9 22.1 31.77 0.398 42.5 47.56 0.668 19.9 
ZnO-100% - - - - 31.75 0.599 20.5 47.59 0.902 13.0 

 
Figure A2. Infrared spectra of the investigated precursor samples in the 4000–400 cm−1 spectral re-
gion. The bands of the as-prepared Zn(OH)2 sample are indicated. 

Table A2. Thermoanalytical data readouts from Figure 5. 

Sample Stage T initial (°C) T end (°C) Mass loss step 

Hal 

I. 20 200 0.96 mg (4.98 %) 
II. 200 340 0.23 mg (1.19 %) 
III. 340 650 2.13 mg (11.1 %) 
IV. 650 1000 0.12 mg (0.61 %) 

Initial mass: 19.224 mg 
Total mass loss: 3.44 mg (17.88 %) 

Zn(OH)2-100% 
(80 °C) 

I. 20 160 1.31 mg (2.27 %) 
II. 160 350 2.95 mg (5.12 %) 
III. 350 1001 0.37 mg (0.64 %) 

Initial mass: 57.534 mg 
Total mass loss: 4.63 mg (8.03 %) 

H-Zn(OH)2-5% 
(80 °C) 

I. 20 200 0.81 mg (4.04 %) 
II. 200 340 0.33 mg (1.66 %) 
III. 340 650 1.67 mg (8.32 %) 

40080012001600200024002800320036004000

Ab
so

rb
an

ce
 (a

.u
.)

Wavenumber (cm-1)

Hal

Zn(OH)2  (80°C)

83
0

H-Zn(OH)2-16% (80°C)

H-Zn(OH)2-28% (80°C)

89
0

10
40

73
6

70
4

68
913

94
14

81
15

51

(3
36

0)
H-Zn(OH)2-9% (80°C)

H-Zn(OH)2-5% (80°C)

H-Zn(OH)2-2% (80°C)

Figure A2. Infrared spectra of the investigated precursor samples in the 4000–400 cm−1 spectral
region. The bands of the as-prepared Zn(OH)2 sample are indicated.

Table A2. Thermoanalytical data readouts from Figure 5.

Sample Stage Tinitial (◦C) Tend (◦C) Mass Loss Step

Hal

I. 20 200 0.96 mg (4.98%)
II. 200 340 0.23 mg (1.19%)
III. 340 650 2.13 mg (11.1%)
IV. 650 1000 0.12 mg (0.61%)

Initial mass: 19.224 mg
Total mass loss: 3.44 mg (17.88%)

Zn(OH)2-100%
(80 ◦C)

I. 20 160 1.31 mg (2.27%)
II. 160 350 2.95 mg (5.12%)
III. 350 1001 0.37 mg (0.64%)

Initial mass: 57.534 mg
Total mass loss: 4.63 mg (8.03%)

H-Zn(OH)2-5%
(80 ◦C)

I. 20 200 0.81 mg (4.04%)
II. 200 340 0.33 mg (1.66%)
III. 340 650 1.67 mg (8.32%)
IV. 650 1000 0.02 mg (0.09%)

Initial mass: 20.062 mg
Total mass loss: 2.83 mg (14.11%)

H-Zn(OH)2-28%
(80 ◦C)

I. 20 85 0.25 mg (1.25%)
II. 85 200 0.34 mg (1.67%)
III. 200 341 0.26 mg (1.29%)
IV. 341 1000 0.65 mg (3.24%)
V. 650 1001 0.01 mg (0.07%)

Initial mass: 20.06 mg
Total mass loss: 1.51 mg (7.52%)

Appendix B. Thermoanalytical Calculations

Initial sample mass: 19.224 mg
Adsorbed and interlayer water mass: 1.186 mg (20–340 ◦C)
Dry sample mass: 18.038 mg
Mass loss observed for the thermal dehydroxylation: 2.134 mg (340–650 ◦C)
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Dehydroxylation related to dry sample mass:

2.134
18.038

·100% = 11.83 %

Theoretical dehydroxylation mass loss [59]

Al2[Si2O5](OH)4 → Al2O3·2SiO2 + 2H2O
258.157 g

mol → 222.127 g
mol + 2× 18.015 g

mol

liberated H2O mass ratio is 13.96%.
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Figure A3. (A): Nitrogen adsorption–desorption and (B): pore–volume distribution curves of the
natural halloysite (Hal), synthetic zinc oxide (ZnO-100%), and their nanocomposite samples with
varying ZnO content (H-ZnO-2%-28%). The peaks around 3.6–3.8 nm were considered artifacts due
to capillary condensation and not related to pores of the sample [83].



Minerals 2022, 12, 476 16 of 20Minerals 2022, 12, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure A4. STEM images and EDX elemental composition maps from the designated areas of A: 
ZnO-100%, B: Hal, C: H-ZnO-5%, D: H-ZnO-28% samples. 

Table A3. Elemental composition of samples determined by STEM-EDX measurements from the 
designated areas of Figure A3. 

Sample Element Atom% Mass% 

Hal 

O 69.97 ± 6.43 57.43 ± 3.34 
Al 15.26 ± 3.32 21.12 ± 4.35 
Si 14.54 ± 3.1 20.95 ± 4.21 
Ti 0.01 ± 0 0.02 ± 0 
Fe 0.11 ± 0.02 0.31 ± 0.05 
Zn 0 ± 0 0 ± 0 

ZnO-100% 

O 54.31 ± 8.56 22.65 ± 2.34 
Al 0.07 ± 0.02 0.05 ± 0.01 
Si 0.47 ± 0.12 0.35 ± 0.08 
Ti 0.03 ± 0.01 0.04 ± 0.01 
Fe 0.06 ± 0.01 0.08 ± 0.01 
Zn 45.06 ± 9.29 76.83 ± 12.93 

H-ZnO-28% 

O 51.61 ± 8.2 21.08 ± 2.18 
Al 0.84 ± 0.21 0.58 ± 0.13 
Si 1.08 ± 0.27 0.77 ± 0.17 
Ti 0 ± 0 0 ± 0 
Fe 0.06 ± 0.01 0.08 ± 0.01 
Zn 46.42 ± 9.63 77.49 ± 13.08 

H-ZnO-5% 

O 61.89 ± 5.72 38.4 ± 2.28 
Al 12.34 ± 2.69 12.91 ± 2.66 
Si 11.45 ± 2.49 12.47 ± 2.56 
Ti 0.01 ± 0 0.01 ± 0 
Fe 0.17 ± 0.03 0.36 ± 0.05 
Zn 14.13 ± 2.29 35.84 ± 5.24 

Figure A4. STEM images and EDX elemental composition maps from the designated areas of
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Table A3. Elemental composition of samples determined by STEM-EDX measurements from the
designated areas of Figure A3.

Sample Element Atom% Mass%

Hal

O 69.97 ± 6.43 57.43 ± 3.34
Al 15.26 ± 3.32 21.12 ± 4.35
Si 14.54 ± 3.1 20.95 ± 4.21
Ti 0.01 ± 0 0.02 ± 0
Fe 0.11 ± 0.02 0.31 ± 0.05
Zn 0 ± 0 0 ± 0

ZnO-100%

O 54.31 ± 8.56 22.65 ± 2.34
Al 0.07 ± 0.02 0.05 ± 0.01
Si 0.47 ± 0.12 0.35 ± 0.08
Ti 0.03 ± 0.01 0.04 ± 0.01
Fe 0.06 ± 0.01 0.08 ± 0.01
Zn 45.06 ± 9.29 76.83 ± 12.93

H-ZnO-28%

O 51.61 ± 8.2 21.08 ± 2.18
Al 0.84 ± 0.21 0.58 ± 0.13
Si 1.08 ± 0.27 0.77 ± 0.17
Ti 0 ± 0 0 ± 0
Fe 0.06 ± 0.01 0.08 ± 0.01
Zn 46.42 ± 9.63 77.49 ± 13.08

H-ZnO-5%

O 61.89 ± 5.72 38.4 ± 2.28
Al 12.34 ± 2.69 12.91 ± 2.66
Si 11.45 ± 2.49 12.47 ± 2.56
Ti 0.01 ± 0 0.01 ± 0
Fe 0.17 ± 0.03 0.36 ± 0.05
Zn 14.13 ± 2.29 35.84 ± 5.24
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and upon 60–300 min λmax=365 nm UV irradiation. The 348 nm isosbestic point, utilized for the de-
termination of decomposition, is indicated with a dashed line. 
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