Major and Trace Elements in Human Kidney Stones: A Preliminary Investigation in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, V.K.; Rai, P.K. Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophys. Rev. 2014, 6, 291–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Prevalence of Kidney Stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrajith, R.; Wijewardana, G.; Dissanayake, C.B.; Abeygunasekara, A. Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka. Environ. Geochem. Health 2006, 28, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Heilberg, I.P.; Schor, N. Renal stone disease: Causes, evaluation and medical treatment. Arq. Bras. Endocrinol. Metabol. 2006, 50, 823–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, J.H.; Worcester, E.M.; Coe, F.L.; Evan, A.P.; Lingeman, J.E. Clinical implications of abundant calcium phosphatein routinely analyzed kidney stones. Kidney Int. 2004, 66, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaschko, S.D.; Miller, J.; Chi, T.; Flechner, L.; Fakra, S.; Kahn, A.; Kapahi, P.; Stoller, M.L. Microcomposition of Human Urinary Calculi Using Advanced Imaging Techniques. J. Urol. 2013, 189, 726–734. [Google Scholar] [CrossRef]
- Bazin, D.; Daudon, M. Pathological calcifications and selected examples at the medicine–solid-state physics interface. J. Phys. D Appl. Phys. 2012, 45, 383001. [Google Scholar] [CrossRef]
- Chandrajith, R.; Weerasingha, A.; Premaratne, K.M.; Gamage, D.; Abeygunasekera, A.M.; Joachimski, M.M.; Senaratne, A. Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Environ. Geochem. Health 2019, 41, 1881–1894. [Google Scholar] [CrossRef]
- Wrobel, A.; Rokita, E.; Taton, G.; Thor, P. Chemical composition and morphology of renal stones. Folia Med. Cracov. 2013, 53, 5–15. [Google Scholar]
- Giannossi, M.L.; Summa, V.; Mongelli, G. Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). J. Trace Elem. Med. Biol. 2013, 27, 91–97. [Google Scholar] [CrossRef]
- Zarasvandi, A.; Heidari, M.; Sadeghi, M.; Mousapoor, E. Major and trace element composition of urinary stones, Khuzestan province, southwest, Iran. J. Geochem. Explor. 2013, 131, 52–58. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Yavarashayeri, N.; Irani, D.; Moore, F.; Zarasvandi, A.; Salari, M. Trace elements in urinary stones: A preliminary investigation in Fars province, Iran. Environ. Geochem. Health 2015, 37, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, F.; Rasekhi, R.; Mosaferi, M. Mineralogy and elemental composition of urinary stones: A preliminary study in northwest of Iran. Period Miner. 2021, 90, 105–119. [Google Scholar] [CrossRef]
- Kustov, A.V.; Berezin, B.D.; Trostin, V.N. The complexon-renal stone interaction: Solubility and electronic microscopy studies. J. Phys. Chem. B 2009, 113, 9547–9550. [Google Scholar] [CrossRef] [PubMed]
- Bazin, D.; Portehault, D.; Tielens, F.; Livage, J.; Bonhomme, C.; Bonhomme, L.; Haymann, J.-P.; Abou-Hassan, A.; Laffite, G.; Frochot, V.; et al. Urolithiasis: What can we learn from a Nature which dysfunctions? Comptes Rendus Chimie 2016, 19, 1558–1564. [Google Scholar] [CrossRef]
- Słojewski, M. Major and trace elements in lithogenesis. Cent. Eur. J. Chem. 2011, 64, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.A.; Valiente, M. Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol. Res. 2005, 33, 267–272. [Google Scholar] [CrossRef]
- Cloutier, J.; Villa, L.; Traxer, O.; Daudon, M. Kidney stone analysis: “Give me your stone, I will tell you who you are!”. World J. Urol. 2015, 33, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Huel, G.; Fréry, N.; Takser, L.; Jouan, M.; Hellier, G.; Sahuquillo, J.; Giordanella, J.P. Evolution of blood lead levels in urban French population (1979–1995). Rev. Epidemiol. Sante Publique 2002, 50, 287–295. [Google Scholar]
- Li, X.; Han, G. One-step chromatographic purification of K, Ca, and Sr from geological samples for high precision stable and radiogenic isotope analysis by MC-ICP-MS. J. Anal. At. Spectrom. 2021, 36, 676–684. [Google Scholar] [CrossRef]
- Li, X.; Han, G.; Liu, M.; Liu, J.; Zhang, Q.; Qu, R. Potassium and its isotope behaviour during chemical weathering in a tropical catchment affected by evaporite dissolution. Geochim. Cosmochim. Acta 2022, 316, 105–121. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Yang, K. Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. J. Clean. Prod. 2020, 265, 121898. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G. Preliminary copper isotope study on particulate matter in Zhujiang River, southwest China: Application for source identification. Ecotoxicol. Environ. Saf. 2020, 198, 110663. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Han, G.; Zhang, S.; Liang, B.; Qu, R.; Liu, M.; Liu, J. Potentially toxic elements in cascade dams-influenced river originated from Tibetan Plateau. Environ. Res. 2022, 208, 112716. [Google Scholar] [CrossRef]
- Sekkoum, K.; Cheriti, A.; Taleb, S.; Belboukhari, N. FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arab. J. Chem. 2016, 9, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Le Bail, A.; Daudon, M.; Bazin, D. A new compound in kidney stones? Powder X-ray diffraction study of calcium glycinate trihydrate. Acta Crystallogr. Sect. C 2013, 69, 734–737. [Google Scholar] [CrossRef]
- Schubert, G. Stone analysis. Urol. Res. 2006, 34, 146–150. [Google Scholar] [CrossRef]
- Słojewski, M.; Czerny, B.; Safranow, K.; Jakubowska, K.; Olszewska, M.; Pawlik, A.; Gołąb, A.; Droździk, M.; Chlubek, D.; Sikorski, A. Microelements in Stones, Urine, and Hair of Stone Formers: A New Key to the Puzzle of Lithogenesis? Biol. Trace Elem. Res. 2010, 137, 301–316. [Google Scholar] [CrossRef]
- Kustov, A.V.; Berezin, B.D.; Strel’nikov, A.I.; Shevyrin, A.A.; Trostin, V.N. Interaction of a complexing agent with urolith as the basis for efficient little-invasive therapy of phosphaturia. Dokl. Phys. Chem. 2009, 428, 175–177. [Google Scholar] [CrossRef]
- Kustov, A.V.; Strelnikov, A.I. Quantitative Mineralogical Composition of Calculi and Urine Abnormalities for Calcium Oxalate Stone Formers: A Single-Center Results. Urol. J. 2018, 15, 87–91. [Google Scholar] [CrossRef]
- Gillams, K.; Juliebo-Jones, P.; Juliebo, S.O.; Somani, B.K. Gender Differences in Kidney Stone Disease (KSD): Findings from a Systematic Review. Curr. Urol. Rep. 2021, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, B.; Ashayeri, N.Y.; Moore, F.; Irani, D.; Asadi, S.; Zarasvandi, A.; Salari, M. Mineralogical Composition of Urinary Stones and Their Frequency in Patients: Relationship to Gender and Age. Minerals 2016, 6, 131. [Google Scholar] [CrossRef]
- Bazin, D.; Chevallier, P.; Matzen, G.; Jungers, P.; Daudon, M. Heavy elements in urinary stones. Urol. Res. 2007, 35, 179–184. [Google Scholar] [CrossRef]
- Lima, W.G.; Martins-Santos, M.E.S.; Chaves, V.E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015, 116, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujieda, M.; Naruse, K.; Hamauzu, T.; Miyazaki, E.; Hayashi, Y.; Enomoto, R.; Lee, E.; Ohta, K.; Yamaguchi, Y.; Wakiguchi, H.; et al. Effect of selenium-deficient diet on tubular epithelium in normal rats. Pediatr. Nephrol. 2007, 22, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Santhosh Kumar, M.; Selvam, R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J. Nutr. Biochem. 2003, 14, 306–313. [Google Scholar] [CrossRef]
- Joost, J.; Tessadri, R. Trace Element Investigations in Kidney Stone Patients. Eur. Urol. 1987, 13, 264–270. [Google Scholar] [CrossRef]
- Ekong, E.B.; Jaar, B.G.; Weaver, V.M. Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney Int. 2006, 70, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010, 12, e86–e96. [Google Scholar]
- Riley, J.M.; Kim, H.; Averch, T.D.; Kim, H.J. Effect of Magnesium on Calcium and Oxalate Ion Binding. J. Endourol. 2013, 27, 1487–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta. Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Li, C.; Paris, O.; Siegel, S.; Roschger, P.; Paschalis, E.P.; Klaushofer, K.; Fratzl, P. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J. Bone Miner. Res. 2010, 25, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Negri, A.L. The role of zinc in urinary stone disease. Int. Urol. Nephrol. 2018, 50, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.N.C.; Dissanayake, C.B.; Abeysekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Balasooriya, S.; Munasinghe, H.; Herath, A.T.; Diyabalanage, S.; Ileperuma, O.A.; Manthrithilake, H.; Daniel, C.; Amann, K.; Zwiener, C.; Barth, J.A.C.; et al. Possible links between groundwater geochemistry and chronic kidney disease of unknown etiology (CKDu): An investigation from the Ginnoruwa region in Sri Lanka. Expos. Health 2020, 12, 823–834. [Google Scholar] [CrossRef]
- Nikagolla, C.; Meredith, K.T.; Dawes, L.A.; Banati, R.B.; Millar, G.J. Using water quality and isotope studies to inform research in chronic kidney disease of unknown aetiology endemic areas in Sri Lanka. Sci. Total Environ. 2020, 745, 140896. [Google Scholar] [CrossRef]
- Tian, Y.; Han, G.; Zeng, J.; Zhang, Q.; Xu, L.; Liu, K.; Xiao, C.; Ma, L.; Zhao, Y. Preliminary Data on Geochemical Characteristics of Major and Trace Elements in Typical Biominerals: From the Perspective of Human Kidney Stones. Minerals 2021, 11, 1396. [Google Scholar] [CrossRef]
- Lewis, S.L.; Bucher, L.; Heitkemper, M.M.; Harding, M.M.; Kwong, J.; Roberts, D. Medical-Surgical Nursing: Assessment and Management of Clinical Problems; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Knight, J.; Assimos, D.G.; Easter, L.; Holmes, R.P. Metabolism of fructose to oxalate and glycolate. Horm. Metab. Res. 2010, 42, 868–873. [Google Scholar] [CrossRef] [Green Version]
Kidney Stone Type | Parameters | Ca | Mg | Na | K | Sr | Zn | Li | Ti | Cu | Se | Rb | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg/g | μg/g | μg/g | μg/g | μg/g | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | μg/kg | ||
CO (n = 19) | Min | 15.99 | 0.13 | 1295.53 | 0.01 | 30.84 | 16.89 | 0.01 | 16.26 | 235.01 | 16.36 | 40.04 | 0.01 | 802.55 |
Max | 29.93 | 3.52 | 7317.94 | 410.31 | 287.22 | 1023.73 | 475.00 | 1681.25 | 1838.47 | 319.92 | 315.31 | 5165.92 | 23,631.49 | |
Mean | 26.03 | 1.04 | 2922.24 | 76.70 | 120.28 | 312.78 | 124.67 | 574.60 | 630.72 | 154.36 | 130.14 | 1519.62 | 6534.56 | |
Medium | 26.44 | 0.48 | 2529.56 | 0.01 | 103.66 | 192.29 | 28.88 | 485.71 | 520.09 | 138.39 | 121.07 | 909.93 | 4834.78 | |
CA (n = 4) | Min | 10.39 | 13.15 | 6633.73 | 252.94 | 228.97 | 516.80 | 305.56 | 1397.03 | 195.48 | 18.81 | 262.22 | 3465.35 | 3067.33 |
Max | 27.41 | 60.21 | 9476.04 | 1745.54 | 486.84 | 1093.86 | 1093.32 | 1750.00 | 1425.74 | 81.45 | 7922.52 | 5409.63 | 9108.60 | |
Mean | 19.12 | 37.94 | 8152.84 | 1106.63 | 304.45 | 766.62 | 631.27 | 1620.80 | 632.91 | 42.58 | 4306.71 | 4093.09 | 5128.57 | |
Medium | 19.33 | 39.20 | 8250.80 | 1214.01 | 251.00 | 727.91 | 563.11 | 1668.09 | 455.22 | 35.03 | 4521.05 | 3748.69 | 4169.18 | |
UA (n = 2) | Min | 0.56 | - | 483.84 | 26.83 | 1.28 | 0.89 | 0.01 | 0.01 | 850.00 | 147.67 | 227.54 | 0.01 | 33.72 |
Max | 1.35 | - | 762.33 | 144.88 | 2.34 | 1.32 | 0.01 | 96.54 | 2813.01 | 637.20 | 324.30 | 0.01 | 211.38 | |
Mean | 0.96 | - | 623.09 | 85.86 | 1.81 | 1.11 | 0.01 | 48.28 | 1831.51 | 392.44 | 275.92 | 0.01 | 122.55 | |
Medium | 0.96 | - | 623.09 | 85.86 | 1.81 | 1.11 | 0.01 | 48.28 | 1831.51 | 392.44 | 275.92 | 0.01 | 122.55 | |
Mixed CO and CA (n = 3) | Min | 25.44 | 0.04 | 1599.02 | 0.01 | 46.73 | 12.30 | 0.01 | 0.01 | 278.69 | 98.36 | 74.84 | 0.01 | 672.13 |
Max | 28.39 | 2.49 | 5864.34 | 297.81 | 248.71 | 616.80 | 451.20 | 992.03 | 859.48 | 187.25 | 245.08 | 4536.85 | 6743.03 | |
Mean | 26.69 | 0.94 | 3251.99 | 99.28 | 117.06 | 252.69 | 150.42 | 462.49 | 491.94 | 143.13 | 163.71 | 2052.59 | 3153.64 | |
Medium | 26.23 | 0.29 | 2292.62 | 0.01 | 55.74 | 128.98 | 0.06 | 395.42 | 337.65 | 143.79 | 171.22 | 1620.92 | 2045.75 | |
Mixed CA and UA (n = 2) | Min | 6.81 | 0.01 | 818.89 | 0.01 | 13.33 | 3.58 | 0.01 | 42.37 | 1690.68 | 288.14 | 143.64 | 0.01 | 420.00 |
Max | 16.75 | 0.10 | 897.03 | 61.89 | 44.49 | 16.47 | 0.01 | 52.22 | 2040.00 | 443.33 | 243.22 | 0.01 | 1597.46 | |
Mean | 11.78 | 0.05 | 857.96 | 30.95 | 28.91 | 10.03 | 0.01 | 47.30 | 1865.34 | 365.74 | 193.43 | 0.01 | 1008.73 | |
Medium | 11.78 | 0.05 | 857.96 | 30.95 | 28.91 | 10.03 | 0.01 | 47.30 | 1865.34 | 365.74 | 193.43 | 0.01 | 1008.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Han, G.; Qu, R.; Xiao, C. Major and Trace Elements in Human Kidney Stones: A Preliminary Investigation in Beijing, China. Minerals 2022, 12, 512. https://doi.org/10.3390/min12050512
Tian Y, Han G, Qu R, Xiao C. Major and Trace Elements in Human Kidney Stones: A Preliminary Investigation in Beijing, China. Minerals. 2022; 12(5):512. https://doi.org/10.3390/min12050512
Chicago/Turabian StyleTian, Yu, Guilin Han, Rui Qu, and Chunlei Xiao. 2022. "Major and Trace Elements in Human Kidney Stones: A Preliminary Investigation in Beijing, China" Minerals 12, no. 5: 512. https://doi.org/10.3390/min12050512
APA StyleTian, Y., Han, G., Qu, R., & Xiao, C. (2022). Major and Trace Elements in Human Kidney Stones: A Preliminary Investigation in Beijing, China. Minerals, 12(5), 512. https://doi.org/10.3390/min12050512