The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Condition
2.2. Biosorption of Palladium
2.3. Synthesis of Electrocatalysts
2.4. Morphology and Microstructure Characterization
2.5. Electrochemical Characterization
3. Results
3.1. Characterization of Morphology and Microstructure
3.2. Characterization of Elements and Valence States
3.3. ORR Activity of Three Pd/Shewanella Electrocatalysts
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.M.; Xie, B.A.; Wang, B.W.; Zhao, Y.; Fan, L.H.; Wang, H.Z.; Hou, Z.J.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Shi, S.; Wen, X.L.; Sang, Q.Q.; Yin, S.; Wang, K.L.; Zhang, J.; Hu, M.; Yin, H.M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688. [Google Scholar] [CrossRef]
- Fan, J.; Chen, M.; Zhao, Z.; Zhang, Z.; Ye, S.; Xu, S.; Wang, H.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486. [Google Scholar] [CrossRef]
- Pan, L.; Ott, S.; Dionigi, F.; Strasser, P. Current challenges related to the deployment of shape controlled Pt alloy ORR nanocatalysts into low-Pt loaded cathode layers of Proton Exchange Membrane Fuel Cells (PEMFC). Curr. Opin. Electrochem. 2019, 18, 61–71. [Google Scholar] [CrossRef]
- Chen, Z.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuno, M.A.; Lopez, N.; Collins, S.M.; Midgley, P.A.; Richard, S.; Vile, G.; et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 2018, 13, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Peng, C.; Khan, Z.M.; Naz, I.; Sultan, M.; Ali, M.; Abbasi, I.A.; Islam, T.; Ye, T. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. J. Environ. Manag. 2019, 230, 128–150. [Google Scholar] [CrossRef]
- Vysakh, A.B.; Shebin, K.J.; Jain, R.; Sumanta, P.; Gopinath, C.S.; Vinod, C.P. Surfactant free synthesis of Au@Ni core-shell nanochains in aqueous medium as efficient transfer hydrogenation catalyst. Appl. Catal. A Gen. 2019, 575, 93–100. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.; Karahan, H.E.; Loo, S.; Chen, Y.; Cao, B. Interfaces. Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS Appl. Mater. Interfaces 2019, 11, 24018–24026. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, F.; Rahunen, N.; Varcoe, J.R.; Avignone-Rossa, C.; Thumser, A.E.; Slade, R.C.T. A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angew. Chem. Int. Ed. 2011, 50, 427–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Tan, L.; Cui, H.; Xu, M.; Xiao, Y.; Wu, H.; Dong, H.; Liu, X.; Qiu, G.; Xie, J. Characterization of Pd(II) biosorption in aqueous solution by Shewanella oneidensis MR-1. J. Mol. Liq. 2018, 255, 333–340. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Xuan, W.; Zhou, H.; Tian, W.; Deng, X.; Huang, J.; Xie, Z.; Liu, F.; Liu, X.; et al. Microbial synthesis of highly dispersed nano-Pd electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2021, 46, 26886–26896. [Google Scholar] [CrossRef]
- Courtney, J.; Deplanche, K.; Rees, N.V.; Macaskie, L.E. Biomanufacture of nano-Pd(0) by Escherichia coli and electro-chemical activity of bio-Pd(0) made at the expense of H-2 and formate as electron donors. Biotechnol. Lett. 2016, 38, 1903–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, M.D.; Cusick, R.D.; Logan, B.E. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens. ACS Sustain. Chem. Eng. 2013, 1, 1165–1171. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, N.; Kang, N.; Ha, C.; Shi, C.; Wu, P. Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: From biosorption to bioreduction. Chem. Eng. J. 2017, 328, 1051–1057. [Google Scholar] [CrossRef]
- de Vargas, I.; Macaskie, L.E.; Guibal, E. Biosorption of palladium and platinum by sulfate-reducing bacteria. J. Chem. Technol. Biotechnol. 2004, 79, 49–56. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Z.; Marcus, A.K.; Rittmann, B.E. Biofilm-enhanced continuous synthesis and stabilization of palladium nanoparticles (PdNPs). Environ. Sci. Nano 2016, 3, 1396–1404. [Google Scholar] [CrossRef]
- Suja, E.; Nancharaiah, Y.V.; Venugopalan, V.P. Biogenic nanopalladium production by self-immobilized granular biomass: Application for contaminant remediation. Water Res. 2014, 65, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Deng, L.; Huang, L.; Guo, S.; Liu, F.; He, J. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res. 2014, 56, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.-V.N.; Jeevanantham, S.; Yaashikaa, P.R.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021, 264, 128580. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Chen, J.-J.; Huang, Y.-X.; Li, W.-W.; Xie, J.-F.; Yu, H.-Q. An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy 2015, 12, 33–42. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Cai, K.; Zhang, H.; Lu, Z.; Li, T.; Zuo, Y.; Han, H. Clean Synthesis of an Economical 3D Nanochain Network of PdCu Alloy with Enhanced Electrocatalytic Performance towards Ethanol Oxidation. Chem. Eur. J. 2015, 21, 17779–17785. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Feng, L.; Liu, C.; Xing, W.; Hu, X. An Effective Pd-Ni2P/C Anode Catalyst for Direct Formic Acid Fuel Cells. Angew. Chem. Int. Ed. 2014, 53, 122–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M.O.; Dai, S.; Yamauchi, Y. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock Copolymer Micelles. Angew. Chem. Int. Ed. 2015, 54, 588–593. [Google Scholar] [CrossRef]
- Yates, M.D.; Cusick, R.D.; Ivanov, I.; Logan, B.E. Exoelectrogenic Biofilm as a Template for Sustainable Formation of a Catalytic Mesoporous Structure. Biotechnol. Bioeng. 2014, 111, 2349–2354. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, G.; Jiang, X.; Huang, J.; Jing, X.; Zheng, Y.; He, J.; Li, Q. Biogenic flower-shaped Au-Pd nanoparticles: Synthesis, SERS detection and catalysis towards benzyl alcohol oxidation. J. Mater. Chem. A 2014, 2, 1767–1773. [Google Scholar] [CrossRef]
- Kong, W.Q.; Lin, J.Y.; He, X.; Cheng, Y.Y.; Zhang, X.S.; Deng, G.Z.; Han, R.S.; Wu, C. Reduction pathway and mechanism of chloronitrobenzenes synergistically catalyzed by bioPd and Shewanella oneidensis MR-1 assisted by calculation. Chemosphere 2017, 187, 62–69. [Google Scholar] [CrossRef]
- Song, X.; Shi, X. Biosynthesis of Ag/reduced graphene oxide nanocomposites using Shewanella oneidensis MR-1 and their antibacterial and catalytic applications. Appl. Surf. Sci. 2019, 491, 682–689. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Q.; Zhou, H.; Xuan, W.; Liang, Y.; Xie, Z.; Liu, F. Scalable preparation of Pd/bacteria-rGO(CNT, Ketjen) composites for efficient oxygen reduction catalyst. Int. J. Hydrogen Energy 2021, 46, 5664–5676. [Google Scholar] [CrossRef]
- Fu, G.-T.; Jiang, X.; Wu, R.; Wei, S.-H.; Sun, D.-M.; Tang, Y.-W.; Lu, T.-H.; Chen, Y. Arginine-Assisted Synthesis and Catalytic Properties of Single-Crystalline Palladium Tetrapods. ACS Appl. Mater. Interfaces 2014, 6, 22790–22795. [Google Scholar] [CrossRef]
- Rotaru, A.-E.; Jiang, W.; Finster, K.; Skrydstrup, T.; Meyer, R.L. Non-enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnol. Bioeng. 2012, 109, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz Escherichia coli Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ontiveros-Valencia, A.; Wang, Z.; Maldonado, J.; Zhao, H.-P.; Krajmalnik-Brown, R.; Rittmann, B.E. Palladium Recovery in a H-2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Auto-catalytic Reductions. Environ. Sci. Technol. 2016, 50, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Mourato, C.; Sanches, S.; Noronha, J.P.; Barreto Crespo, M.T.; Pereira, I.A.C. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 2017, 108, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dai, Y.; Yang, Z.; Li, T. Controllable synthesis of palladium nanoparticles and their catalytic abilities in Heck and Suzuki reactions. Inorg. Chim. Acta 2014, 414, 59–62. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygen-Evolving Performance. Adv. Mater. 2017, 29, 1604765. [Google Scholar] [CrossRef]
- Hu, K.-J.; Plant, S.R.; Ellis, P.R.; Brown, C.M.; Bishop, P.T.; Palmer, R.E. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation. J. Am. Chem. Soc. 2015, 137, 15161–15168. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, L.; Meng, X.; Xiao, F.-S. New Strategies for the Preparation of Sinter-Resistant Metal-Nanoparticle-Based Catalysts. Adv. Mater. 2019, 31, 1901905. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, D.; Ou, Y.; Fang, K.; Zhu, B.; Yang, H.; Hansen, T.W.; Wagner, J.B.; Zhang, Z.; Gao, Y.; et al. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO2. Angew. Chem. Int. Ed. 2018, 57, 16827–16831. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; He, Q.; Liu, X.; Guo, Y.; Wang, Y.; Wang, L.; Guo, Y.; Borisevich, A.Y.; Zhang, J.; Lu, G.; et al. A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts. J. Am. Chem. Soc. 2016, 138, 16130–16139. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Shu, Y.; Sheng, Y.; Zhu, H.; Guo, Y.; Wang, L.; Guo, Y.; Zhang, J.; Lu, G.; Dai, S. Surfactant-Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2017, 56, 4494–4498. [Google Scholar] [CrossRef]
- Patnaik, S.G.; Vedarajan, R.; Matsumi, N. BIAN Based Electroactive Polymer with Defined Active Centers as Metal-Free Electrocatalysts for Oxygen Reduction Reaction (ORR) in Aqueous and Nonaqueous Media. ACS Appl. Energy Mater. 2018, 1, 1183–1190. [Google Scholar] [CrossRef]
- Zhang, Y.; Reed, A.; Kim, D.Y. Nitrogen doped carbon nano-onions as efficient and robust electrocatalysts for oxygen reduction reactions. Curr. Appl. Phys. 2018, 18, 417–423. [Google Scholar] [CrossRef]
- Fujiwara, K.; Okuyama, K.; Pratsinis, S.E. Metal-support interactions in catalysts for environmental remediation. Environ. Sci. Nano 2017, 4, 2076–2092. [Google Scholar] [CrossRef]
- Kiyani, R.; Parnian, M.J.; Rowshanzamir, S. Investigation of the effect of carbonaceous supports on the activity and stability of supported palladium catalysts for methanol electro-oxidation reaction. Int. J. Hydrogen Energy 2017, 42, 23070–23084. [Google Scholar] [CrossRef]
- Perini, L.; Durante, C.; Favaro, M.; Perazzolo, V.; Agnoli, S.; Schneider, O.; Granozzi, G.; Gennaro, A. Metal-Support Interaction in Platinum and Palladium Nanoparticles Loaded on Nitrogen-Doped Mesoporous Carbon for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 7, 1170–1179. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of N-Mesylamides by N-C Cleavage: Electronic Effect of the Mesyl Group. Org. Lett. 2017, 19, 1434–1437. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. C–N bond cleavage of allylic amines via hydrogen bond activation with alcohol solvents in Pd-catalyzed allylic alkylation of carbonyl compounds. J. Am. Chem. Soc. 2011, 133, 19354–19357. [Google Scholar] [CrossRef]
- Dai, W.-C.; Wang, Z.-X. Palladium-catalyzed coupling of azoles with 1-aryltriazenes via C-H/C-N cleavage. Org. Chem. Front. 2017, 4, 1281–1288. [Google Scholar] [CrossRef]
- Hao, W.; Geng, W.; Zhang, W.-X.; Xi, Z. Palladium- Catalyzed One- Pot Three- or Four- Component Coupling of Aryl Iodides, Alkynes, and Amines through C similar to N Bond Cleavage: Efficient Synthesis of Indole Derivatives. Chem. Eur. J. 2014, 20, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.M.; Liu, G.; Zhou, H. Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation: N-functionality and catalytic mechanisms. Sci. Total Environ. 2020, 744, 140862. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-N.; Zhang, B.; Yun, H.; Yang, Z.-N.; Han, J.-L.; Zhou, J.; Wang, A.-J.; Cheng, H.-Y. Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. Water Res. 2017, 125, 288–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojani, R.; Raoof, J.B.; Safshekan, S. Photoinduced deposition of palladium nanoparticles on TiO2 nanotube electrode and investigation of its capability forformaldehyde oxidation. Electrochim. Acta 2014, 138, 468–475. [Google Scholar] [CrossRef]
- Xu, G.-R.; Wang, B.; Zhu, J.-Y.; Liu, F.-Y.; Chen, Y.; Zeng, J.-H.; Jiang, J.-X.; Liu, Z.-H.; Tang, Y.-W.; Lee, J.-M. Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catal. 2016, 6, 5260–5267. [Google Scholar] [CrossRef]
- Hassan, K.M.; Hathoot, A.A.; Maher, R.; Azzem, M.A. Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1,8-diaminonaphthalene film in alkaline medium. RSC Adv. 2018, 8, 15417–15426. [Google Scholar] [CrossRef] [Green Version]
Samples | C | O | N | Pd |
---|---|---|---|---|
PHTG | 80.95 | 13.12 | 4.61 | 1.03 |
FHTG | 80.46 | 12.9 | 5.38 | 1.26 |
DHTG | 81.63 | 12.13 | 5.2 | 1.32 |
Samples | Pd (%) | N (%) | |||
---|---|---|---|---|---|
Pd(0) | PdO | Pyridinic-N | Pyrrolic-N | Oxidized-N | |
PHTG | 67.91 | 32.09 | 37.43 | 53.82 | 8.44 |
FHTG | 63.09 | 36.91 | 47.01 | 52.29 | 0.7 |
DHTG | 83.83 | 16.17 | 38.53 | 53.01 | 8.46 |
Samples | ECSA (m2·g−1) | MA (A·g−1) | SA (A·m−2) | Onset Potential (V) | Half-Wave Potential (V) |
---|---|---|---|---|---|
PHTG | 30.21 | 33.44 | 1.11 | 0.011 | −0.242 |
FHTG | 35.01 | 58.39 | 1.66 | −0.002 | −0.235 |
DHTG | 22.40 | 25.78 | 1.15 | −0.037 | −0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, G.; Deng, X.; Li, Q.; Zhou, H.; Xie, Z.; Liu, X.; Liu, F.; Liang, Y. The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction. Minerals 2022, 12, 531. https://doi.org/10.3390/min12050531
Huang J, Zhang G, Deng X, Li Q, Zhou H, Xie Z, Liu X, Liu F, Liang Y. The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction. Minerals. 2022; 12(5):531. https://doi.org/10.3390/min12050531
Chicago/Turabian StyleHuang, Jingwen, Guoqing Zhang, Xiaoting Deng, Qingxin Li, Haikun Zhou, Zhiyong Xie, Xueduan Liu, Feng Liu, and Yili Liang. 2022. "The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction" Minerals 12, no. 5: 531. https://doi.org/10.3390/min12050531
APA StyleHuang, J., Zhang, G., Deng, X., Li, Q., Zhou, H., Xie, Z., Liu, X., Liu, F., & Liang, Y. (2022). The Effect of a Hydrogen Reduction Procedure on the Microbial Synthesis of a Nano-Pd Electrocatalyst for an Oxygen-Reduction Reaction. Minerals, 12(5), 531. https://doi.org/10.3390/min12050531